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We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and
compare them to the evidence for a cosmological constant, using current data from Type Ia supernova,
baryon acoustic oscillations, and the cosmic microwave background. We use only distance information,
ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters,
�CDM is currently favored as compared to the dark energy models. We consider the parameter
constraints that arise under Bayesian model averaging, and discuss the implication of our results for
future dark energy projects seeking to detect dark energy evolution. The model selection approach
complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future
experiments, and suggests a significantly-modified interpretation of that statistic.

DOI: 10.1103/PhysRevD.74.123506 PACS numbers: 98.80.�k, 95.36.+x

I. INTRODUCTION

A key challenge for cosmology is to uncover the nature
of the force which is causing the Universe to expand at an
accelerating rate today. The cause, dubbed dark energy,
could be an unknown energy component with negative
pressure [1], a modification of general relativity [2], or
simply a cosmological constant. For reviews on the sub-
ject, see, for example, Ref. [3].

There are many planned and proposed dark energy ex-
periments that aim to constrain dark energy parameters,
using a combination of complementary techniques. These
include the luminosity distance-redshift relation of Type Ia
supernovae (SNe Ia), the angular-diameter distance-
redshift and expansion rate-redshift relations measured
by baryon acoustic oscillations (BAO), and use of weak
gravitational lensing to probe the growth rate of structures.
The cosmic microwave background (CMB) also provides a
very useful handle on dark energy by pinning down the
distance to the last-scattering surface, and also via the
Integrated Sachs-Wolfe effect and by detecting clusters
through the Sunyaev-Zel’dovich effect. Approaches to
constraining dark energy were overviewed in the recent
report of the DoE/NASA/NSF Dark Energy Task Force
(DETF) [4].

A primary aim of future experiments is to distinguish
evolving dark energy from a cosmological constant. When
seeking to compare models, especially with different num-
bers of variable parameters, one should use the concepts of
model selection rather than those of parameter estimation
(e.g. Refs. [5,6]). Model selection quantifies how well the
data conform to the overall predictions of a model, which
depends on model dimensionality and model priors. In
addressing the primary goal, a satisfactory representation
of many evolving dark energy models turns out to be an
unknown energy component with equation of state w�a� �
w0 � wa�1� a�, where a is the scale factor. Simpler alter-
natives may be the constant w model with negative pres-

sure, and the cosmological constant model with fixed
w � �1. This is a natural area for the application of model
selection statistics [7,8], which we take up in this paper.
Here we update and extend work by Saini et al. [9], who
were the first to apply Bayesian model selection to dark
energy models. For alternative views on determining the
number of dark energy parameters, see Ref. [10].

We do not consider growth-of-structure constraints,
which ultimately will be required to distinguish between
dark energy and modified gravity models for the accelera-
tion [4,11]. In the phenomenological approach adopted
here, the dynamical evolution of w could be attributed to
either phenomenon. At present, the structure formation
growth factor theory is known only for specific modified
gravity models, and further development is needed before
such models can be usefully considered in the model
selection framework. In any case, at the present time these
observations are not competitive with the ones we use.

In this paper we compute the Bayesian evidence for
evolving dark energy versus that of a cosmological con-
stant given current distance measurements from CMB, SN
Ia, and BAO data, ignoring dark energy perturbations. In
light of this result, we discuss the probability that future
experiments will detect evolving dark energy, and the
implications of this in assessing the capabilities of future
experiments.

II. METHOD AND MODELS

Bayesian model selection extends the usual parameter
estimation framework by assigning probabilities to sets of
parameters, known as models, as well as the usual proba-
bility distributions of parameter values for each specific
choice of model. The key statistic of Bayesian model
selection is the Bayesian evidence E, being the average
likelihood of the model over its prior parameter ranges
[12,13]. This quantity updates the prior model probability
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to the posterior model probability, enabling one to compare
different models according to their probability.

The use of the Bayesian evidence has lagged behind
parameter estimation techniques in the cosmology litera-
ture because of the difficulty in computing the required
integral to high accuracy, so as to be able to distinguish
between the models of interest. The nested sampling algo-
rithm, proposed by Skilling [14] and implemented for
cosmological applications by some of us in Ref. [7], has
proven to be computationally efficient and accurate. It is a
simple algorithm and more general than thermal methods
as used in Refs. [15,16]. For instance, nested sampling can
handle multiphase problems, in which lnL is not a concave
function of lnX, where X is the cumulative probability
mass within isolikelihood surfaces and L the likelihoods
of the surfaces—thermal methods fail on such problems
(John Skilling, private communication).

We use the nested sampling algorithm to compute the
Bayesian evidences [7,14,17]. Our code, called Cosmo-
Nest, is available at www.cosmonest.org. As compared to
the public version, it was modified so that instead of using
the power spectra for each model, it used the data and
likelihoods described in the next section. As we are not
computing power spectra the calculation proceeds very
swiftly, taking just a few minutes to obtain multiple esti-
mates of the evidence of a model. The estimates can then
be combined into a mean evidence and an error on that
mean.

We consider five different models in all, corresponding
to different parametrizations of the equation of state w and/
or different parameter priors. The basic models are �CDM
(w � �1, Model I), a one-parameter model with constant
w, and a two-parameter model w�a� � w0 � wa�1� a�,
where w0 and wa are constants. This last parametrization,
introduced by Chevallier and Polarski [18], is a good
approximation to many dark energy models, while the
constant w model is purely phenomenological. In addition
to the equation of state, each model requires two further
parameters to complete its specification, the matter density
�m and the Hubble constant H0.

For the latter two parametrizations, we make two sepa-
rate choices of prior in order to explore this dependence.
For the constant w case these are �1 � w � �0:33
(Model II) and �2 � w � �0:33 (Model III), the former
enforcing the weak energy condition and the latter allow-
ing phantom models. For the two-parameter model,
Model IV has flat priors of �2 � w0 � �0:33, �1:33 �
wa � 1:33 (the prior on wa being particularly arbitrary),
while Model V corresponds to the quintessence prior of
�1 � w�a� � 1 imposed between z � 0 and 2.

III. OBSERVATIONAL DATA

We use data in a manner very similar to Wang and
Mukherjee [19], which can be consulted for more details.

We use the CMB shift parameter measured by the three-
year Wilkinson Microwave Anisotropy Probe (WMAP)
observations [20,21], of R � 1:70� 0:03 [19], which is
mostly independent of assumptions made about dark en-
ergy. The shift parameter R is [22]

 R � �1=2
m

Z zCMB

0

dz0

E�z0�
; (1)

where zCMB is the redshift of recombination. In a flat
Universe

 E�z� �
�

�m�1� z�3 � �1��m�
�X�z�
�X�0�

�
1=2
; (2)

with �X denoting the dark energy density given by

 

�X�z�
�X�0�

� exp
�Z z

0
dz0

3	1� w�z0�

1� z0

�
: (3)

In that case R � ��mH
2
0�

1=2r�zCMB�=c, and is well deter-
mined as both �mh

2 and r�zCMB� are accurately measured
by CMB data.

We use the BAO measurement from the Sloan Digital
Sky Survey (SDSS) luminous red galaxies, dV�0:35� �
1:300� 0:088 Gpc [23], obtained from power spectrum
estimates and consistent with the result of Ref. [24] ob-
tained using the estimated correlation function. Here the
distance parameter is

 dV�zBAO� �

�
r2�zBAO�

czBAO

H�zBAO�

�
1=3
; (4)

where r�z� is the comoving distance, and H�z� is the
Hubble parameter. For the SDSS luminous red galaxies,
the mean survey redshift is zBAO � 0:35.1

We use SN Ia data from the HST/GOODS programme
[25] (Riess04) and the first year Supernova Legacy Survey
[26] (Astier05), together with nearby SN Ia data. The
comparison of results from these two SN Ia datasets pro-
vides a consistency check. We do not combine the two SN
Ia datasets, as they have systematic differences in data
processing; see the discussion in Ref. [19].

We use the Riess04 ‘‘gold‘‘ sample flux-averaged with
�z � 0:05. This sample includes 9 SNe Ia at z > 1, and
appears to have systematic effects from weak lensing, or
another effect that mimics weak lensing qualitatively. This
would bias the distance estimates somewhat without flux
averaging [27,28], and so we use it on these SNe [29].

We have also added a conservative estimate of the
intrinsic dispersion of SN Ia peak brightness, 0.15 mag,
in quadrature with the distance moduli of Astier05, rather
than the smaller intrinsic dispersion derived by them by

1The SDSS BAO result has been computed for a scalar spectral
index value of nS � 0:98, and should be scaled by �nS=0:98��0:35

[24] for a different ‘best-fit’ nS. For nS ’ 0:95 following
WMAP3 [21] this is an insignificant factor, which however we
do include.
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requiring a reduced �2 � 1 in their model fitting. This is
because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe Ia,
or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrinsic
dispersion, we allow some reasonable margin for the un-
certainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the information
content H of the datasets, the best-fit �2 values, and the
posterior parameter distributions within each model. Our
main focus is on the evidence and the parameter distribu-
tions. All of these quantities are by-products of running
CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,
greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favor of the model with greater evidence.

Our results are summarized in Table I. The priors on the
equation of state parameters were given earlier and are
indicated in the table. Priors on the additional parameters
are 0:1 � �m � 0:5 and 40 � H0 � 90. For each model
and data compilation we tabulate � lnE, which is the
difference between the mean lnE of the �CDM model
and the model concerned, plus the error on that difference,
obtained from 8 estimates of the evidence of each model.
Thus the �CDM entry is zero by definition.

We find that the WMAP� SDSS�BAO� � Astier05
data combination distinguishes amongst the models more
strongly than does WMAP� SDSS�BAO� � Riess04
data, while showing the same general trends.
Subsequently, our discussion uses Astier05 throughout.

Overall, the �CDM model (Model I) is a simple model
that continues to give a good fit to the data. It is therefore
rewarded for its predictiveness with the largest evidence,
and remains the favored model as found with an earlier
dataset (of SNe alone) by Saini et al. [9]. The other models
all show smaller evidences, though none are yet decisively
ruled out. Nevertheless, there is distinct evidence against
the two-parameter models, especially from the compilation
including Astier05. Model V has a wider parameter range
than Model IVand fares the worst, receiving a large penalty
for its lack of predictiveness of the data. The one-parameter
models lie somewhere in between.

TABLE I. The mean � lnE relative to the �CDM model together with its uncertainty, the information content H, the minimum �2,
and the parameter constraints, for each of the models considered and for each of two data combinations. Uncertainties on H0 are
statistical only, and do not include systematic uncertainties. The models differ by virtue of the number of free parameters, here in the
dark energy sector, and/or the priors on those parameters. For reference, lnE for the �CDM model was found to be�20:1� 0:1 for the
compilation with Riess04 and �52:3� 0:1 for that with Astier05.

data used Model

WMAP� SDSS� � lnE H �2
min parameter constraints

Model I: �

Riess04 0.0 5.7 30.5 �m � 0:26� 0:03, H0 � 65:5� 1:0
Astier05 0.0 6.5 94.5 �m � 0:25� 0:03, H0 � 70:3� 1:0

Model II: constant w, flat prior �1 � w � �0:33

Riess04 �0:1� 0:1 6.4 28.6 �m � 0:27� 0:04, H0 � 64:0� 1:4, w<�0:81, �0:70a

Astier05 �1:3� 0:1 8.0 93.3 �m � 0:24� 0:03, H0 � 69:8� 1:0, w<�0:90, �0:83a

Model III: constant w, flat prior �2 � w � �0:33

Riess04 �1:0� 0:1 7.3 28.6 �m � 0:27� 0:04, H0 � 64:0� 1:5, w � �0:87� 0:1
Astier05 �1:8� 0:1 8.2 93.3 �m � 0:25� 0:03, H0 � 70:0� 1:0, w � �0:96� 0:08

Model IV: w0-wa, flat prior �2 � w0 � �0:33, �1:33 � wa � 1:33

Riess04 �1:1� 0:1 7.2 28.5 �m � 0:27� 0:04, H0 � 64:1� 1:5, w0 � �0:83� 0:20, wa � ��
b

Astier05 �2:0� 0:1 8.2 93.3 �m � 0:25� 0:03, H0 � 70:0� 1:0, w0 � �0:97� 0:18, wa � ��
b

Model V: w0-wa, �1 � w�a� � 1 for 0 � z � 2

Riess04 �2:4� 0:1 9.1 28.5 �m � 0:28� 0:04, H0 � 63:6� 1:3, w0 <�0:78, �0:60,a wa � �0:07� 0:34
Astier05 �4:1� 0:1 11.1 93.3 �m � 0:24� 0:03, H0 � 69:5� 1:0, w0 <�0:90, �0:80,a wa � 0:12� 0:22

aWhere constraints on w are shown as upper limits only, the values are 68% and 95% marginalized confidence limits.
bwa is unconstrained in Model IV.
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We interpret these results in the following section.

B. The information H

The information content of the data H is defined as
minus the logarithm of the amount by which the posterior
is compressed inside the prior by the data. We compute it
from the posterior samples generated using nested sam-
pling [17], and tabulate the values.H gives some indication
of how many parameters a data set can support, as usually
H � N log�signal=noise� where N is the number of pa-
rameters [14]. If H changes significantly when new pa-
rameters are added, then that implies that the data have the
potential to constrain the additional parameters effectively,
and therefore have something conclusive to say about the
distinction between the two models via the evidence. H is
similar to the effective complexity of a model, as discussed
in Ref. [32]. By definition, H depends on the prior, and the
higherH is, the better the posterior is confined with respect
to the prior.

C. Best-fit �2

The best-fit �2 obtained for each data set is listed in
Table I, mainly for reference only. They were obtained
from the highest-likelihood point found by the nested
sampling algorithm. This will be close to, though not
precisely at, the maximum, because the stopping criterion
for the nested sampling algorithm has to do with the
convergence of the integral that estimates the evidence;
the algorithm is not directly searching for the maximum-
likelihood point. A naive model selection test, formalized
as the likelihood ratio test, compares the difference in these
best-fit values to the difference in number of model pa-
rameters. This does not however have a probabilistic in-
terpretation, as the probability of the model is a property of

its entire parameter range, not simply its best-fit values
[12]. It ignores parameter priors and correlations.

Nevertheless, the lack of any significant improvement in
�2

min when going from the constant w models to the w0-wa
models could be used to conclude that the dataset is not
interested in going to the two-parameter model.

D. Posterior parameter distributions

Parameter constraints for each of the models, obtained
as described in Ref. [17] from the same samples that were
used to compute the evidence, are tabulated in the final
column of Table I. Likelihood contours for the dark energy
parameters in Models IV and V are shown in Fig. 1, the
contours in Model V being significantly cut off by the
prior. 1D marginalized parameter constraints are shown
in Fig. 2.

V. DISCUSSION: THE PRESENT PICTURE

The above results have quantified the impact of current
data in constraining the models we have selected for in-
vestigation. There are considerable modelling uncertain-
ties, both in the choice of parameter priors for each model,
and in assigning prior model probabilities. For the latter,
we have chosen to take them as equal, but anyone who
thinks otherwise can readily account for it; regardless of
what someone thinks about two models before looking at
the data (the prior model probabilities), the evidence un-
ambiguously states how that view is changed by the data.
For the parameter priors, we have analyzed two choices for
each model dimensionality to investigate the extent of the
dependence.

In analyzing data in a situation where the correct choice
of model is unknown, these uncertainties are unavoidable,
but one can nevertheless use the Bayesian framework to
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FIG. 1 (color online). 68% and 95% confidence constraints on w0 and wa for model IV (left plot) and model V (right plot). Note the
axis ranges are different, to show the full prior ranges in each case. Model IV corresponds to a flat prior on the parameters over the
range plotted, and Model V corresponds to a quintessence prior which amounts to a flat prior within the region shown by dotted lines
(the contours go just a little out of that region due to the effect of binning the likelihoods of the obtained samples on a grid). The solid
contours are for WMAP� SDSS�BAO� � Astier05, and dot-dashed contours are for WMAP� SDSS�BAO� � Riess04.
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draw conclusions. Within the model selection viewpoint,
one should first ask of the status of the various models
under discussion, and only then move on to consider
parameter constraints.

A. Models

In comparing the model evidences, there are different
ways to proceed. First, we can consider all five models as
independent, so that converting the � lnE into posterior
model probabilities, assuming equal prior model probabil-
ities, gives 63%, 17%, 10%, 9%, and 1% for the five
models, respectively. Consequently, while we cannot say
that any of the models is decisively ruled out, the balance
of probability is currently tilted significantly in favor of
�CDM, and the two-parameter equation of state model
fares the worst.

Alternatively, we can consider each parametrization as
representing a model, and within each parametrization
marginalize over the different choices of prior that we
considered plausible. In this approach we average the
evidences (not their logarithms, as it is the evidences
themselves which represent the model probability) to
obtain � lnE � �1:5 for the constant w model and
� lnE � �2:6 for the two-parameter model. The corre-
sponding probabilities are then 77%, 18%, and 5% for
�CDM, the one-parameter, and two-parameter dark en-
ergy models, respectively. This approach gives quite simi-
lar results to the above, while avoiding penalizing the
�CDM model for only having one choice of prior.

However for the remainder of the paper we will not average
over models in this way.

Finally, we might be interested only in a subset of the
models; for instance, we may consider only the models that
do not allow w<�1 (models I, II, and V), motivated by
quintessence models. Amongst these models the probabil-
ity is divided as 78%, 21%, and 1%, respectively.

Whichever the choice made, the overall conclusion is
that the �CDM model is preferred by present data, but that
there are non-negligible probabilities for the models of
evolving dark energy. We will explore the implications of
this for future dark energy searches in Sec. VI.

B. Parameter values and Bayesian model averaging

We now consider the implications of the model selection
framework for constraints on the cosmological parameters.
Within each model the usual parameter probability distri-
bution analysis applies, as given in Sec. IV D. However we
now need to combine these to derive parameter constraints
that account for model uncertainty (the uncertainty in
which model is the true model). The appropriate tool to
carry this out is Bayesian model averaging, which is nicely
summarized by Hoeting et al. [33].2
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FIG. 2. Marginalized posterior parameter distributions in Models II, III, IV, and V, using the WMAP� SDSS�BAO� � Astier05 data
combination.

2Bayesian model averaging has only been used once previ-
ously in cosmology, in interpretting simulated galaxy cluster
data [34], and only very occasionally in astrophysics/geophysics
[35]. A distinct idea, closely related to the themes of this article,
is Bayesian survey design which averages an experimental figure
of merit over a set of possible cosmological models [36].
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The basic idea is quite simple; rather than having a
single probability distribution for a parameter, we instead
have a superposition of its distributions in different models,
weighted by the relative model probability. In some models
the parameter may have a fixed value (e.g. w � �1 in
�CDM), and then that component of the distribution is
an appropriately-normalized delta-function. The set-up is
analogous to quantum mechanics; while the true model is
uncertain the distribution lies in a superposition of states,
with the possibility that future measurements may collapse
the probability into one of the models.

The posterior probabilities of the models are given via
Bayes’ theorem by

 P�MkjD� �
P�DjMk�P�Mk�P
k
P�DjMk�P�Mk�

; (5)

where P�DjMk� is the evidence of model Mk. Here P�Mk�
are prior model probabilities, which we take to be equal
across the models. Any other choice can be incorporated if
required.

Within a gaussian approximation, it is easy to write
down suitable expressions for model averaging the pa-
rameter means and variances [33], but it is practically as
easy to manipulate the full distributions given by the
parameter chains. One simply takes the chains from each
model and weights them according to the model probabil-
ity. That the elements will have noninteger weights is no
problem (indeed CosmoNest chains, unlike those gener-
ated by Markov Chain Monte Carlo, already have non-
integer weights with the weights within each chain
summing to unity). All the chains can then be analyzed
together by the usual means such as the getdist package
of CosmoMC [37].

One should not overstate the usefulness of this method,
as the details depend on a lot of prior information: the
precise choice of models, including their prior parameter
ranges, to be averaged, and also the prior model probabil-
ities. Nevertheless there are some general qualitative les-
sons to be learned.

The most important such lesson is that if one is seeking
to limit a parameter around some special fiducial value,
e.g. w � �1 for the equation of state, then the parameter
errors are typically going to be overestimated if one
ignores model uncertainty. The reason is that in the ab-
sence of a detection, a substantial part of the model proba-
bility is always going to be placed in the embedded model
(in this case �CDM), which adds a delta-function to the
probability distribution and hence suppresses the tails
where the limits will be imposed.

The parameter constraints obtained from Bayesian
model averaging the models together are summarized in
Table II. Because of the presence of delta-functions in the
averaged distribution, in some cases confidence limits can
be precisely zero. The posterior distributions for the pa-
rameters are shown in Fig. 3, the left set of panels showing
averaging over all five models, and the right set averaging
the � model with the quintessence-type models (II and V).

The probability distributions of the parameters derived
from current data, after taking into account model uncer-
tainty by Bayesian model averaging over the models al-
lowed by the data, summarize our current state of
knowledge regarding these parameters. In this case we
can see that even though many models are still allowed
by the data, given the weight of the �CDM model, the
constraints have tightened significantly around w0 � �1
and wa � 0. For instance, compare the model-averaged
constraints of Fig. 3 (left) with the Model IV constraints
in Fig. 2.
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FIG. 3. Posterior parameter distributions obtained using the WMAP� SDSS�BAO� � Astier05 data combination from Bayesian
model averaging (BMA). The left set of four panels averages over all the five models under consideration, and the right over the
quintessence-type models (I, II and V) alone. Some smoothing of the delta-functions has been carried out by binning.
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Note that Bayesian model averaging is an intrinsic part
of the model selection framework, not an optional extra. As
soon as one concedes that there might be different model
descriptions of data to which probabilities should be as-
signed, consistent inference will then require those proba-
bilities to be properly accounted in deriving parameter
probability distributions. This is necessary too for consis-
tent model selection forecasting, as we now describe.

VI. DISCUSSION: IMPLICATIONS FOR FUTURE
SURVEYS

We now consider the implications of these results for
future surveys, keeping this final discussion qualitative. In
keeping with the previous section, an analysis of future
data should first assess the validity of the various models
being considered, and only then move on to parameter
estimation. The model comparison may be decisive, leav-
ing only one model on the table (which might be either
�CDM or one of the evolving models), or it may still leave
several viable models. If only one model survives then
standard parameter estimation tools will be valid, other-
wise model averaging should again be deployed to study
parameter distributions.

The main aim of forecasting the power of future surveys
is to enable informed choices as to which projects to fund.
The Dark Energy Task Force (DETF) recently produced an
influential report [4] quantifying the capabilities of a wide
range of proposed experiments to constrain dark energy.
Following ideas from Ref. [38], they defined a Figure-of-
Merit (FoM) as the inverse of the area inside the 95%
contour in the w0-wa plane, for a fiducial �CDM model.
Normalizing to present knowledge, this factor is typically a
few to a few tens for proposed experiments of increasing
sophistication.3

The DETF FoM presumes that the two-parameter dark
energy model is the true one (i.e. that w0 and wa are
parameters to be varied in fitting the data), and quantifies
the extent to which future experiments will compress the
allowed parameter range about the point w0 � �1 and
wa � 0. What it does not do is allow for the possibility
that the two-parameter model is not correct. To quote from

the abstract of Ref. [33], ‘‘Data analysts typically select a
model from some class of models and then proceed as if the
selected model had generated the data. This approach
ignores the uncertainty in model selection, leading to in-
ferences that are more risky than one thinks they are.’’ One
way to avoid this problem is to employ model selection
forecasting, as described in Ref. [8], which proposed a
FoM based on the parameter area in which �CDM cannot
be strongly excluded using the Bayesian evidence.

We stress that the DETF FoM is a perfectly good way of
distinguishing the capabilities of different experiments,
even though it is a parameter estimation tool and those
experiments are primarily seeking to answer model selec-
tion questions. It is entirely reasonable to believe that an
experiment which is better at estimating parameters within
a model will also be better at model selection of that model
against embedded models. Our aim here is to advise cau-
tion against over-interpretting the DETF FoM, in terms of
the probability that an upcoming experiment will actually
detect dark energy evolution.

The model selection considerations we have outlined
have three important implications in interpretting the
DETF FoM.

(1) The chances of detecting dark energy evolution are
much less than implied by the fractional shrinkage
of parameter area. For example, if the FoM says the
area in the w0-wa plane will shrink by a factor 10,
this does not mean a 90% chance that evolution will
be detected. This comment matches most people’s
intuition, but is quantified by the realization in
model selection that a substantial part of the proba-
bility lies in the �CDM model. If this model is true,
then obviously evolution cannot be detected as that
would rule out the true model. Since present knowl-
edge puts most of the probability in �CDM, as
shown above, we can immediately conclude that
the current chances of even an arbitrarily good ex-
periment detecting dark energy evolution are less
than half (with the significant caveat of the various
model and parameter priors we have assumed).

(2) There is a substantial probability that �CDM is the
correct model, but the DETF FoM does not quantify
how well experiments will determine this. If �CDM
is the true model, then the outcome of future experi-
ments will be to support that model. This too would
be a highly-valuable outcome. In this case, there is

TABLE II. Parameter constraints from Bayesian model averaging using the WMAP� SDSS�BAO� � Astier05 data combination.
Since the distributions of the dark energy parameters are generally nongaussian and/or asymmetric about the mean, their 68% and 95%
marginalized limits are separately indicated. Some confidence limits for wa are precisely zero due to the delta-function contribution
from Models I, II, and III superimposed on the extended tails from Models IV and V.

models used parameter constraints

all five models �m � 0:25� 0:03, H0 � 70:1� 1:0, w0 � �0:97�0:07;�0:19
�0:03;�0:20, wa � 0:0�0:0;�0:8

�0:0;�0:8
models I, II, & V �m � 0:24� 0:03, H0 � 70:1� 1:0, w0 <�0:98;�0:86, wa � 0:0�0:0;�0:0

�0:0;�0:0

3These ideas have also been extended beyond survey com-
parison to the issue of survey design by Bassett and collaborators
[36].
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another model selection based FoM, described in
Ref. [8], which evaluates the strength with which an
upcoming experiment is expected to deliver a model
selection verdict in favor of �CDM under the as-
sumption that that model is correct. Model selection
approaches have the crucial property that, unlike
parameter estimation methods, they can accrue posi-
tive support for the simpler model. As shown in
Ref. [8], advanced experiments are capable of deci-
sively ruling out the two-parameter models in favor
of �CDM (see also Ref. [39]). This then is the
answer to the often-asked question, how far do we
have to tighten constraints on dark energy parame-
ters before we can start to believe that �CDM is the
true model. This question is often asked with pa-
rameter estimation forecasting techniques in mind,
but the answer lies in model selection. A design goal
of future experiments should be that they are able to
give a decisive verdict for �CDM if it is the true
model.

(3) If evolution is neither detected nor decisively ex-
cluded, the DETF FoM will overestimate the pa-
rameter errors. It overestimates because it does
not incorporate Bayesian model averaging. A
powerful experiment that fails to detect evolution
is bound to push most of the model probability into
the �CDM model, so that the eventual combined
parameter chain includes only a small fraction of
elements from the w0-wa model. That is to say, the
delta-function of probability atw � �1 will contain
most of the posterior distribution. So an experiment
which does not detect evolution will impose more
powerful constraints than the FoM indicates.

None of the above affects the validity of the DETF FoM
as a tool for quantifying the capabilities of different experi-
ments, though one should bear in mind that it may prove
inadequate if the true model is more complicated than the
w0-wa model [40]. Nevertheless, while the DETF FoM
may correctly rank experiments relative to one another,
since the principal goal of dark energy experiments is one
of model selection, we would advocate where possible also
analyzing their capabilities using model selection forecast-
ing tools as described in Ref. [8] and this paper.

The approach we have outlined incorporates, modifies
and extends the Expected Posterior Odds (ExPO) tech-
nique pioneered by Trotta [5]. This approach splits the
model parameter space into regions where different model
selection verdicts are expected, and then averages these
over the current distribution in parameter space to obtain a
probability of each outcome. Of course, only by actually
doing the experiment do you discover which outcome does

arise. Trotta did not however fully implement the model
selection/Bayesian model averaging framework, as he
computed the present probability distribution within one
model only, whereas in Ref. [41] multiple models were
included in an ExPO-type forecast. Ref. [8] extended
ExPO to delineate parameter space regions where different
model selection outcomes would be expected, and to define
model selection figures of merit. The present paper further
extends the framework to estimation of parameter uncer-
tainties via Bayesian model averaging as well as calcula-
tion of model probabilities.

VII. CONCLUSIONS

We have carried out a model selection analysis of dark
energy models, updating and expanding on an earlier
analysis by Saini et al. [9]. We find, as did they, that the
preferred model is the �CDM model, and indeed we find
that the two-parameter w0-wa model is quite significantly
disfavoured already by present data.

We have made a first use of the concept of Bayesian
model averaging [33] to obtain current cosmological pa-
rameter uncertainties. Bayesian model averaging general-
izes the usual Bayesian parameter estimation methods to
the situation where the choice of model is uncertain, and in
the absence of detections typically significantly strength-
ens parameter constraints. Finally, we have described how
to use this framework to project the probabilities of differ-
ent outcomes to future dark energy experiments, and, in
particular, to interpret the meaning of the figure-of-merit
introduced by the Dark Energy Task Force [4].

We conclude that based on present knowledge the proba-
bility of future experiments detecting dark energy evolu-
tion is rather small, unless the various prior assumptions of
our analysis prove to be ill-founded. This is simply because
present data places the majority of the probability in the
�CDM model. On the other hand, high-precision experi-
ments may be able to decisively support the �CDM model,
this ability being measured by a model selection figure-of-
merit given in Ref. [8]. If �CDM is not picked decisively,
and neither is dark energy evolution detected, then they can
give tighter limits on dark energy parameters than one
would infer from the DETF figure-of-merit.
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