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Why the Universe started from a low entropy state
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We show that the inclusion of backreaction of massive long wavelengths imposes dynamical constraints
on the allowed phase space of initial conditions for inflation, which results in a superselection rule for the
initial conditions. Only high energy inflation is stable against collapse due to the gravitational instability
of massive perturbations. We present arguments to the effect that the initial conditions problem cannot be
meaningfully addressed by thermostatistics as far as the gravitational degrees of freedom are concerned.
Rather, the choice of the initial conditions for the universe in the phase space and the emergence of an
arrow of time have to be treated as a dynamic selection.
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L. INTRODUCTION

The landscape picture of string vacua [1] has been the
driving influence behind a major rethinking of the way that
predictions are extracted from a physical theory. One view
is that we are necessarily led to something like the an-
thropic principle [2] as the only way that string theory can
be made predictive. We must then hope that the physical
quantities of interest are amenable to anthropic predictions;
an example of this is Weinberg’s calculation of the cosmo-
logical constant. An interesting discussion of this and other
points concerning the landscape can be found in Ref. [3].

Another point of view is that string theory might still be
as predictive as other theories in physics, but that it re-
quires a much deeper understanding of the initial condi-
tions (IC) for the Universe. In [4,5] we argued that a
landscape picture must, in fact, be expected of any theory
of initial conditions. The hope would then be that a super-
selection rule emerges from the quantum dynamics
whereby the Universe would find itself driven to choose
a unique vacuum state which could be computed from the
requirement that it is the most probable state the Universe
can access starting from “‘nothing”, [5-9].

The idea that the selection of the correct vacuum should
be driven by the quantum dynamics of gravity, is a tanta-
lizing one. What we need is some physical requirement
that can reduce the number of allowed initial states. Here
we demonstrate that a superselection criterion emerges as a
result of decoherence obtained through the backreaction of
matter modes onto the gravitational degrees of freedom.
The WMAP [10] results might shed some insight [11] into
this. They are consistent with the predictions from infla-
tion. In particular, the anticorrelation between the TE and
TT power spectra as a function of multipole number is a
potential ‘“‘smoking-gun’’ for inflation. Perhaps then, we
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should focus our attention on the portion of the landscape
that allows for inflation.

If inflation did indeed occur, the data argue for a high
inflationary energy scale, perhaps near the grand unified
scale ~10'~17 GeV. How likely is this? One way to frame
this question is through the relation S; = 37G/ A between
the entropy S; of the approximate de Sitter spacetime
describing the inflationary phase, and the inflaton vacuum
energy A;. From this relation, we would infer that high
scale inflation is extremely improbable, since the statistical
probability P is = e5i.

It is important to note that all these arguments, which
eventually lead to paradoxes and counterintuitive results,
are statistical in nature and assume an equilibrium en-
semble of initial inflationary patches. Many suggestions
have been put forth [12-14] to resolve this problem, but
they all appear to lead to paradoxes when the state of the
universe is evolved forward in time, especially if the
endpoint of this evolution is a second De Sitter state in
the far future.

Our view is that the assumption of statistical equilibrium
is not warranted in this setting. In particular, the fact that
gravitational systems have negative specific heat makes
equilibrium difficult, if not impossible to achieve.
Dynamics must dictate whether high scale inflation will
occur or not. A more reasonable approach to the question
of inflationary initial conditions would be a dynamical one.

We exhibit such a dynamical mechanism in this work.
The inclusion of the backreaction due to the quantum
fluctuations of scalar perturbations gives rise to instabil-
ities that render most of the inflationary patches unstable
against gravitational collapse of superhorizon modes. This
has the effect of dynamically reducing the allowed phase
space of stable inflationary patches. This is essentially a
Jeans instability effect, arising from the generation of
tachyonic modes by the backreaction of the perturbations
in Wheeler-deWitt (WdW) Master equation. We can then
trace out the modes corresponding to collapsing patches to
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construct a reduced density matrix p,.q for the patches that
survive and enter an inflationary phase and use this to show
explicitly that if A is the Hamiltonian of the system,
[H, prea] # 0. This would imply that the initial states
allowing for inflation do not form an equilibrium
ensemble.

This analysis can also be tied into current efforts [8,15]
to select appropriate vacua from the landscape of string
vacua. We do this by taking the landscape as the configu-
ration space for the wavefunction of the Universe so that
the landscape minisuperspace can be thought of as the
phase space of the initial conditions for the universe. In
this construction, the minisuperspace of 3-geometries and
string vacua is a real physical configuration space for the
initial conditions, rather than an abstract metauniverse of
unknown structure and unknown distribution of initial
patches [6,7].

Our results have a number of implications that we will
discuss in [4]. In particular, to the question of the viability
of casual patch physics, its implications for holography, the
N-bound proposal and Poincare recurrences.

Our plan of action will be first to represent as closely as
possible what is known of the landscape vacua degrees of
freedom distribution [16,17] and to construct wavepacket
solutions of the WdW equation that correspond to classical
trajectories of the universes on the landscape. Next, we will
perturb the landscape degrees of freedom along with the
metric of 3-geometries and include their backreaction on
the WdW equation. This will leads us to a Master equation
for the probability distribution of vacua on the landscape.
From this we will be able to infer the likelihood of infla-
tionary initial conditions.

In the next section we discuss the model for the string
landscape that we will use in the sequel. Section III deals
with the construction of the wavefunction of the Universe
and its associated Wheeler-de Witt equation on our model
of the landscape. After setting up the wavefunction, we
turn to the issue of the backreaction of the massive modes
in Sec. and how they affect the evolution of the wave-
function. The dynamical selection mechanism is dealt with
in Sec. IV and we conclude in Sec. V.

II. A MODEL OF THE STRINGY LANDSCAPE

As stated above, our goal is to investigate the dynamics
of the wavefunction of the Universe defined on the string
landscape. Given that we do not yet have as thorough a
grasp on the structure of the landscape as we would like,
we have to find a way to capture the features of the land-
scape that might be important for discussing inflationary
initial conditions.

We can do this in the following way. In Ref. [6,7] the
landscape was treated as a disordered lattice of vacua,
where each of the N sites is labeled by a mean value ¢;,
i =1,...N of moduli fields. This allows us to use Random
Matrix Theory (RMT) [18-21] as well as other results
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from condensed matter systems. Each site has its own
internal structure, consisting of closely spaced resonances
around the central value. The disordering of the lattice is
enforced via a stochastic distribution of mean ground state
energy density €;, i = 1...N of each site. These energies
are drawn from the interval [—W, +W], where W ~
M3 With a Gaussian distribution with width (disorder
strength) T: M8 ¢y =T = M3 where Mgysy is the
SUSY breaking scale.

Quantum tunneling to other sites is always present
which allows the wavefunction to spread from site to
site. Together with the stochastic distribution of sites this
ensures the Anderson localization [22] of wavepackets
around some vacuum site, at least for all the energy levels
up to the disorder strength. This localization forces the
wavefunction to remain within the non-SUSY sector of the
landscape [6]. The energy density of the Anderson local-
ized wavepacketis €; = |A; + iyl|, where A, is the vacuum
energy density contribution to the site energy €; and y =
I7'1,%, where [ is the mean localization length and /,, is the
fundamental length of the lattice, which we will be take to
be the Planck/string length. For large enough values of the
disorder strength I, the majority of the levels are localized
so that a semiclassical treatment of their classical trajecto-
ries in configuration space is justifed.

To add gravity to this picture, we start by making use of
the minisuperspace approximation, in which the scale fac-
tor a of closed or flat 3-geometries is added as a dynamical
variable upon which the wavefunction will depend. In later
sections, we will go beyond this approximation and add
both metric and matter perturbations into the mix.

As pointed out by Douglas et al. [16], based on the two
symmetries of this lattice, namely, time-reversal invariance
and rotation invariance, this sytem would fall in the same
universality class as the CI-type class studied in Ref. [17]
for quantum dots and random disordered systems.
However, in order to deal with realistic cosmologies, we
include the scale factor a of the 3-geometries as the gravi-
tational degree of freedom, besides the landscape space of
vacua which then breaks the time-invariance symmetry
considered in Ref. [16]. The scale factor a plays the role
of an intrinsic time and the WdW equation for the wave-
function of the universe becomes manifestly asymmetric
with respect to a. This has the implication that landscape
plus gravity minisuperspace falls in the universality class
of random lattices with broken time-invariance but with
unbroken rotation-symmetry, which is the C-class of
Ref. [17].

In this picture, each site is a potential starting point for
the universe since Anderson localization can occur in any
of them. For this reason, the ensemble of sites, i.e the
landscape minisuperspace is equivalent to the phase space
of the initial conditions for the universe.

Let us review some of the basic features of the RMT
formalism, since this is one of the main tools we use to
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analyze the wave function of the Universe in our lattice
picture of the landscape. The random matrix theory is
achieved by taking many different realizations of the ran-
dom potential of vacuum energies on the landscape. The
mean averaged localization length [ of the wavefunction is
obtained from the exponential decay of the retarded
Green’s function and given by the ensemble average of
the norm of the retarded Green’s function Gg':

L e
. _;<1|ln||G Wiz pHIINY = r -’

2.1
where L = NI, is the size of the landscape sector.

The single-particle averaged density of states can be
obtained from the imaginary part of the advanced
Green’s function G, ;;, through the expression 7p(e) =

(1ImG4|N). Note that G,;; has poles at |g;]| =

IA; — z% |. Using RMT we can also write
J

p(&) = 3, (Trdle = H($))n,

1 A R
=—— | D(H4)P(H4)Im(G,). 2.2
vr [ DHaPEHING. @2
As discussed above, the non-SUSY sector of the land-
scape, with gravity switched on, belongs in the type C
universality class. This allows us to write the joint proba-
bility distribution for the density of states as [17]:

PUA(@)) = P(o?) = Mp T [(0} = o[ Jofe @i/,

i<j k
2.3)

where €; = w?. In the limit that the energy level spacing is
less than b = v\/A_l , where M is the number of the internal
degrees of freedom/sublevels in the i’th vacuum, (the
closely spaced string resonances around the i’th vacua),
this result goes to the familiar Wigner-Dyson result of
random disordered systems, P((H(¢$)) = w?) =~ w?. We
also see that for large energies, P~ (0?>+ 7y —
v2)€*w2(1/v2+l).

The single-particle density of states p(w) = (Tré(w?> —
H(¢))), obtained by integrating the above joint probability
with respect to @, behaves as p(w) o Mp8(1 —
sin(lw?)/lw?)e@/*) (Fig. 1). When time-reversal sym-
metry, given by the operation € — —e, is broken, then
p(w) = (1 + sin(lw?)/lw?)e”@*/¥") (Fig. 2).

The 2-point correlation function for level-level mixing,
(p(w)p(w')), which can be similarly obtained by the above
averaging procedure with respect to the weight P(w), goes
to the Wigner-Dyson result for  disordered
systems,(p(w)p(w')) = —sin*(7lw?)/(7lw?)*.

These are all the results from RMT that we will need in
the sequel. Naively, Fig. 2 would imply that the most
probable universe is the one residing around vacua with
zero energy. This will change once the decoherence and
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FIG. 1. Density of states as a function of energy for the land-
scape system as derived from the Douglas and Altland proba-
bility distribution. Time-reversal invariance is preserved, i.e.
gravity is not switched on yet.
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FIG. 2. Density of states as a function of energy for the land-
scape +gravity system, namely, when time invariance is broken.
Notice the difference with the previous distribution around zero
energy, namely, localized states exist at zero energy.

backreaction effects of matter on the geometry are
included.

III. QUANTUM COSMOLOGY AND WHEELER-
DEWITT EQUATION

It becomes clear that we need to study the quantum
dynamics of gravity in combination with matter if want
to address the issue of high energy inflation. In order to
make any progress, we restrict the number of degrees of
freedom in the wave function of the Universe. This is
usually done by invoking the minisuperspace approxima-
tion [23], where the wavefunction W depends on the scale
factor a(t), curvature k = 0, =1 of the FRW 3-geometries
together with the landscape variables, collectively denoted
by {¢} which will play the role of the massive modes in the
Wheeler-DeWitt (WDW) equation.

The wave function of the universe W for the Friedman-
Roberston-Walker (FRW) 3-geometries propagates on the
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landscape background with the vacuum distribution de-
scribed in the previous section and parametrized by the
collective coordinates {¢p} = {¢"}. Here ¢, is the central
value of landscape variable on vacuum site =
0,1,2,...N while n counts the internal degrees of freedom
within the i’th vacuum. The internal degrees of freedom
are closely spaced resonances' around the mean value b,
in the i’th vacuum site, within the energy range of the
gaussian distribution of width v, n = 1,2 .... We can think
of n as counting the sublevels within the i’th energy level,
and of the ¢, ... ¢y as distinct energy levels.

Thus, our superspace consists of the infinite dimensional
configuration space spanned by the variables (a, ¢, f,, d,,)
where f, and d, denote the massive (¢) and massless
(metric) perturbation modes.

Before including the perturbation modes, {f,, d,}, the
Wheeler-DeWitt equation for the wavefunction of the uni-
verse propagating on the minisuperspace spanned by the
landscape variable ¢ and the FRW 3-geometries with line
element

ds*> = —N%df* + a*(t)dx?, 3.1

is [24,25]

HW(a, ¢) =0 with
A 1 [4m 3> 9
=—|=———— + V(a, . (32
2 [3M,2, i agr V@ (b)} (3-2)
Here the scale factor a has been written as a = e® and
Via, p) = e**m?>¢p? — e**k, k =0, 1 for flat or closed
universes.
If we change variables from ¢ to x = e**¢, we can
rewrite the WdW equation in two separate equations in x,
a:

Y(a,x) = Z;¢;(x)Fj(a)
3M2
H[_ - v(x)}p,(x) &) (3.3)
2
- %Fj(a) = _@ij(CY),

where &; = ¢%¢;

The wavefunctlon W(a, ¢) will in general be a super-
position of many waves. In order to build wavepackets that
correspond to classical paths in configuration space, some
form of decoherence has to occur. Usually, this requires a
separation between ““‘system’ and “‘environmental’’ varia-
bles; tracing over the environmental variables converts the
system into an open one and allows it to behave classically.
For our model of the landscape, we will take the higher
superhorizon wavelength massive and metric multipoles
{f. d,} to play the role of environmental variables. These
modes couple with gravitational strength to the system

L. Susskind, private communication
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W(a, ¢p). This coupling is of order g = GM /R with M =~
O(Mjeuns) = H and R =~ ry =~ H™! so that g =~ H*/M3.
This is usually very small so that we can treat the higher
multipoles as environmental variables and trace them out
perturbatively [26,27].

We now turn to the construction of wavepackets cen-
tered around a vacuum characterized by ¢; [28]. Using this
wavepacket, we will then include the backreaction of the
environment modes on this wavepacket. This will lead us
from the WdW equation to a Master Equation for the
wavefunction ¥(a, ¢).

When we specialize these results to our version of the
landscape We consider the rescaled variables x = e3¢,

@2 = €% w? and Eqns. (3.3) lead to

H(X)%(X) = &y;(x)

3M2[ax2—&)§— )}a P

where 3’-[(x) =—=
+ (c?)j —y + ke*)F; = 0. (3.4)

The localized solutions ¢;(x) around a vacuum site with
energies centered around @ ; within the gaussian width v,
are

j(x) = sin(®x)e =)/, (3.5)

The wavepacket is a superposition of these solutions for
the M internal degrees of freedom n = 1,... M with en-
ergies peaked around the mean value of site x;, €;, and
amplitudes given by the Gaussian weight

l

L @aaor /)
mMuv? '

A} =
namely,”

¢(0~)J) = f d(DnAnll’nFn(a)'

Within the WKB approximation, the turning points of the

wavepacket are at « = «, where «,, is a solution of:
€2 — ket =0,

(3.6)

which in turn leads to the following solutions to the WdW
equation:

e—i fz /&, (a)da'

Fila) = 3.7)

1

So, wave packets that are peaked around a level given by
€, = €, are constructed by the supersposition of the M
internal degrees of freedom of the landscape vacua, with
the Gaussian weight A, given above (see Ref. [28] for
details of the construction).

*We will drop the index j that labels the site from now on,
keeping only the index n that counts the internal degrees of
freedom of the j’th site
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For the sake of illustration we can consider closed uni-
verses with k = +1. Then

(3.9)

Vi 6) = " MFwa b )day

Equation (3.8) shows that the inclusion of the internal
degrees of freedom of vacuum ¢; results in a Gaussian
wavepacket spread with width b~!' = (v/M)~!. The
wavepacket solution around some vacua x, of the M inter-
nal oscillators with frequency levels @2 = mya®*(2n + 1),
where n is a positive integer and m, = V| is the curvature
of the vacua potential, and energies €, ~ |@2 = iy,
(where y = I 1) is

W(xg, a) = ]da)e_(“’z/bz) sin(wxg)e” Yo~ g ~iaw

DT - yta0-9) (o B2 0
2i
oA —ary,

(3.9)

Tracing out the internal perturbation modes described by
the index M results in the reduced density matrix p,q for
the system (a, x) [27]:

o, B!, p1) ~ e~ QaM/Da=a'P o= (0>~ b*/47) 2=,
(3.10)

with Q = (mo/M)'/?, a = expa and b the width defined
above. We have ignored the contribution to the environ-
ment from the metric tensor perturbations d, in the above
treatment since they are expected to be small compared to
the massive modes (see [26,27]).

From the term depending on (a — a’)? in Eq. (3.12), we
see that the intrinsic time a of the wavepacket becomes
classical first since the internal number of degrees of free-
dom M is large, while ¢ becomes classical later when the
scale factor grows larger than the Gaussian width.

The reduced density matrix above indicates how well the
mean value €;, ¢; can describe the vacuum site i when the
energy levels broaden due to the internal fluctuation modes
of ¢;. We expect the width b = v~/M to be at least of order
SUSY breaking scale My, in order to account for the
SUSY breaking of the zero energy levels w;, = 0. Since the
Fourier transform of the above wavepacket is still a
Gaussian with width inverse that of (x — x;)?, we need
b> <2y or Mgy = M., in order to have a meaningfully
centered energy for the wavepacket made up from all the
closed resonances (the internal degrees of freedom M).
However, this gives rise to a spreading of the wavepacket
in the moduli space x. To classicalize the system, we need
to include the higher multipoles as environmental varia-
bles. We turn to this in the next section.
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Backreaction of perturbations and the master equation

The moduli fields as well as the metric have fluctuations
about their mean value and those fluctuations can serve to
decohere the wavefunction [26]. This would then provide a
classical probability distribution for scale factors and mod-
uli fields. The procedure laid out in Ref. [26] starts by
writing the metric and the moduli fields as

hij = a*(Qy + €), & = ¢o + D fu@Q,  (B.11)

where ();; is the FRW spatial metric, €;; is the metric
perturbation (both scalar and tensor), Q, are the scalar
field harmonics in the unperturbed metric and f,(a) are
the massive mode perturbations. The index # is an integer
for closed spatial sections, and k = n/a = ne™® denotes
the physical wavenumber of the mode. As stated in
Ref. [26], the fact that the CMB fluctuations are so small
means that we can neglect the effects of the metric pertur-
bations in the following calculations relative to the field
fluctuations.

The wavefunction is now a function ¥ = W(a, ¢, {f,}).
Inserting Eq. (3.11) into the action, yields Hamiltonians
{H,,} for the fluctuation modes which, at quadratic order in
the action, are decoupled from one another. The full quan-
tized Hamiltonian H = H, + ZnI-AIn then acts on the
wavefunction

v~ \I,()(Cl, (bO)l_[lpn(a: d)’ fn)- (312)
Doing all this yields the master equation
Aotola g0) = (= S0H) Yol b0 (13)

where the angular brackets denote expectation values in the
wavefunction ¢, and

N 92
H,=— e + e%%(m? + e 2%(n? — 1))f2,

(3.14)

IV. DYNAMICAL SELECTION OF INITIAL
CONDITIONS IN THE PHASE SPACE OF
INFLATIONARY PATCHES

Following Ref. [29] a time parameter ¢ can be defined for
WKB wavefunctions so that the equation for the perturba-
tions ¢, can be written as a Schrodinger equation. If S is
the action for the mean values «, ¢, define y=
(0S/3a)/(3S/d¢) ~ @&/, so that we can write:
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W, = e*/? exp(ii 05 2) 2

2y 9"
(0) 2
al/fn -3 19 2 (0)
= a—— + U » n n
T { T d’)f}
2 1 2
Ula, §) = 66“{<—n ; )ﬂa +

+ 9m?y 2% — 6m2y1¢’>}. 4.1)

During inflation, § = —1/3me3% ¢;,s, Where ;¢ is the
value of the field during inflation, so that y = 3¢;,¢. Thus
long wavelength matter fluctuations are amplified during
inflation and driven away from their ground state. After
inflation, when the wavepacket is in an oscillatory regime,
y is large so that the potential U(a, ¢) changes from
U_(a, ¢) to U, (a, ¢p), where

U-(a, ¢) ~ eﬁa[”Q ! mz}

—2a 4+ "

¢ x|
From Eq. (4.1) we see that during inflation, the patches that
have U(a, ¢) <0, which can happen for small enough
physical wave vector k, = ne™ ¢, develop tachyonic insta-
bilities due to the growth of perturbations: ¢, =
e Mneitn® where —u2 = Ula, ¢)f2. These trajectories
in phase space cannot give rise to an inflationary universe,
since they are damped in the intrinsic time « and so such
modes do not contribute to the phase space of inflationary
initial conditions. The damping of these wavefunctions is
correlated with the tachyonic, Jeans-like instabilities of the
corresponding mode f,; when U(a, ¢) <0, f, ~ e“H,
while for U(a, ¢) > 0, the long wavelength matter pertur-
bations f, are frozen in.

To see this more clearly, one can ask what happens to the
massive perturbation f, modes in real spacetime for such
damped wavefunction solutions. The equation of motion
for ¢, f, can be obtained by varying the action with
respect to these variables. For the tachyonic case U <0
universes, we have

.. . Ut .
fn+3an+a—%fn_Or

(4.2)

4.3)

where the inflation scale factor is a; = ¢3* and U. de-
notes the potential/(tachyonic) mass term case, Eq. (4.2).

When U < 0 one obtains growing and decaying solution
in spacetime roughly for f,, = e=#'. When U > 0 then the
fn are nearly frozen as in the standard perturbation theory
case for superhubble wavelength modes.

This shows that, for damped universe solution in con-
figuration space,with U <0, ¥ =~ ¢"#2_ the perturbation
modes in real space f, grow rapidly. This corresponds to a
universe that is collapsing instead of inflating due to the
backreaction of massive super-Hubble perturbations f,
which are coupled to the 3-geometry gravitationally via
U(a, ¢). Note that the super-Hubble modes are not adia-
batic and they do not re-enter in their ground state but
rather in a highly excited state. For the inflating initial
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patches of our universe solutions, the superhorizon wave-
length perturbations f, are nearly frozen, so we can ignore
the energy corrections from the f, terms. Notice that the
cross-terms have also been dropped in the master equation
since during inflation they are subleading compared to the
quadratic terms included [26,27] with backreaction source
term €, =~ Ue®®.

What we glean from all this is that the following: all
initial inflationary patches, characterized by values of the

scale factor a;; and Hubble parameter hy; =

\2/37H s/ Mppanex for which U < 0 will collapse due to
the backreaction of the superhorizon modes satisfying
k, = m. Since the backreaction effects due to modes
with wavenumber n scale as a2, patches for which U >
0 will start to inflate and the backreaction effects will be
inflated away. The surviving patches are then exactly those
with
242 2 2 _ (1 2

megi = hi, =k, = <5> =m*=d =1 (44
We have achieved our goal, namely, we have shown that
the quantum dynamics of the backreacting modes scours
the Universe clean of regions which cannot support infla-
tion! This reduction in the phase space of inflationary
initial conditions implies that gravitational dynamics
does not conserve the volume of the phase space, i.e.
Liouville’s theorem does not hold so that [H, p,eq] # O.

The entropy can be obtained by taking the logarithm of
the action above. However in order to simplify a rather
messy expression for the action in our Master equation, let
us take the limit and think of the massive modes f, as
collapsing into one black hole. Then we can write an
approximate expression for the entropy S of the system
of De Sitter patches together with the backreaction from
the black hole (i.e. the massive modes), from our action
including terms up to quadratic order. This expression
reduces to the entropy obtained by [30] for
Schwarschild-De Sitter geometries, with the identifications

ry = H; (¢ NU).
4.5)

where r; denotes the De-Sitter horizon of the inflationary
patches with Hubble parameter H; and ry, the horizon of
the “black hole”” made up from the f,, where (f,,) = Piys
and we have ignored numerical factors next to r;, r; have
been ignored.

It is interesting that the U = 0 case, which can be
thought of as a lower bound for the “survivor” patches,
corresponds to the case of a zero entropy for the de Sitter-
black hole system, i.e. when the surface gravity r; ! of the
de Sitter patch coincides with that of the black hole, rf*nl.
This means that a black hole with the same horizon as the
initial inflationary patch is the borderline between the
damped and survivor universes, so that the zero entropy
situation provides a lower bound on the initial conditions

S=(y=rp P r=H;
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Rine> Dins for an inflationary patch to appear and evolve into
our universe.

Note that in our model of the landscape as a stochastic
lattice, the tracing out of the long wavelength fluctuations
in the density matrix is encoded in the appearance of the
mass scale, u?> = (U, f2) and the internal dynamics of the
wavepacket is encoded in the interplay between the SUSY
scale and the landscape scale ((/, b)) or equivalently
(Mgysy, M) in the reduced density matrix:

p= ] V(a, ¢, £V, &, f] [dfadfh

~ poe*((av)(’ﬂ“uz((ﬁ*¢’)2/¢?m~)

po = (¥o(a, p)¥o(a'd’)

~ e—Mﬂcl(a—a’)2 e—QRllﬁ(QS— ¢/)2.

(4.6)

Here 2O = b? — b* /4y, QO = \Jmy/M, where my sets
the scale for the frequency of the internal (resonance)
oscillators and M is the number of internal states we traced
out initially. We have exhibited a lower bound on the
energy scale for inflation in survivor universes, Eq. (4.4).
What happens if the initial fluctuation from the vacua
minima ¢;,; is much larger than its lower bound? This is
a difficult question to address since ¢, > ,/y marks the
breakdown of the semiclassical treatment. Nonetheless, we
can extract some information by trying to extend our
analysis to these cases. We have argued that for high scale
inflation the backreaction of massive perturbations is neg-
ligible. Because of this, [H, p] = 0 and arguments based
on Poincare recurrence phenomena may hold if quantum
mechanics is valid in this regime. But in this case, the
Poincare recurrence time, Ty = €° is short so that these
patches become quantum on times scales of order T.qp-
Demanding that recurrence time is as large as the age of the
Universe, or equivalently that the broadening of this energy
level SE = ¢ 5 should be less the difference between
energy levels 0F < y provides an upper bound on the
field values at which quantum entanglement occurs over
long enough times such that it allows inflation to start. We
conclude that for 5> < A,,; < v, the backreaction of the
superhorizon modes included can be roughly approxi-
mated by Eq. (4.5).

V. DISCUSSION AND CONCLUSIONS

Why did the Universe start in a state of lower than
anticipated entropy? Equivalently, how did high scale in-

PHYSICAL REVIEW D 74, 123510 (2006)

flation occur? The key to answering these questions is to
not be fooled by arguments based on equilibrium statisit-
ical mechanics. In fact, it is exactly the non-equilibrium
dynamics of superhorizon modes and their backreaction
onto the mean values of a, ¢ that selects out the regions
which inflate; patches that do not satisfy m < H;, [ < ¢; <
b will recollapse. This nonequilibrium dynamics also leads
to nonergodic behavior in the phase space of initial con-
ditions, as well as entanglement of states. This last is
significant, since it implies that a holographic description
of gravity during inflation may not be tenable. Our analysis
also gives rise to questions about the applicability of the
causal patch and N-bound approaches to inflation that we
discuss in [6].

Despite having made use of a particular model of the
landscape to arrive at our results we would argue that our
results should have wider applicability. The landscape
minisuperspace serves mostly to provide a concrete real-
ization of our approach, specifically the scales M.., Mgysy
for the widths of the initial inflationary patches. The rest of
the quantum cosmological calculation based on backreac-
tion and the master equation is general and could be
applied to any phase space for the initial conditions once
its structure was known. What we have learned here is that
any model of a universe containing both matter and gravity
will exhibit this nonergodic behavior driven by out-of-
equilibrium dynamics. In fact, such universes will experi-
ence a superselection rule for the Initial Conditions. Since
nonergodicity compresses the volume V of phase space
available to survivor universes, thereby lowering the en-
tropy S = logV of survivor universes, the low entropy from
the reduction of phase space, for the survivor initial patches
provides an explanation for the observed arrow of time in
high scale inflation.

Is our model predictive? In a forthcoming paper [31] we
will report how remnants of quantum entaglement between
in and out modes, as represented by the cross-terms in the
reduced density matrix, might be tested by cosmological
observables such as nongaussianities in CMB and large
scale structure.
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