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We consider fluid perturbations close to the ‘‘phantom divide’’ characterized by p � �� and discuss
the conditions under which divergencies in the perturbations can be avoided. We find that the behavior of
the perturbations depends crucially on the prescription for the pressure perturbation �p. The pressure
perturbation is usually defined using the dark energy rest-frame, but we show that this frame becomes
unphysical at the divide. If the pressure perturbation is kept finite in any other frame, then the phantom
divide can be crossed. Our findings are important for generalized fluid dark energy used in data analysis
(since current cosmological data sets indicate that the dark energy is characterized by p � �� so that
p <�� cannot be excluded) as well as for any models crossing the phantom divide, like some modified
gravity, coupled dark energy, and braneworld models. We also illustrate the results by an explicit
calculation for the ‘‘Quintom’’ case with two scalar fields.
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I. INTRODUCTION

The discovery by the supernova surveys [1,2] that the
expansion of the universe is currently accelerating came as
a great surprise to cosmologists. Within the standard cos-
mological framework of a nearly isotropic and homoge-
neous universe and an evolution described by general
relativity, this behavior requires a component with a nega-
tive pressure p <��=3, commonly dubbed dark energy.
However, it is very difficult to understand why the dark
energy should appear at such a low energy scale, and why it
should start to dominate the overall energy density just
now. Explaining its nature is correspondingly regarded as
one of the most important problems in observational
cosmology.

Current limits on the equation of state parameter w �
p=� of the dark energy seem to indicate that p � �� [3,4],
sometimes even that p <�� [5], often called phantom
energy [6]. Although there is no problem to consider w<
�1 for the background evolution, there are apparent di-
vergencies appearing in the perturbations when a model
tries to cross the ‘‘phantom divide’’ w � �1 [7]. Even
though this region may be unphysical at the quantum level
[8,9], it is still important to be able to probe it, not least to
test for alternative theories of gravity or higher dimen-
sional models which can give rise to an effective phantom
energy [10–14]. It would certainly be unwise to build a
strong bias like w � �1 into our analysis tools as long as
experiments do not rule it out. In this paper we consider the
evolution of the perturbations for models where w crosses
�1. We find that in many realistic cases the divergencies
are only apparent and can be avoided. At the level of
cosmological first-order perturbation theory, there is no
fundamental limitation that prevents an effective fluid
from crossing the phantom divide.

The paper is organized as follows: We start with a short
recapitulation of the first-order perturbations in fluids,
which also serves to define our notation. In Sec. III we
study the behavior of barotropic fluids close to p � ��,
concluding that this class of fluids cannot cross the phan-
tom divide self-consistently. We allow for nonadiabatic
perturbations in Sec. IV and show that the phantom divide
can now be crossed as long as we define the pressure
perturbation in a frame that stays physical. We then illus-
trate the results with the Quintom model of two scalar
fields before presenting our conclusions. The Appendices
finally discuss the calculation of the effective Quintom
perturbations in more detail.

II. FIRST-ORDER PERTURBATIONS

In this paper we use overdots to refer to derivatives with
respect to conformal time �which is related to the physical
time t by dt � ad�. We will denote the physical Hubble
parameter with H and with H the conformal Hubble
parameter. For simplicity, we consider a flat universe con-
taining only (cold dark) matter and a dark-energy fluid, so
that the Hubble parameter is given by

 H2 �

�
1

a
da
dt

�
2
� H2

0��ma
�3 � �1��m�f�a�	; (1)

where f�a� � exp��3
R
a
1

1�w�u�
u du	, implying that the

scale factor today is a0 � 1. We will assume that the
universe is filled with perfect fluids only, so that the
energy-momentum tensor of each component is given by

 T�� � ��� p�u�u� � pg��; (2)

where � and p are the density and the pressure of the fluid,
respectively, and u� is the four-velocity. This is potentially
a strong assumption for the dark energy, but a more general
model should lead to more freedom in the dark energy
evolution, not less.
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We will consider linear perturbations about a spatially
flat background model, defined by the line of element:
 

ds2 � a2���1� 2A�d�2 � 2Bid�dx
i � ��1� 2HL��ij

� 2HTij�dxidx
j	; (3)

where A is the scalar potential; Bi a vector shift; HL is the
scalar perturbation to the spatial curvature; Hij

T is the trace-
free distortion to the spatial metric, see e.g. [15] for more
details.

The components of the perturbed energy moment tensor
can be written as

 T0
0 � �� ��� ���; (4)

 T0
j � � ��� �p��vj � Bj�; (5)

 Ti0 � � ��� �p�vi; (6)

 Tij � � �p� �p��
i
j � �p�i

j: (7)

Here �� and �p are the energy density and pressure of the
homogeneous and isotropic background universe, �� is the
density perturbation, �p is the pressure perturbation, vi is
the vector velocity, and �i

j is the anisotropic stress pertur-
bation tensor [15].

We want to investigate only the scalar modes of the
perturbation equations. We choose the Newtonian gauge
(also known as the longitudinal gauge) which is very
simple for scalar perturbations because they are character-
ized by two scalar potentials  and �; the metric Eq. (3)
becomes

 ds2 � a2���1� 2 �d�2 � �1� 2��dxidxi	; (8)

where we have set the shift vector Bi � 0 andHij
T � 0. The

advantage of using the Newtonian gauge is that the metric
tensor g�� is diagonal and this simplifies the calculations
[16].

The energy-momentum tensor components in the
Newtonian gauge become

 T0
0 � �� ��� ���; (9)

 ikiTi0 � �ikiT
0
i � � ��� �p��; (10)

 Tij � � �p� �p��
i
j; (11)

where we have defined the variable � � ikjvj which rep-
resents the divergence of the velocity field and we have
also assumed that the anisotropic stress vanishes, �i

j � 0

(implying � �  ).
The perturbation equations are [16]

 

_� � ��1� w���� 3 _ � � 3
_a
a

�
�p
��
� w�

�
; (12)

 

_� � �
_a
a
�1� 3w���

_w
1� w

�� k2 �p= ��
1� w

� k2 : (13)

As w! �1 the terms containing 1=�1� w� will generally
diverge. This can be avoided by replacing � with a new
variable V defined via V � �1� w��. This corresponds to
rewriting the 0i component of the energy-momentum ten-
sor as ikjT

j
0 � ��V which avoids problems if Tj0 � 0 when

�p � � ��. Replacing the time derivatives by a derivative
with respect to the scale factor a (denoted by a prime), we
obtain

 �0 � 3�1� w� 0 �
V

Ha2 � 3
1

a

�
�p
��
� w�

�
; (14)

 V 0 � ��1� 3w�
V
a
�

k2

Ha2

�p
��
� �1� w�

k2

Ha2  : (15)

In this form everything looks perfectly finite even at w �
�1. But in order to close the system, we need to give an
expression for the pressure perturbations. A priori this is a
free choice which will describe some physical properties of
the fluid. In the following we will consider several possible
choices and discuss how they influence the behavior of the
fluid at the phantom divide. We will see how the specifi-
cation of �p determines if a fluid can cross the divide or
not.

In addition to the fluid perturbation equations, we need
to add the equation for the gravitational potential  . If
there are several fluids present, then the evolution of each
of them will be governed by their own set of equations for
their matter variables f�i; Vig, linked by a common  
(which receives contributions from all the fluids) [17].
We use [16],

  0 � �
1

2a

�P
i
�i ��iP
i

��i

�
�

�
k2

3H2a2 � 1
�
 
a
: (16)

The evolution of a fluid is therefore governed by
Eqs. (14) and (15), supplemented by a prescription for
the internal physics (given by �p) and the external physics
(through  and  0). There are two points worth emphasiz-
ing. First, the dark energy fluid perturbations cannot be
self-consistently set to zero if w � �1. Even if � � V � 0
on some initial hypersurface, it is unavoidable that pertur-
bations will be generated by the presence of  . As this
function describes physics external to the fluid, it cannot be
controlled directly. Conceivably �p could be chosen to
cancel the external source of either � or V, but not of
both. Even then such a �p would have to be incredibly
fine-tuned as  and  0 depend on the evolution of the other
fluids as well.

Second, we see that as w! �1 the external sources are
turned off. A fluid can therefore mimic a cosmological
constant as then (and only then) � � V � �p � 0 is a
solution. This corresponds to an energy-momentum tensor
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(2) with T�� � �pg��, so that �
 ��. However, in general
the perturbations do not vanish even if w � �1. A perfect
fluid is therefore in general not a cosmological constant
even if �� � � �p.

To calculate perturbations in different gauges, we need
to introduce the coordinate transformation:

 � � ~�� T; (17)

 xi � ~xi � Li: (18)

The gauge transformation of the matter variables is then

 

~�� � ��� 3
_a
a
�1� w� ��T; (19)

 

~�p
�p
�
�p
�p
� 3

_a
a
�1� w�

c2
a

w
T; (20)

 ~u � u� _L; (21)

where we have introduced a new quantity c2
a � _�p= _��, called

adiabatic sound speed.

III. BAROTROPIC FLUIDS

We define a fluid to be barotropic if the pressure p
depends strictly only on the energy density �: p � p���.
These fluids have only adiabatic perturbations, so that they
are often called adiabatic. We can write their pressure as

 p��� � p� ��� ��� � p� ��� �
dp
d�

�������� ��
���O�����2�:

(22)

Here p� ��� � �p is the pressure of the isotropic and homo-
geneous part of the fluid. Introducing N � lna as a new
time variable, we can rewrite the background energy con-
servation equation, _�� � �3H � ��� �p�, in terms of w,

 

dw
dN
�
d ��
dN

dw
d ��
� �3�1� w� ��

dw
d ��

: (23)

We see that the rate of change of w slows down as w!
�1, and w � �1 is not reached in finite time [18], except
if dw=d �� diverges (or ��, but that would lead to a singular
cosmology). The physical reason is that we demand p to be
a unique function of �, but at w � �1 we find that _�� � 0.
If the fluid crosses w � �1 the energy density � will first
decrease and then increase again, while the pressure pwill
monotonically decrease (at least near the crossing), Fig. 1.
It is therefore impossible to maintain a one-to-one rela-
tionship between p and �, see Fig. 2 (notice that the
maximum of p and the minimum of � do not coincide).

An example that can potentially cross w � �1 is given
by

 �1� w����2 � C2� ��� ����: (24)

Starting withw>�1 and �� > ���, both will decrease until

w � �1 and �� � ���. If it is possible to switch from the
branch with w>�1 to the other one at this point, then ��
can start to grow again while w continues to decrease.
Using the evolution equation (23) for w, we find

 

dw
dN
� �

3

2
�C2 ��� � �1� w�

2	 (25)

so that dw=dN ’ �3=2C2 ��� near the crossing. The full
solution (with N � N� at w � �1) is

 w�N� � �1� C
�������
���

p
tan

�
3C

�������
���
p

2
�N � N��

�
; (26)

clearly not a realistic solution for our universe as there are

 

0 0.2 0.4 0.6 0.8 1
a

0.2

0.3

0.4

0.5

0.6
ρ
-p

FIG. 1 (color online). Energy density (black solid line) and
pressure (red dashed line) as functions of the scale factor. w
crosses �1 at a� � 0:5, so that � is minimal at this point while
p decreases monotonically there (but has a maximum earlier).
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FIG. 2 (color online). The pressure as a function of the energy
density. The graph of p��� shows that p is not a single valued
function of the energy density, and that there is a point with an
infinite slope (corresponding to the minimum of � and the
divergence of c2

a). The point where p��� has a zero slope
corresponds to the maximum of p and a vanishing c2

a.
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divergencies in the finite past and future. Of course we
could modify the example (24), but we are mostly inter-
ested at the behavior near the crossing. In our case 1�
w�a� / ��a� a��, i.e. we observe a linear behavior. This
is actually the limiting case: if we choose �1� w� / � ���
����

� close to the crossing, we find

 

d�1� w�
dN

’ �C�1� w��2��1�=� (27)

for small j1� wj. Correspondingly, we cross with zero
slope for � > 1=2 and with infinite slope for � < 1=2.
However, if dw=dN � 0 at w � �1, then the system
will turn into a cosmological constant and stay there for-
ever. On the other hand, this is unstable against small
perturbations towards �p <� ��, so that the crossing might
eventually be completed anyway.

Let us have a closer look at the perturbations. The
second term in the expansion (22) can be rewritten as

 

dp
d�

�������� ��
�

_�p
_��
� w�

_w

3H �1� w�
� c2

a; (28)

where we used the equation of state and the conservation
equation for the dark energy density in the background. We
notice that the adiabatic sound speed c2

a will necessarily
diverge for any fluid where w crosses �1.

For a perfect barotropic fluid, the adiabatic sound speed
c2
a turns out to be the physical propagation speed of per-

turbations. It should therefore never be larger than the
speed of light, otherwise our theory becomes acausal
[19,20]. The condition c2

a  1 for �1� w�> 0 (our point
of departure) is equivalent to

 �
dw
dN
 3�1� w��1� w�: (29)

No barotropic fluid can therefore pass through w � �1
from above without violating causality. Even worse, the
pressure perturbation

 �p � c2
a�� �

�
w�

_w

3H �1� w�

�
�� (30)

will necessarily diverge if w crosses �1 and �� � 0.
Using the gauge transformation equations (19) and (20),
we see that the relation between pressure and energy
density perturbations is gauge invariant. If the pressure
perturbation diverges in one frame, it will diverge in all
frames. The only possible way out would be to force ��!
0 fast enough at the crossing. Let us study the behavior
close to w � �1 in some detail now.

First, we look only at the dominant contribution to the
right-hand side of Eq. (14). Near w � �1 this is clearly

 �0 � �
3

a
c2
a� � �

w0

1� w
�: (31)

Assuming that near the crossing the equation of state
behaves like 1� w � ��a� a��	 with 	> 0, we find

the solution:

 � / �a� a��	 (32)

(independent of � which drops out of the equation). This
solution goes to zero at the crossing. If the sign had been
different, we would have found instead the solution � /
�a� a���	 which diverges.

The pressure perturbation behaves like

 �p / ��
�
	a
3
�a� a��	�1 �O��a� a��	�

�
: (33)

We need 	 � 1, otherwise the pressure perturbation will
diverge as a power law at the crossing. Unfortunately, this
condition is not sufficient. Looking at the second perturba-
tion equation (15) we see that, although nothing diverges,
there is no reason for V to go to zero at the crossing, and in
general it will not, except if we fine-tune it with infinite
precision. As � vanishes at crossing and can so potentially
cancel the divergence in the sound speed, this term is no
longer necessarily dominant in the differential equation for
�, Eq. (31). We also need to take into account the other
contributions. The term containing  0 is sufficiently sup-
pressed by the 1� w factor to neglect it. Taking V to be
constant at a� (to lowest order) V�a�� � V�, we find

 �0 � �C� �
w0

1� w
� (34)

with C� � V�=�H�a��a
2
��. The solution to this equation

is

 � �
�
�a� a����� � C� logja� a�j� 	 � 1
���a� a��

	 � �a� a��C�=�1� 	� 	 � 1:

(35)

We notice that for 	 � 1 the density perturbations vanish
at crossing. However, for 	 � 1 they do not vanish fast
enough. Instead of the behavior given in Eq. (33), the
pressure perturbation exhibits now a logarithmic diver-
gence since the sound speed cancels the factor �a� a��.
Even though our derivation here is not rigorous, numerical
calculations confirm this behavior, also if the background
is not completely matter dominated, see Fig. 3. Although a
full solution may be possible in some cases, it would turn
out to be a special function, obscuring the structure of the
result while still showing essentially the same simple
behavior.

We find therefore three possible behaviors for the per-
turbations, depending on how w crosses the phantom di-
vide:

(1) 	< 1: In this case w crosses �1 with an infinite
slope, leading to a power-law divergence of the
pressure perturbation.

(2) 	 � 1: w crosses �1 with a finite, but nonzero
slope. �� vanishes, V stays finite, and generally
nonzero and �p diverges logarithmically.

(3) 	> 1:w crosses�1 with a zero slope. �� vanishes,
V and �p stay finite and generally nonzero.
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The only acceptable case is the last one, but as discussed
at the beginning of this section, we expect the system to get
stuck at w � �1 and to never cross. Barotropic perfect
fluids therefore fail to cross either at the background or
perturbation level. Even if the fluctuations can lead to a
crossing with zero slope due to the instability of the
cosmological constant solution in some cases, the model
is still not realistic. The perturbations seem to propagate
acausally, and generically after the transition c2

a < 0 for a
period, leading to classical instabilities with exponential
growth of the perturbations. In the next section we will
relax the barotropic assumption, which allows for entropy
perturbations that can stabilize the system and keep the
sound speed below the speed of light.

IV. NONADIABATIC FLUIDS

The discussion of the barotropic fluid shows that we
have to violate the constraint that p be a function of �
alone. At the level of first-order perturbation theory, this
amounts to changing the prescription for �p which now
becomes an arbitrary function of k and t. This problem is
conceptually similar to choosing the background pressure
�p�t�, where the conventional solution is to compare the
pressure with the energy density by setting �p�t� �
w�t� ���t�. In this way we avoid having to deal with a
dimensionful quantity and can instead set w, which has
no units (up to a factor of the speed of light) and so is
generically of order unity and often has a simple form, like

w � 1=3 for a radiation fluid or w � �1 for a cosmologi-
cal constant.

It certainly makes sense to try a similar approach for the
pressure perturbation. However, there are two relevant
variables that we could compare �p to, the fluid velocity
V and the perturbation in the energy density ��. Clearly, it
would be counterproductive to replace a single free func-
tion by two free functions, and it would lead to degener-
acies between the two. Another problem is that the
perturbation variables depend on the gauge choice. But in
this case the two problems cancel each other, leading to a
simpler solution: Going to the rest-frame of the fluid both
fixes the gauge and renders the fluid velocity physically
irrelevant, so that we can now write [21]

 �p̂ � ĉ2
s��̂; (36)

where a hat denotes quantities in the rest-frame. The
physical interpretation is that ĉ2

s�k; t� is the speed with
which fluctuations in the fluid propagate, i.e. the sound
speed. Again, some physical models lead to simple pre-
scriptions for the sound speed. The barotropic models
discussed in the last section have ĉ2

s�k; t� � c2
a�t�, and the

perturbations in a scalar field correspond (to linear order)
exactly to those of a fluid with ĉ2

s�k; t� � 1.
The rest-frame is chosen so that the energy-momentum

tensor looks diagonal to an observer in this frame. In terms
of the gauge transformations this amounts to choosing B �
�DE. However, we notice immediately a potential flaw in
this prescription close tow � �1: The off-diagonal entries
of the energy-momentum tensor are actually � ��� �p�� so
that demanding �� B � 0 is a stronger condition than
required. In other words, the condition to be at rest with
respect to the flow of ��� �p cannot be maintained at ���
�p � 0. However, as �� > 0, we could define instead the
sound speed in a frame where there is no flow of energy
density.

To see this, let us calculate the pressure perturbation
defined by Eq. (36) in the conformal Newtonian frame,
following [21]: Breaking the single link between � and p
amounts to the introduction of entropy perturbations. A
gauge invariant entropy perturbation variable is � � �p

�p �
c2
a
w
��
�� [21–23]. By using

 w� �
_p
�

�
�p

_p
�
��

_�

�
(37)

and the expression for the gauge transformation of �� [22],

 ��̂ � ��� 3H ��
V

k2 ; (38)

we find that the pressure perturbation is given by

 �p � ĉ2
s��� 3H �ĉ2

s � c
2
a� ��

V

k2 : (39)

As c2
a ! 1 at the crossing, it is impossible that all other

variables stay finite except if V ! 0 fast enough. Again we

 

FIG. 3 (color online). This figure shows the logarithmic diver-
gence of �=�a� a�� near a� � 0:5. The black curve is the
numerical solution while the red dashed line shows the approxi-
mation given by Eq. (35) for 	 � 1. The approximate formula
describes the structure of the divergence quite well. The pressure
perturbation �p exhibits a very similar divergence in this case.
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will show that this is not in general the case, except if ĉ2
s !

0 orw0 ! 0 at crossing. However, we will then see that this
is not required; indeed we will argue in the next section that
the more generic solution is to let ĉ2

s diverge at the crossing
in order to cancel the divergence of c2

a!
To this end, we consider again the structure of the

perturbation equations near w � �1. Inserting the expres-
sion for �p into our system of perturbation equations we
find

 �0 �3�1�w� 0 �
�
k2

Ha2�3H�ĉ2
s�c2

a�

�
V

k2�
3

a
�ĉ2
s�w��;

(40)

 

V 0

k2
� �

1� 3�c2
a � w� ĉ2

s�

a
V

k2 �
1� w

Ha2  �
ĉ2
s

Ha2 �:

(41)

The spoiler here is the continued presence of c2
a which we

know to diverge at crossing. Let us start by considering a
finite and constant ĉ2

s . For all reasonable choices of k the
dominant term in the V equation will be the one containing
c2
a. We find that this time the velocity perturbation is driven

to zero at crossing:

 V 0 �
w0

1� w
V: (42)

Proceeding as in the last section, we find that now V /
�a� a��	, canceling the divergence in c2

a for 	 � 1. Now
�� will in general not vanish at crossing, and we have to
include that term in the differential equation for V. The
term with  is suppressed by 1� w and is of higher order.
As in the last section for �, the solutions for V are now to
lowest order:

 V �
�
�a� a���V� �D� logja� a�j� 	 � 1
V��a� a��	 � �a� a��D�=�1� 	� 	 � 1

(43)

with D� being ĉ2
sk2�=�Ha2�, evaluated at crossing.

Again there are no divergences appearing in the energy-
momentum tensor only if 	> 1, i.e. if w crosses�1 with a
zero slope. A possible way to get around this fine-tuning is
to demand that ĉ2

s � 0 at crossing, as in this case the
logarithmically divergent term disappears. We also notice
that the usual velocity perturbation � � V=�1� w� does
diverge in all cases, either logarithmically if 	 � 1 or as
�a� a��1�	 if 	> 1. For an observer in the rest-frame
where B � �, this means that the metric perturbations
become large—at crossing the metric is even singular.
At the very least, perturbation theory is no longer valid
for such an observer.

Another way to see that the rest-frame is ill-defined is to
look at the energy-momentum tensor (2). For p � �� the
first term disappears, leaving us with T�� � pg��.
Normally the four-velocity u� is the timelike eigenvector

of the energy-momentum tensor, but now suddenly all
vectors are eigenvectors. The problem of fixing a unique
rest-frame is therefore no longer well-posed.

However, by construction the pressure perturbation
looks perfectly fine for precisely the observer in the rest-
frame, as �p̂ � ĉ2

s��̂ does not diverge. Our prescription
for the pressure perturbations has singled out the one frame
which we cannot use for fluids crossing the phantom
divide. The reason is that the gauge transformation relating
the pressure perturbations in the different gauges is

 �p̂ � �p� 3H ��c2
a
V

k2 : (44)

If V does not vanish fast enough at the crossing then the
pressure perturbation has to diverge in at least one frame.
As we have just discussed, the dark energy rest-frame
becomes unphysical at crossing. It is clearly better to
specify a finite pressure perturbation in a different frame.

One problem is to find a way of characterizing the
pressure perturbations in a physical way—in the
Quintom example of the next section, we find that the
additional contributions diverge but in such a way that
we end up with a finite result for �p. As another example,
we just choose �p proportional to ��,

 �p�k; t� � 
���k; t�; (45)

in the conformal Newtonian gauge. This will work as long
as �� � 0, otherwise it forces �p to vanish in the same
place as ��, which is not general enough. If we insert this
expression into Eqs. (14) and (15), we obtain

 �0 � 3�1� w� 0 �
V

Ha2 � 3
1

a
�
� w��; (46)

 V0 � ��1� 3w�
V
a
�

k2

Ha2 
�� �1� w�
k2

Ha2  : (47)

Asw! �1 none of the terms diverge, so that � and V stay
in general finite and nonzero at crossing. We show in
Figs. 4 and 5 a numerical example for two choices of 

where it is impossible to see that the phantom divide has
been crossed at a� � 0:5.

It is of course possible to express 
 in terms of ĉ2
s , and ĉ2

s
in terms of 
. Using the expression for the pressure per-
turbation in the rest-frame given by Eq. (36) and the gauge
transformation given by Eqs. (19) and (20), we obtain

 
��� 3H c2
a ��

V

k2 � ĉ2
s

�
��� 3H ��

V

k2

�
: (48)

In general, 
 will therefore be scale dependent even if ĉ2
s is

not (even though of course ĉ2
s will also in general depend

on k and t), or vice versa. Also, to reproduce the evolution
with finite 
 shown in Figs. 4 and 5 we would have to
substitute a divergent ĉ2

s to cancel the divergence in c2
a

(cf. Fig. 7 which shows how the apparent sound speed
diverges in the Quintom example). We also notice that on
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very small scales where k� 1 we find 
 � ĉ2
s for finite c2

a,
which is the usual result that on small scales gauge differ-
ences become irrelevant (for physical gauges).

Finally, we would like to emphasize again that for a
general, finite pressure perturbation in any gauge except
the fluid rest-frame, there is no problem with the perturba-
tion evolution across the phantom divide. Also, in general
the perturbations, including V, will not vanish at crossing.

V. THE QUINTOM MODEL AS EXPLICIT
EXAMPLE

To clarify some of the above points, we consider an
explicit example of a model crossing the phantom divide,
the Quintom model [24,25], and compute the pressure
perturbation ab initio at crossing (see also [26]).

The original Quintom model considered two scalar
fields. For us it is advantageous to use instead two fluids
with a constant and equal rest-frame sound speed ĉ2

s � 1.
At the level of first-order perturbation theory, the two
models are exactly equivalent, see Appendix A. As in the
original model, we use two fluids with constant equations
of state parameters w1 andw2. We will have to map the two
fluids onto a single effective fluid. To this end, we define
the effective parameters in such a way that the effective
energy-momentum tensor is the sum of the two fluid
energy-momentum tensors. This leads to

 �� eff � ��1 � ��2; (49)

 �p eff � �p1 � �p2; (50)

 weff �
w1 ��1 � w2 ��2

��1 � ��2
; (51)

 �eff �
��1�1 � ��2�2

��1 � ��2
; (52)

 �eff �
�1� w1� ��1�1 � �1� w2� ��2�2

�1� w1� ��1 � �1� w2� ��2
: (53)

Reexpressing the perturbation equations in these varia-
bles, we find precisely the normal perturbation equations
for a single fluid (14) and (15) with �peff and �peff replacing
p and �p. �peff is simply given by weff ��eff , but the density
perturbation is more involved. Starting from �peff �
�p1 � �p2, we can write it as
 

�peff � ĉ2
s;eff��eff � �prel � �pnad

� 3H �ĉ2
s;eff � c

2
a� ��eff

Veff

k2 ; (54)

where the (effective) adiabatic sound speed is as always
c2
a � _�peff= _��eff and where ĉ2

s;eff � 1 for two scalar fields.
The other terms are the relative pressure perturbation

 

FIG. 5 (color online). The gravitational potential  in the same
scenario as Fig. 4 (with 
 � 0:2 for the black solid line and 
 �
1 for the red dashed line). Again, the crossing of the phantom
divide at a� � 0:5 (dotted green vertical line) is not apparent.
The gravitational potential is constant during matter domination
(small a) and starts to decay as the dark energy begins to
dominate and the expansion rate of the universe accelerates.
The contribution of the dark-energy perturbations to  is very
small ( & 0:1%) so that there is no visible difference for the two
choices of 
.

 

FIG. 4 (color online). This figure shows the density contrast
�DE (red and blue lines, negative for small scale factor a) and the
velocity perturbation VDE (cyan and magenta lines, positive for
small a) for a dark-energy component with a pressure perturba-
tion given in the conformal Newtonian gauge through 
 [as
defined in Eq. (45)]. The solid lines show the results for 
 � 0:2
and the dashed lines for 
 � 1. The crossing of the phantom
divide at a� � 0:5 (dotted green vertical line) is not apparent in
these figures, everything is finite.
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 �prel �
�w2 � w1� _��1

_��2

3H _��eff

S12 (55)

given by the relative density perturbation of the two scalar
fields,

 S12 �
�1

1� w1
�

�2

1� w2
(56)

(which corresponds to a gauge invariant relative entropy
perturbation [27]), as well as the nonadiabatic term

 �pnad � ��w2 � w1�
_��1

_��2

3H _��eff

�
S12 �

3H

k2 ��12

�
(57)

given by the relative motion of the two scalar fields with
��12 � �1 � �2 (see Appendix C).

We notice that the relative perturbations act as internal
perturbations which couple to the effective variables purely
through the behavior of the pressure perturbation.
Understanding the physics behind the dark energy in
such a case will therefore require a precise measurement
of the pressure perturbations as well as their careful analy-
sis, to uncover the different internal contributions.

Even though the effective sound speed ĉ2
s;eff � 1 in

Eq. (54) is finite in the rest-frame, the transformation to
any other frame will lead to a divergence as discussed in
the previous section. This divergence then needs to be
canceled by the two additional terms, �prel and �pnad. In
our example, both diverge, canceling together the diver-
gent contribution from the singular gauge transformation
as well as their own divergencies, see Fig. 6. This behavior,
which looks extremely fine-tuned, is automatically en-
forced in this model. Such a cancellation mechanism is
required for any model in order to cross w � �1.

We also see that although the effective sound speed
remains simply ĉ2

s � 1, this is only true if we know that
there are internal relative and nonadiabatic pressure per-
turbations (as well as their form). But in general we would
try to parametrize the pressure perturbation as

 �peff � c2
x��eff � 3H �c2

x � c2
a� ��eff

Veff

k2 ; (58)

where the apparent sound speed c2
x is now a mixture of the

real effective sound speed together with the relative and the
nonadiabatic pressure perturbations. In this case we no
longer find a simple form for the sound speed. In Fig. 7
we plot c2

x as a function of the equation of state parameter
w for several wave vectors k. As predicted, the apparent
rest-frame sound speed diverges at the crossing. In the
Quintom case the effective perturbations do not vanish at
w � �1.

We think that the lessons learned from the Quintom
model are applicable also to more general models with
multiple fields, nonminimally coupled scalar fields, brane-
world models, and other modified gravity models that can
be represented by an effective dark energy fluid. In all these

 

FIG. 6 (color online). This figure shows the different divergent
contributions to the pressure perturbation, Eq. (54), multiplied
by 109. The relative pressure perturbation is shown as red dotted
lines, the nonadiabatic pressure perturbation as green dash-
dotted lines and the contribution from the gauge transformation
to the conformal Newtonian frame as blue dashed lines. Each of
the contributions diverges at the phantom crossing, but their sum
(shown as black solid line), and so �p, stays finite.

 

FIG. 7 (color online). We plot the apparent sound speed c2
x

defined by Eq. (58) for three different wave vectors, k � 1=H0

(black solid line), k � 10=H0 (red dashed line), and 100=H0

(blue dotted line). Although the real sound speed is just ĉ2
s � 1,

the apparent sound speed diverges at w � �1 and can even
become negative.
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models, as in the Quintom case, weff � �1 is not a special
point in their evolution. There is no reason to expect that
the model will adjust its behavior at this point, as the
crossing of the phantom divide is incidental. In represent-
ing these kinds of models with an effective fluid we there-
fore expect that the perturbations will not vanish, and that
the apparent sound speed would have to diverge.

One important difference between the Quintom model
and more general modified gravity models is that the latter
seem to require generically a nonzero anisotropic stress as
� �  . In this case ĉ2

s � 0 does not allow crossing the
phantom divide, since D� in Eq. (43) contains an addi-
tional nonzero term due to the anisotropic stress. This
reinforces our view that the Quintom-like crossing, where
all perturbations stay nonzero and �peff remains finite in
spite of divergences in most conventionally expected
terms, is more generic. This means that there is no obvious
way to predict the form of �peff in general for modified
gravity models. On the positive side, if the dark energy is
not just a cosmological constant, and if we are able to
measure �peff , then we may hope that this will provide us
with clues about the physical mechanism that is causing the
accelerated expansion of the universe.

VI. CONCLUSIONS

As long as the cosmological data indicates the presence
of a dark energy with an effective equation of state p �
�� it will be necessary to consider models with the same
equation of state. In general, we will have to allow the
equation of state to cross the phantom divide, w � �1.
Even though such a fluid model may not be viable at the
quantum level, it is possible that this behavior is only
apparent, or due to a modification of general relativity or
the existence of more spatial dimensions. In analyzing the
data, we therefore have to be able to use general self-
consistent models at the level of linear perturbation theory.

In this paper we have studied the behavior of the per-
turbations in general perfect fluid models close tow � �1.
We have shown that, although models with purely adia-
batic perturbations cannot cross w � �1 without violating
important physical constraints (like causality or smallness
of the perturbations), it is possible to rectify the situation
by allowing for nonadiabatic sources of pressure perturba-
tions. However, the parametrization of �p in terms of the
rest-frame perturbations of the energy density cannot be
used as this frame becomes unphysical at w � �1. By
parameterizing �p instead in any other frame the diver-
gencies are avoided.

We also computed all quantities in the Quintom model
which provides an explicit example of the above mecha-
nism. In this model, even though the propagation speed of
sound waves remains finite and constant, the additional
internal and relative pressure perturbations lead to an
apparent sound speed which diverges. It is only the sum
of all contributions to �p which remains finite.

A more speculative conclusion is that it seems difficult
for ‘‘fundamental’’ fields to cross w � �1 as their appar-
ent rest-frame sound speed, defined through Eq. (36),
would generally be the actual propagation speed of their
perturbations, which must remain smaller than the speed of
light. From the discussion in Sec. IV we learn that fields
with a well-defined rest-frame and sound speed have only
two routes to phantom crossing:

(i) dw=da � 0 at crossing: This looks rather fine-tuned
as the field needs to be aware of the presence of the
barrier. On the other hand, a normal minimally
coupled scalar field reaches w � �1 when _� � 0,
and it does so with zero slope. A scenario where
phantom crossing of this kind is realized could be
built by changing the sign in front of the kinetic term
whenever _� � 0. As an example, a cosine potential
then leads to a ‘‘phaxion’’ scenario, see Fig. 8. On
average, the phaxion behaves like a cosmological
constant, but oscillates around w � �1. However,
it is unclear how to construct such a scenario in a
covariant way.

(ii) vanishing sound speed: A field with a vanishing
sound speed can also avoid the logarithmic diver-
gence of �p. This requires either a coupling between

 

FIG. 8. The phaxion: The sign in front of the kinetic term of a
normal scalar field is flipped every time _� passes through zero
(so that _� � 0). As potential we use V��� � 1� cos��=m0�
which is bounded both from above and below. The field then
moves to large values (top left graph), while w oscillates around
�1 (top right). The energy density � also oscillates so that the
field mimics an effective cosmological constant (bottom left). As
the phantom divide is crossed with zero slope, there is no
divergence in the pressure perturbation (bottom right), but the
time-dependent effective mass can lead to strong growth of the
perturbations in spite of ĉ2

s � 1.
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1� w and ĉ2
s or else the sound speed might be zero at

all times, see Fig. 9. In the latter case the pressure of
the field would need to remain close to �� at all
times in order to prevent the small-scale perturba-
tions from growing too quickly. Also, the sound
speeds needs to be exactly zero, otherwise the loga-
rithmic divergence reappears. This may require a
symmetry enforcing ĉ2

s � 0 as even a very small
but nonzero sound speed would render this scenario
inviable.

In view of these difficulties, the Quintom family of models,
although more complicated than a single field, may prove
to be the conceptually simplest way to cross w � �1 with
a model defined through an action. They also illustrate that
the effective pressure perturbation may provide a kind of
fingerprint of the mechanism behind the accelerated ex-
pansion of the universe if it can be measured.

Concerning the use of phantom-crossing fluids for the
purpose of data analysis, it is straightforward to implement
them by just avoiding the usual parametrization of the
pressure perturbations in terms of the rest-frame sound
speed. However, there does not seem to be a canonical
way to choose the pressure perturbations if one is not
allowed to use the dark energy rest-frame. The aim for
the far future will be to directly measure the pressure
perturbations of the dark energy in order to gain insight
into the physical origin of the phenomenon. For now, we
have to ensure that the definition of �p does not lead to

unphysical situations, while preserving the usual parame-
trization in terms of the rest-frame sound speed as much as
possible far away from the phantom divide. Maybe the
simplest way out is to regularize the adiabatic sound speed
c2
a which appears in Eq. (39) because of the gauge trans-

formation into the rest-frame. While any finite choice of
�p is a physically acceptable choice, it is preferable to
modify Eq. (39) in a minimal way so that the usual inter-
pretation of ĉ2

s is preserved for w � �1. We propose to use

 ~c 2
a � w�

_w�1� w�

3H ��1� w�2 � �	
; (59)

where � is a tunable parameter which determines how
close to w � �1 the regularization kicks in. A value of
� � 1=1000 should work reasonably well, as shown in
Fig. 10. In this case �p is well defined and there are no
divergencies appearing in the perturbation equations (40)
and (41). Although the differences in �p for the different
choices of � in Fig. 10 look important, we have to remem-
ber that, first, the perturbations in the dark energy are
normally small (especially close to the phantom divide)
and that second they are only communicated to the other
fluids via the gravitational potential  . As in Fig. 5, we find
also here that the dark-energy perturbations are subdomi-
nant. Computing the angular power spectrum of the an-
isotropies in the cosmic microwave background radiation

 

FIG. 9 (color online). The pressure perturbation �p for three
fluids with different rest-frame sound speed, ĉ2

s � 0:1 (top curve,
red dash-dotted line), ĉ2

s � 0:01 (middle curve, blue dashed
line), and ĉ2

s � 0 (lowest, solid line). Only the last case does
not have a logarithmic divergence in the pressure perturbation at
the phantom divide.

 

FIG. 10 (color online). The pressure perturbation for a fluid
example with ĉ2

s � 0:1. The red dash-dotted curve shows the
standard case with the logarithmic divergence at w � �1. The
blue (dashed), black (solid), and green (dotted) curves use a
regularized adiabatic sound speed ~c2

a which does not diverge.
The black curve with � � 1=1000 provides a reasonable fit.
Larger values smooth too much, while smaller values start to
follow the divergence and exhibit a temporary instability in the
solution for V.
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for � � 1=100 and � � 10�4, we find a relative difference
in the C‘ of less than 1% on large scales, which rapidly
drops to 10�6 by ‘ � 50, well below cosmic variance. We
expect detectable differences only for strongly clustering
dark energy with a sound speed that is close to zero or even
negative. Although it is reassuring that directly measurable
quantities are not sensitive to the precise value of � in
Eq. (59), this also shows that it will be very difficult to
distinguish between different models of dark energy ifw �
�1.
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APPENDIX A: EQUIVALENCE BETWEEN SCALAR
FIELDS AND FLUID MODELS

The aim of this Appendix is to show that at the level of
first-order perturbation theory a scalar field behaves just
like a nonadiabatic fluid with ĉ2

s � 1. To this end we
decompose the scalar field into a homogeneous mode
��t� and a perturbation ���k; t�. At the background level
we find

 �� �
1

2a2
_�2 � V���; (A1)

 

�p �
1

2a2
_�2 � V���; (A2)

and the equation of conservation is just the equation of
motion,

 

��� 2H _�� a2 dV
d�
� 0: (A3)

The adiabatic sound speed is defined as

 c2
a �

_�p
_��
�
� 3aH

a2
_�2 � 2 dV

d�
_�

� 3aH
a2

_�2
� 1�

2a
3H

dV
d�

_�
(A4)

(and we remind the reader that _a=a �H � aH). The
perturbed energy-momentum tensor is

 � �T0
0 � �� �

1

a2
_� _���

1

a2
_�2��

dV
d�

��; (A5)

 �Tii � �p �
1

a2
_� _���

1

a2
_�2��

dV
d�

��; (A6)

 � ik�Ti0 � ik�T0
i �

k2

a2
_��� � ��V; (A7)

where we wrote � for the gravitational potential  in order
to avoid confusions with the scalar field variables (only in
this Appendix).

In order to derive the rest-frame sound speed ĉ2
s of the

scalar field we use Eq. (39),

 �p � ĉ2
s���

3aH

k2 �ĉ
2
s � c

2
a� ��V; (A8)

and express everything in terms of scalar field quantities.
We find
 

1

a2
_� _���

1

a2
_�2��

dV
d�

��

� ĉ2
s

�
1

a2
_� _���

1

a2
_�2��

dV
d�

���
3aH

a2
_���

�

�
3aH

a2

�
1�

2a
3H

1
_�

dV
d�

�
_��� (A9)

which after some algebraic manipulations turns into

 

1

a2
_� _���

1

a2
_�2��

dV
d�

���
3aH

a2
_���

� ĉ2
s

�
1

a2
_� _���

1

a2
_�2��

dV
d�

���
3aH

a2
_���

�
:

(A10)

Therefore ĉ2
s � 1.

Now let us derive the equation of motion for the scalar
field perturbations from the perturbation equation for a
perfect fluid, Eq. (12),

 

_� � ��1� w���� 3 _�� � 3aH
�
�p
��
� w�

�
; (A11)

which can be rewritten as

 

_��� 3aH� ��� �p�� � 3� ��� �p� _�� �V: (A12)

Expressing the time derivative �� in terms of scalar field
quantities,
 

_�� � �
2aH

a2
_� _���

1

a2
��� _��

2aH

a2
_� _���

dV
d�

_��

�
1

a2
_�2 _��

6aH

a2
_�2�� 2 _�

dV
d�

��
dV
d�

_��

�
d2V

d�2
_���; (A13)

and doing likewise with the other terms,

 3aH���� �p� �
6aH

a2
_� _���

6aH

a2
_�2�; (A14)

 3� ��� �p� _� �
3

a3
_�2 _�; (A15)

 ��V �
k2

a2
_���; (A16)
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we can insert all these expressions into Eq. (A12) and
obtain finally

 

���� 2aH _��� a2

�
d2V

d�2 �
k2

a2

�
�� � 4 _� _��2a2�

dV
d�

(A17)

which is indeed the equation of motion for �� in the
conformal Newtonian gauge (see e.g. [15]).

APPENDIX B: EFFECTIVE PERTURBATIONS IN
TWO BAROTROPIC FLUIDS

We consider first two barotropic perfect fluids with
constant equation of state parameters,

 �p 1 � w1 ��1; w1 >�1; (B1)

 �p 2 � w2 ��2; w2 <�1: (B2)

We can define the effective quantities as those appearing in
the sum of the two energy-momentum tensors,

 �� eff � ��1 � ��2; (B3)

 �p eff � �p1 � �p2; (B4)

 weff �
w1 ��1 � w2�2

��1 � ��2
; (B5)

 �eff �
��1�1 � ��2�2

��1 � ��2
; (B6)

 �eff �
�1� w1� ��1�1 � �1� w2� ��2�2

�1� w1� ��1 � �1� w2� ��2
: (B7)

The system above is characterized by four variables �1, �2,
�1, �2. In order to have a complete mapping, we need to
introduce two more variables which express two internal
degrees of freedom [27]:

 S12 �
�1

1� w1
�

�2

1� w2
; (B8)

 ��12 � �1 � �2; (B9)

called, respectively, relative entropy perturbation and the
relative velocity of the two fluids.

We can now calculate the perturbation equation for the
effective fluid from

 T�
�eff��;� � T�

�1��;� � T
�
�2��;� � 0: (B10)

The T�0;� and T��;� components give the perturbation
equations:

 

��1
_�1 � ��2

_�2 � 3 _���1� w1� ��1 � �1� w2� ��2	

� ��1� w1� ��1�1 � �1� w2� ��2�2	

� 3H ��p1 � w1 ��1�1 � �p2 � w2 ��2�2	 � 0;

(B11)

the derivative of _�eff is

 

_� eff �
��1

_�1 � ��2
_�2

��1 � ��2
� 3H

w1 ��1�1 � w2 ��2�2

��1 � ��2

� 3H
w1 ��1 � w2 ��2

��1 � ��2

��1�1 � ��2�2

��1 � ��2
; (B12)

inserting the last one into Eq. (B11) and remembering
Eqs. (B3) to (B8), we have

 

_� eff � ��1� weff���eff � 3 _ � � 3H
�
�peff

��eff
� weff�eff

�
;

(B13)

where �peff � �p1 � �p2. This is just the equation (12)
for the effective quantities.

For the second perturbation equation we have
 

�1� w1� ��1
_�1 � �1� w2� ��2

_�2 � 4H ��1� w1� ��1�1

� �1� w2� ��2�2	 � 3H ��1� w1�
2 ��1�1

� �1� w2�
2 ��2�2	 � k

2 ��1� w1� ��1

� �1� w1� ��1	 � k
2��p1 � �p2� � 0; (B14)

the derivative of �eff is

 

_� eff �
�1� w1� ��1

_�1 � �1� w2� ��2
_�2

�1� w1� ��1 � �1� w1� ��1

� 3H
�1� w1�

2 ��1�1 � �1� w2�
2 ��2�2

�1� w1� ��1 � �1� w1� ��1

� 3H
�1� w1� ��1�1 � �1� w2� ��2�2

�1� w1� ��1 � �1� w1� ��1

�
�1� w1�

2 ��1 � �1� w2�
2 ��2

�1� w1� ��1 � �1� w1� ��1
; (B15)

again inserting the last one into Eq. (B14) and remember-
ing Eqs. (B3) to (B7) and (B8), we obtain the expression
for the second perturbation equation:
 

_�eff � �H �1� 3weff� �
_weff

1� weff
�eff

� k2

�
�peff= ��eff

1� weff
�  

�
� 0: (B16)

Again, this is the same equation as the one for a single
perfect fluid, Eq. (13). The difference to the general case is
that now the pressure perturbations are fixed by the baro-
tropic nature of the two fluids. Starting from the generic
expression
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 �peff � �p1 � �p2 � w1 ��1�1 � w2 ��2�2; (B17)

we find that the effective pressure perturbation is

 �peff � c2
a�eff �

1

3H

�w2 � w1� _��1
_��2

_��eff
S12; (B18)

where c2
a is the adiabatic sound speed and is given by

 c2
a �

_�peff

_��eff
�
w1

_��1 � w2
_��2

_��1 � _��2
�

�
w1�1� w1� ��1 � w2�1� w2� ��2

�1� w1� ��1 � �1� w2� ��2
: (B19)

The second term appearing in Eq. (B18) can be consid-
ered as the relative pressure perturbation due to the relative
motion:

 �prel � �
�w2 � w1� _��1

_��2

3H _��eff

S12: (B20)

A single barotropic fluid has the pressure perturbation
�p � c2

a��. For the two-fluid case, we find an additional
part coming from the relative perturbations of the two
fluids. The new variable S12 given by Eq. (B8) is a gauge
invariant relative entropy perturbation [27].

The time evolution of S12 is given simply by

 

_S 12 � ���12; (B21)

and contains the fourth variable ��12, which is a relative
velocity perturbation and evolves according to
 

@t��12 � �H��12 � 3H �w1 � w2 � c2
a���12

� k2�w1 � w2 � c2
a�S12 � 3H �w1 � w2��eff

� k2 w1 � w2

1� weff
: (B22)

APPENDIX C: EFFECTIVE PERTURBATIONS IN
THE QUINTOM MODEL

Perturbations in barotropic fluids with constant w< 0
grow very rapidly due to the imaginary sound speed, c2

a �
w< 0. A realistic model crossing the phantom divide
needs therefore to be composed of fluids with nonadiabatic
fluctuations and a positive sound speed. In the case of the
Quintom model, we are dealing with two fluids with ĉ2

s �
1. As in Appendix B, we define the effective quantities via
Eqs. (B3)–(B9): using these equations we find the relations
between the variables of the two fluids and the variables of
the effective fluid:

 �1 �
1� w1

1� weff
�eff �

�1� w1��1� w2��weff � w1�

�1� weff��w2 � w1�
S12;

(C1)

 �2 �
1� w2

1� weff
�eff �

�1� w1��1� w2��w2 � weff�

�1� weff��w2 � w1�
S12;

(C2)

 �1 � �eff �
�1� w2��weff � w1�

�1� weff��w2 � w1�
��12; (C3)

 �2 � �eff �
�1� w1��weff � w2�

�1� weff��w2 � w1�
��12: (C4)

What we need to evaluate again in the Quintom model is
the effective pressure perturbation, because all the other
terms are the same. Taking the sum of the pressure pertur-
bation defined in the rest-frame, we have
 

�peff � ĉ
2
s;1��1� ĉ

2
s;2��2� 3H �1�w1��ĉ

2
s;1�w1� ��1

�1

k2

� 3H �1�w2��ĉ2
s;2�w2� ��2

�2

k2 ; (C5)

inserting Eqs. (C1)–(C4) in Eq. (C5) we find
 

�peff � ĉ2
s;eff��eff � �prel � �pnad

� 3H �ĉ2
s;eff � c

2
a��1� weff� ��eff

�eff

k2 ; (C6)

where ĉ2
s;eff is the effective rest-frame sound speed; �prel is

the relative pressure perturbation and �pnad is the non-
adiabatic contribution to the pressure perturbation; they are

 ĉ 2
s;eff �

ĉ2
s;1�1� w1� ��1 � ĉ

2
s;2�1� w2� ��2

�1� w1� ��1 � �1� w2� ��2
; (C7)

 �prel �
�w2 � w1� _��1

_��2

3H _��eff

S12; (C8)

 

�pnad � ���ĉ2
s;1 � ĉ

2
s;2� � �w2 � w1�	

_��1
_��2

3H _��eff

�

�
S12 �

3H

k2 ��12

�
: (C9)

The total number of degrees of freedom remains the
same when we change from the ‘‘two-fluid’’ to the ‘‘single
effective fluid’’ picture. In both cases we have four varia-
bles. What changes is the way these variables interact. In
the two-fluid case, the interaction proceeds through the
gravitational potential  . In the single effective fluid pic-
ture, the additional degrees of freedom become internal
and appear through additional contributions to the pressure
perturbation �p.
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