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We present an analytical treatment of gravitational lensing by a Kerr black hole in the weak deflection
limit. Lightlike geodesics are expanded as a Taylor series up to and including third-order terms inm=b and
a=b, where m is the black hole mass, a the angular momentum, and b the impact parameter of the light
ray. Positions and magnifications of individual images are computed with a perturbative analysis. At this
order, the degeneracy with the translated Schwarzschild lens is broken. The critical curve is still a circle
displaced from the black hole position in the equatorial direction and the corresponding caustic is
pointlike. The degeneracy between the black hole spin and its inclination relative to the observer is broken
through the angular coordinates of the perturbed images.
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I. INTRODUCTION

The gravitational deviation suffered by photons passing
near massive compact bodies provided one of the first
observational tests of general relativity and is still consid-
ered as an excellent probe for gravity theories. Black hole
lensing has been emerging as a pretty promising tool for
gravitational investigations in both weak and strong fields.
On the observational side, interest in this topic is mainly
motivated by the supermassive black hole supposed to be
hosted in the radio source Sgr A� in the galactic center.
Planned high-resolution observations at the astrometric
resolution of the microarcsecond (�as) should allow in
the next future a clean detection of higher order effects in
gravitational lensing. It is now well understood that a
photon passing near a black hole can suffer either a strong
or a weak deflection. The latter occurs when the minimum
distance is much larger than the gravitational radius. The
former occurs when photons wind around the black hole
making one or more loops and producing images very near
to the shadow.

Analytical treatments have been worked out for generic
spherically symmetric spacetimes, just assuming that the
light ray follows the geodesic equations. The deflection
angle always diverges logarithmically when the minimum
impact parameter is in the very neighborhood of complete
capture [1], whereas for larger distances and in the weak
deflection limit a Taylor series expansion works pretty well
[2]. Some investigations interpolating between the two
limits have been also performed [3].

Whereas lensing by either Schwarzschild or generic
spherically symmetric black holes has been extensively
investigated, a full analytical description of lensing by a
Kerr Black hole is still missing. An intrinsic angular mo-
mentum breaks the spherical symmetry heavily affecting
the gravitational field. The modern era in the study of Kerr

geodesics came when Carter [4] was able to fully separate
the Hamilton-Jacobi equation. Based on this technique of
separation of variables, many later investigations ad-
dressed the light propagation near a rotating body [5] and
numerical studies flourished. Cunningham and Bardeen [6]
considered the optical appearance of a point source in a
circular orbit in the equatorial plane of an extreme Kerr
black hole. Viergutz [7] investigated the image positions
through a code based on the quasianalytic solution of the
geodesic problem by elliptical integrals. Rauch and
Blandford [8] provided a detailed analysis of the optical
structure of the primary caustic surface. The analytical
extension of the strong deflection limit methodology to
the Kerr black hole has been performed as well in the limit
of small values of the angular momentum and for sources
in the asymptotically flat region of the space-time [9–11].
A full description of caustics and the inversion of lens
mapping for sources near them has been performed up to
the second order in a.

Several analytical investigations in the weak deflection
limit, considering the first correction due to the angular
momentum, were performed in the past. The null tetrad
formalism of geometrical optics was used to study the
optical properties of images into the field of an axisym-
metric system [12]. Epstein and Shapiro [13] performed a
calculation based on the post-Newtonian expansion. The
motion equations for two spinning pointlike particles,
when the spin and the mass of one of the particles were
zero, were resolved in [14,15] by expanding the Kerr
metric in a power series of the gravitational constant G.
Bray [16] evaluated the equations of motion for a light ray
in the weak deflection limit up to and including second
order corrections in m=b and a=b, where m is the black
hole mass, a the angular momentum, and b is the impact
parameter. Dymnikova [17] discussed the additional time
delay due to rotation by integrating the light geodesics.
Glicenstein [18] considered light rays passing outside a
spinning star in the framework of the Lense-Thirring met-
ric. Kopeikin and collaborators [19–21] investigated the
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gravito-magnetic effects in the propagation of light in the
field of self-gravitating spinning bodies. Asada and Kasai
[22] considered the light deflection angle caused by an
extended, slowly rotating lens. These analyses were then
extended to generic spinning mass distributions, in the
usual framework of gravitational lensing theory [23–28],
i.e. (i) weak field and slow motion approximation for the
lens and (ii) thin lens hypothesis. Expressions for bending
and time delay of electromagnetic waves were found for
stationary rotating deflectors with general mass
distributions.

At second order in m=b and a=b, the Kerr lens is
observationally equivalent to the Schwarzschild one be-
cause of the invariance under the global translation of the
center of the lens mass [22]. In this paper we take a step
forward and study the lensing up to the next order.
Following Bray [16], we start from the lightlike null geo-
desics and then move to the gravitational lensing for a
configuration in which both source and observer lie in
the asymptotically flat region of the space-time. We take
care of expressing the results in terms of the invariants of
the light ray, avoiding ambiguities connected to
coordinate-dependent quantities [2,29].

The paper is organized as follows. In Sec. II, we intro-
duce our notation and recall some properties of the Kerr
space-time. In Sec. III, the lens equations in the weak
deflection limit are derived starting from the geodesics.
Section IV is devoted to the solution of the lens equations
with a perturbative method. Sections V and VI discuss the
magnification of the images and the singularity of the lens
mapping, respectively. Section VII is devoted to some
considerations. Finally, Appendixes A and B report some
details on the evaluation of the integrals appearing in the
geodesic equations. In this paper, we will use units G �
c � 1, with c the light speed in the vacuum.

II. BASICS

The Kerr black hole metric in the Boyer-Lindquist co-
ordinates, ft; r; #;�g, is given by
 

ds2 �

�
1�

rSchr

�2

�
dt2 �

�2

�
dr2 � �2d#2

�

�
r2 � a2 �

a2rSchrsin2#

�2

�
sin2#d�2

�
arSchrsin2#

�2 dtd�; (1)

where

 �2 � r2 � a2cos2#; (2)

 � � r2 � rSchr� a2: (3)

The constant rSch � 2m is the gravitational radius. We
consider a static observer and a static emitter in the asymp-

totically flat region of the space-time, r� rSch. The ob-
server coordinates are denoted fro; #o; �o � 0g, where �o

has been fixed without loss of generality. The source
coordinates are denoted as frs; #s; �sg. In what follows,
we will also use the modified polar coordinate � � cos#.
The null geodesics for a light ray can be expressed in terms
of the first integrals of motion J and Q [4,5]. The photon
trajectory from the source to the observer can then be
written as

 �
Z dr����

R
p � �

Z d#�����
�
p ; (4)

 ��s �
Z a�rSchr� aJ	

��
����
R
p dr�

Z Jd#

�sin2#
�����
�
p ; (5)

where

 R�r	� r4��a2�J2�Q	r2�
�J�a	2�Q�rSchr�a2Q;

(6)

 ��#	 � �a2 � J2csc2#	cos2# �Q: (7)

The signs of
����
R
p

and
�����
�
p

are adhered to the signs of dr and
d#, respectively. The signs change at the inversion points
in the r or # motion. We consider the standard framework
of gravitational lensing, where the source of radiation and
the observer are remote from the lens. In such a configu-
ration the equatorial plane is crossed at least once, so that
the range Q< 0 is excluded in our analysis.

Along his path from the source to the observer, the
photon passes by the black hole at a minimum distance
rmin which, in the weak deflection limit, is much larger than
the gravitational radius. This distance of closest approach
is the only turning point in the r motion. Differently from
the strong deflection limit, when the photon may perform
several oscillations around the equatorial plane, in the
weak deflection limit there is just one inversion point
also in the angular polar motion. # can attain either a
maximum or a minimum depending on the direction taken
by the photon starting from #s. If # is initially growing (�
decreasing), the polar motion will attain a maximum #max

(a minimum �) and then it will decrease to get to the
observer at #o (� increases to get to �o), otherwise for
an initially decreasing #.

The light ray minimum radial distance rmin to the lens is
determined by R�r	 � 0, whose roots represent inversion
points in the radial motion. In general, there can be up to
four real roots with rmin being the largest one. In the weak
deflection limit, there is just one inversion point at a
distance of order of the impact parameter [16]. The impact
parameter is an invariant of motion defined geometrically
by the perpendicular distance from the center of the lens to
the asymptotic tangent line to the light ray at the observer.

For the spherically symmetric case it reduces to
���������������
J2 �Q

p
.

A fundamental assumption in the weak deflection limit is
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that the point of closest approach lies well outside the

gravitational radius, i.e. rSch �
���������������
J2 �Q

p
. Let us now in-

troduce two independent expansion parameters in terms of
the invariants of motion

 �m �
m���������������

J2 �Q
p ; (8)

 �a �
a���������������

J2 �Q
p : (9)

In what follows, we will expand quantities of interest in
both �m and �a. For the sake of brevity, we will refer to
terms of order O��im�

j
a	 as terms of order O��n	 with n �

i� j. We will produce our results up to a given formal
order in �, collecting terms of a given order in � coming
from any combination of the two quantities �a and �m. We
recall how terms like O�am	 or O�m2	, which according to
our notation are both of formal order �2, are not neces-
sarily of the same physical order. This is the case only for a
maximal (or nearly maximal) Kerr black hole, when jaj 
m.

Let us find the minimum radial distance in the weak
deflection limit. We can solve the equation R�rmin	 � 0
expressing rmin as a power series in �. We then find
 

rmin ’ �J
2 �Q	1=2

�
1�

rSch

2
���������������
J2 �Q

p �
a2J2

2�J2 �Q	2

�
arSchJ

�J2 �Q	3=2
�

3r2
Sch

8�J2 �Q	
�

r3
Sch

2�J2 �Q	3=2

�
3aJr2

Sch

2�J2 �Q	2
�

J2a2rSch

�J2 �Q	5=2
�
J2�J2 � 4Q	a4

8�J2 �Q	4

�
J�J2 �Q	rScha3

�J2 �Q	7=2
�
�8Q� 51J2	r2

Scha
2

16�J2 �Q	3

�
3Jr3

Scha

�J2 �Q	5=2
�

105r4
Sch

128�J2 �Q	2
�O��5	

�
: (10)

An expression for the minimum approach including terms
O��3	 can be found in [16]. Equation (10) for the spherical
symmetric case (a � 0) agrees with the result in [2]. The
observer and the source lie very far from the lens in the
asymptotically flat region of the space-time. It can be
shown that b=ro  b=rs  �m [2]. This scaling relation
will be useful when collecting terms rmin=ro and rmin=rs

in the integrals. In what follows, without loss of generality,
we will consider non-negative values of the spin a.

III. LENS EQUATIONS

The geodesic equations, Eqs. (4) and (5) will provide the
lens equations. They can be viewed as a map between the
angular position of the source, f�s; �sg, and the image
position, which is a function of the couple of invariants
fJ;Qg. Details on the resolution of the radial and angular
integrals in the weak deflection limit are given in
Appendices A and B, respectively. Following [16], we
can recast the geodesic equation in a quite compact form.
The first equation, Eq. (4), provides a description of the
polar motion. It can be written as

 �s � ��o cos�� ��1	k sin�
�

Q

J2 �Q
��2

o

�
1=2
; (11)

where
 

��
2rSch���������������
J2�Q

p �
15�r2

Sch

16�J2�Q	
�

4JrScha

�J2�Q	3=2
�

16r3
Sch

3�J2�Q	3=2

�
15�Jar2

Sch

4�J2�Q	2
�

�
�2

o�
5J2� 3Q

J2�Q
�

Q
J2�2

o

�2
o�1
�Q

�

�
rScha2

�J2�Q	3=2
� �J2�Q	1=2 ro� rs

rors

�
�J2�Q	3=2

6

r3
o� r

3
s

r3
or3

s

�

���������������
J2�Q

p
�2

o�1��
2
o	

2�J2�2
o�Q�1��2

o		

�
ro� rs

rors
a2�O��4	: (12)

Up to terms �2, � was already evaluated in [16]. For a
null angular momentum (a � 0) and for a very distant
source and observer, ro, rs ! 1, the parameter � reduces
to the deflection angle induced by the Schwarzschild black
hole [2]. The parameter k in Eq. (11) accounts for the
direction in the polar motion of the photon at the observer.
k is even (odd) if # attains #max (#min), i.e. for photons
coming from below (above) the black hole.

The second geodesic equation, Eq. (5), accounts for the
azimuthal motion. Using Eq. (11), we can write
 

��s �
J
jJj
��

J����������������
J2 �Q

p 1

1��2
o

�
1� ��1	k�

�o���������������
1��2

o

p
�

����������������������������
Q

J2 �Q
��2

o

s �
�

2arSch

J2 �Q
� ��s; (13)

where ��s is a contribution of order �3,

 ��s �
5�r2

Scha

4�J2 �Q	3=2
�

8Jr3
Sch�2�J

2 �Q	�4
o � �2J

2 �Q	�2
o �Q	

3�J2 �Q	3�1��2
o	

3 �

�
Q

Q� �J2 �Q	�2
o

� 3
�
JrScha2

�J2 �Q	2

�
a2J�2

o

2�J2�2
o �Q�1��

2
o		

ro � rs

rors
�
J�2J2�2

o��
2
o � 1	 �Q��2�4

o ��
2
o � 1		

�J2 �Q	�1��2
o	

3

�
1

3
�J2 �Q	

�ro � rs	
2

r2
or

2
s

�
2�ro � rs	rSch

rors
�

4r2
Sch

J2 �Q

�
ro � rs

rors
: (14)
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Up to and including terms of order of O��2	, Eqs. (13) and
(14) have been already evaluated in [16].

The lens equations are usually given in terms of the
apparent angular position of the image onto the plane of
the sky (POS), i.e. the coordinate angles f�1; �2g, and of the
angular position of the source in the absence of the lens,
fB1; B2g. In the asymptotic flat region, the Boyer-Lindquist
coordinates can be thought as spherical coordinates. We
can introduce a Cartesian observer coordinate system cen-
tered on the black hole, with the x3-axis running along the
line of sight (LOS), i.e. the line from the observer to the
lens, and the x2-axis tracing the projection of the spin axis
onto the POS. Then, �1 and �2 are measured along the x1-
and the x2-axis, respectively. In other words, ro tan�1 and
ro tan�2 are the apparent (length-)displacement of the im-
age perpendicular to the projected axis of symmetry of the
black hole and the apparent (length-)displacement perpen-
dicular to the equatorial plane in the sense of the angular
momentum of the black hole, respectively. The angles
f�1; �2g are strictly linked to the invariants of motion and
to the impact parameter through the relations

 ro
tan�1��������������������

1� tan2�
p � �

J���������������
1��2

o

p ; (15)

 ro
tan�2��������������������

1� tan2�
p � ���1	k

������������������������������������������������
Q� a2�2

o � J
2 �2

o

1��2
o

s
; (16)

with � being the angular separation of the image from the
black hole, tan2� � tan2�1 � tan2�2. The parameter k can
be expressed in terms of �2 as

 ��1	k � �
�2

j�2j
: (17)

Equations (15) and (16) can be obtained by defining the
tangent to the ray at the observer through the equations of
motion of the photon. Photons are named prograde (retro-
grade) if they turn on the equatorial plane in the same
(opposite) sense of the black hole. Prograde photons �J >
0; Q � 0	 are seen by the observer on the left side of the
black hole (�1 < 0). The relation between the angular
position of the image and the impact parameter for a

spherically symmetric lens, b �
���������������
J2 �Q

p
� ro sin�, can

be easily recovered from Eqs. (15) and (16)
The angular position of the source fB1; B2g can be ex-

pressed in terms of the Boyer-Lindquist coordinates.
Considering the intercept of the line through the source
and the observer with the POS, we find

 Ds tanB1 � sin�srs

���������������
1��2

s

q
; (18)

 Ds tanB2 � rs��s

���������������
1��2

o

q
��o

���������������
1��2

s

q
cos�s	; (19)

where Ds is the distance along the LOS from the observer
to the plane of the source, i.e. the plane through the source

and perpendicular to the LOS. The relations between the
radial coordinates and the distances measured along the
LOS are

 Dd � ro; (20)

 Dds � �rs��o�s � cos�s

�������������������������������������
�1��2

o	�1��
2
s 	

q
	; (21)

 Ds � Dd �Dds: (22)

Dds is the distance along the LOS between the lens plane
and the source plane. The Di distances must be properly
intended as angular diameter distances. The relations in
Eqs. (15) and (16) and Eqs. (18) and (19) allows us to put
the geodesics, Eqs. (11) and (13), in the classical form of
the lens mapping

 B1 � B1��1; �2	; (23)

 B2 � B2��1; �2	: (24)

Once we use angular coordinates for the image positions
instead on the invariants of motion, it can be appropriate to
introduce a series expansion parameter in the weak deflec-
tion limit based on the angular Einstein ring

 �E �

����������������������������������
2rSch

rs

ro�ro � rs	

s
: (25)

Following [2], we define

 " �
�E

4D
; (26)

where D � rs=�ro � rs	. We remark as differently from
usual analyses in the weak deflection limit, we are adopting
radial distances in the definition of the Einstein radius
instead of the distances measured along the LOS.
Differences are of order of "3. Angles can be rescaled in
terms of �E. We then assume that the solution of the lens
equations can be written as a series in ",

 �1 � �Ef�1�0	 � �1�1	"� �1�2	"2 �O�"3	g; (27)

 �2 � �Ef�2�0	 � �2�1	"� �2�2	"
2 �O�"3	g; (28)

 � � �Ef��0	 � ��1	"� ��2	"
2 �O�"3	g: (29)

The above expressions must be read with the same caveats
we discussed about the parameter � after introducing the
proper expansion parameters �m and �a in Eqs. (8) and (9).
As a matter of fact, a coefficient of the form ��i	 will be
written as a polynomial of ith order in a=m, collecting
terms which are not necessarily of the same order.

The source position can be rescaled defining

 �i �
tanBi
�E

: (30)
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Including terms up to"2, the lens equations take the very
simple form

 B1 � �1 �D	̂1��1; �2	; (31)

 B2 � �2 �D	̂2��1; �2	; (32)

where 	̂ is the bending angle, defined as the angle between
the asymptotic direction of the light ray at the observer and
the asymptotic direction at the emitter. At order "3,
equations become more complicated. The deflection angle
is an invariant of motion and can be expressed in terms of
the constants J and Q together with the mass and the spin
of the black hole. On the other hand, by its own definition,
it does not depend on the source and observer positions
once they lie in the very asymptotic region of space-time.
The source position can then be directly related to the
deflection angle considering the source and observer at
an infinite distance. This allows us to neglect higher order
contributions to the path of the light ray near the black
hole. The two components of the deflection angle can then
be evaluated considering the geodesics for source and
observer equations (11) and (12) at ro, rs ! 1, through
the equation

 tanBi��s�ro; rs ! 1	; �s�ro; rs ! 1		 � �
Dds

Ds
tan	̂i:

(33)

It is simple to verify that for an equatorial motion, �s �
�o � 0, Eq. (33) reduces to the well-known 	̂ � ��� �.
For the Kerr black hole, we get
 

	̂1 � 2
rSch

b
b1

b
�

15�
16

�
rSch

b

�
2 b1

b

�
2�b2

2 � b
2
1	rScha

���������������
1��2

o

p
b4 � 8

�
1�

1

3

�
b1

b

�
2
�

�

�
rSch

b

�
3 b1

b
�

�
2�b2

2 � b
2
1	�1��

2
o	

b2 � 1
�
a2rSch

b3

b1

b

�

�
5�

���������������
1��2

o

p
�b2

2 � 2b2
1	

4b2 �
4b2�o

b

�
ar2

Sch

b3 �O��4	;

(34)

 

	̂2 � 2
rSch

b
b2

b
�

15�
16

�
rSch

b

�
2 b2

b
�

4b1b2arSch

���������������
1��2

o

p
b4

� 8
�

1�
b2

2

3b2

��
rSch

b

�
3 b2

b
�

�
15�b1b2

���������������
1��2

o

p
4b2

�
4b1�o

b

�
ar2

Sch

b3 �

��
b2

b

�
2
��
b1

b2

�
2
� 1

�
2
�2

o

� 2
b2

1�3� 2�2
o	 � 2b2

2

b2

�
a2rSch

b3

b2

b
�O��4	; (35)

where inspired by Eqs. (15) and (16) we have introduced
the parameters

 b1 � �
J���������������

1��2
o

p ; (36)

 b2 � ���1	k

�������������������������������
Q� J2 �2

o

1��2
o

s
; (37)

and b �
�������������������
b12 � b2

2

q
�

���������������
J2 �Q

p
. For the spherically sym-

metric Schwarzschild black hole, Eqs. (34) and (35) agree
with the result in [2]. The spin enters in the deflection angle
only if coupled with the mass. A first attempt to evaluate
the term proportional to m2a in the deflection angle was
already performed in [30]. We remark as in the derivation
in [30], some higher order geometrical terms are neglected
or, in other words, angles are identified with their tangents.
This can affect the relation between the impact parameter
and the distance of closest approach. The discussion of the
equatorial motion, b2 � 0,�o � 0 is enough to understand
some features of how the spin affects the deflection angle.
We have
 

	̂1 � 2
rSch

b
b1

b
�

15�
16

�
rSch

b

�
2 b1

b
� 2

arSch

b2 �
16

3

�
rSch

b

�
3

�
b1

b
�
a2rSch

b3

b1

b
�

5�
2

ar2
Sch

b3 �O��4	: (38)

Whereas the gravito-electric field is always attractive, the
gravito-magnetic field attracts towards the black hole only
photons which move in the equatorial plane in the opposite
sense of the spinning lens (b1 > 0). Terms directly propor-
tional to the angular momentum a are strictly related to the
dragging of inertial frames and then act differentially on
opposite sides of the hole. The deflection angle is enhanced
for retrograde photons (b1 > 0) and reduced for prograde
photons (b1 < 0). The term proportional to a2 is instead
related to the quadrupolar distortion caused by the black
hole spin [8]. It just perturbs the spherical symmetry of the
system but it does not act differentially.

To give some numerical estimates, let us consider Sgr A�

in the galactic center, at nearly 8 Kpc from the Sun, which
should host a supermassive black hole with mass 3:6�
106M� [31]. The minimum distance of orbiting stars from
the central black hole is * 100 AU, nearly 1500 times
greater than the Schwarzschild radius, so that such sources
can be considered in the asymptotic region of the space-
time. The Einstein radius corresponding to such a configu-
ration is 0:5 mas, i.e. nearly 4 AU ( 50rSch) at the
distance of Sgr A�. Let us consider a light ray in the
equatorial plane with an impact parameter of 50rSch.
The total deflection angle is 4� 10�2 radians, so that
the weak deflection limit still holds. The size of the con-
tribution to the deflection due to the dragging term / am
( / am2) is80�a=m	 as (6�a=m	 as). The contribution of
the term / a2m is 0:8�a=m	2 as. We see that corrections
are sizeable even for low values of the angular momentum.
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IV. IMAGE POSITIONS

Lens equations can be solved term by term. At the first
order in the deflection angle, Kerr lensing is pure
Schwarzschild lensing. The lens equations take the stan-
dard form

 �1 � �1�0	

�
1�

1

�2
�0	

�
; (39)

 �2 � �2�0	

�
1�

1

�2
�0	

�
; (40)

where ��0	 �
�������������������������
�2

1�0	 � �
2
2�0	

q
, with the usual solutions

 ��1�0	 �
1

2

�
1�

���������������
1�

4

�2

s �
�1; (41)

 ��2�0	 �
1

2

�
1�

���������������
1�

4

�2

s �
�2; (42)

with �2 � �2
1 � �

2
2.

The first contribution of the angular momentum appears
at the next order in ". The second order terms of the
solution read

 �1�1	 � �Sch
�1	

�1�0	

��0	
�
�1� �2

1�0	 � �
2
2�0		am

���������������
1��2

o

p
1� �4

�0	

; (43)

 �2�1	 � �Sch
�1	

�2�0	

��0	
�

2�1�0	�2�0	am
���������������
1��2

o

p
1� �4

�0	

; (44)

where am � a=m and with

 �Sch
�1	 �

15�

16�1� �2
�0		

: (45)

At this order there is a full degeneracy between a Kerr

black hole and a Schwarzschild black hole displaced from

the center along the equatorial plane in f�1; �2g ’

�Efa
���������������
1��2

o

p
"; 0g. The lens equations are degenerate as

well with those of a binary pointlike lens with very short
separation. Then, at this order, the line joining the per-
turbed images always goes through the ‘‘shifted’’
Schwarzschild lens. What happens in the POS is that,
due to a positive angular momentum, the two images are
apparently counterclockwisely rotated about the line of
sight through the center with respect to the line passing
through the near unperturbed image produced in the
Schwarzschild case [25].

Suppose a source at a distance rs  10 pc beyond the
supermassive black hole in the galactic center and an
Earth-based observer. Then �E  0:07�rs=10 pc	1=2 as
and " 0:76� 10�4�rs=10 pc	�1=2. The shift to the image
positions due to the dragging of inertial frames turns out to
be of order of 4�a=m	 �as, at the reach of future astro-
metric missions.

Equations at the third order become quite long, but
solutions can be still put in a compact form. We have
 

�1�2	 � �Sch
�2	

�1�0	

��0	
�

16D2

3
�1�0	�2

2�0	 � am

�
�

4�2�0	�o

�2
�0	

�
5
���������������
1��2

o

p
�

16�3
�0	�1� �

2
�0		�1� �

2
�0		

3 
�
2
�0	�1� �

2
�0		

2

� �1� 4�2
�0		 � �12�6

�0	 � 5�4
�0	 � 4�2

�0	 � 1	�2
1�0	�

�

� a2
m

�
��1�0	�1��

2
o	

�4��4
�0	 � �

2
�0	 � 1	�2

2�0	

�1� �2
�0		

2��2
�0	 � 1	3

�
�2
�0	

��2
�0	 � 1	3

��
; (46)

 �2�2	 � �Sch
�2	

�2�0	

��0	
�

16D2

3
�2

1�0	�2�0	 � am

�
4�1�0	�o

�2
�0	

�
5��12�6

�0	 � 5�4
�0	 � 4�2

�0	 � 1	�1�0	�2�0	

���������������
1��2

o

p
�

16�3
�0	�1� �

2
�0		��

2
�0	 � 1	3

�

� a2
m

��2�0	��
2
�0	�3�

4
�0	 � 2�2

�0	 � 3	 � 4��4
�0	 � �

2
�0	 � 1	�2

2�0		�1��
2
o	

�1� �2
�0		

2��2
�0	 � 1	3

�
; (47)

where

 �Sch
�2	 � �

225�2�2�2
�0	 � 1	

256��0	��
2
�0	 � 1	3

(48)

 �
8
3��4

�0	 � �
2
�0	 � 1	r2

o � 3rs��4
�0	 � �

2
�0	 � 3	ro � r2

s �2�6
�0	 � 7�4

�0	 � 6�2
�0	 � 6	�

3�ro � rs	
2��0	�1� �2

�0		
: (49)

At this order, images are no longer lined up on a line passing for a fixed position. The intercept with the axis of abscissae
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depends on the source position. This proves that the degen-
eracy between a Kerr lens and a displaced Schwarzschild
lens gets lost. For a source at rs beyond Sgr A�, the shift at
this order to the image position due to the spin is
�a=m	iO��E"2	  0:3�a=m	i�10 pc=rs	

1=2 pas, with i �
1 when considering the higher order correction due to the
dragging and i � 2 when considering quadrupolar distor-
tion. For rs  100 AU and a & m, we get a shift of 4�
10�2 �as, near the accuracy requirement for the space
mission project MAXIM [32].

The angular distance of an image from the black hole
has coefficients

 ��1	 � �Sch
�1	 �

am�1�0	

���������������
1��2

o

p
��0	��2

�0	 � 1	
; (50)

 

��2	 � �Sch
�2	 �

5am�4�4
�0	 � 2�2

�0	 � 1	�1�0	

���������������
1��2

o

p
�

8�2
�0	��

2
�0	 � 1	3

�
2�1� �2

�0		�
6
�0	 � �4�

6
�0	 � 3�4

�0	 � 4�2
�0	 � 1	�2

2�0	

2��0	�1� �2
�0		��

2
�0	 � 1	3

� a2
m�1��2

o	: (51)

The degeneracy in the image positions between the abso-
lute value of the spin and its inclination breaks down with
the second order corrections if we consider the angular
distances measured along the coordinate axes in the POS,
since terms proportional to a�o appear together with those

proportional to a
���������������
1��2

o

p
. On the other hand, when we

consider the angular distance from the center, the spin

appears only in the form a
���������������
1��2

o

p
.

An image position in � � �Ef�
�
�0	 � �

Sch
�1	 "� �

Sch
�2	 "

2 �

O�"3	g solves the general form of the lens equation for a
spherically symmetric deflector [33]

 ros sinB � ro sin� cos�	̂Sch � �	

�
��������������������������
r2

s � r2
osin2�

q
sin�	̂Sch � �	; (52)

with 	̂Sch being the deflection angle for the Schwarzschild

black hole and ros � ro cosB
���������������������������
r2

s � r2
o sinB2

p
the linear path

from the source to the observer. The left-hand side can be

rewritten in terms of tanB as f
�����������������������������
r2

s � sin2��	r2
o

p
cos���

	̂Sch	 � 
1� sin� sin��� 	̂Sch	�rog tanB. The angles de-
scribing image positions and deflection in Eq. (52) are
assumed to be positive. The source position � should be
taken to be positive when studying an image on the same
side of the black hole as the source, and negative when
studying an image on the opposite side.

V. MAGNIFICATION

The ratio between the angular area of the image in the
observer sky, d�1d�2, and the angular area of the source in
the absence of lensing, dB1dB2, gives the (signed) lumi-
nous amplification of the image A. It can be calculated as
the inverse of the Jacobian determinant of the lensing
mapping J,

 A � J�1 (53)

 �

�
@B1@B2

@�1@�2

�
�1
: (54)

For a source emitting isotropically, the unlensed source as
seen by the observer is �rs=ros	

2 smaller than as seen by an
observer in the black hole position [10]. Then

 J �
�
rs

ros

�
2
�
@�s@�s

@�1@�2

�
: (55)

The Jacobian can be written as a Taylor expansion in ". We
first write the angular position of the source f�s; �sg in
terms of the angular variable in the POS and then derive
with respect to �1 and �2. Finally, we introduce the scaled
angular variables and rearrange the result as a series ex-
pansion in ". We get

 J � 1�
1

�4
�0	

�

�15�1� �2
�0		

2�

16�5
�0	�1� �

2
�0		
�

4�1�0	am
���������������
1��2

o

p
�4
�0	�1� �

2
�0		

�
"�

� 8�1� �2
�0		

�ro � rs	
2�6
�0	�1� �

2
�0		

��8
�0	 � 2�6

�0	 � 2�4
�0	 � 1	r2

o

� r2
s ��

8
�0	 � 2�6

�0	 � 4�4
�0	 � 8�2

�0	 � 3� 2rsro�
2
�0	��

4
�0	 � 2�2

�0	 � 4	� �
225�2

256

�1� �2
�0		�1� 5�4

�0	 � 2�2
�0		

�6
�0	�1� �

2
�0		

3

�
5am��12�8

�0	 � 27�6
�0	 � 7�4

�0	 � 7�2
�0	 � 1	�1�0	

���������������
1��2

o

p
�

16�7
�0	��

2
�0	 � 1	3

�
2a2

m��2
�0	��

2
�0	 � 1	2 � 2�1� 3�4

�0		�
2
1�0		�1��

2
o	

�4
�0	�1� �

2
�0		��

2
�0	 � 1	3

�
"2 �O�"3	: (56)

The corresponding magnification is
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 A �
�4
�0	

�4
�0	 � 1

�

� 15�3
�0	�

16�1� �2
�0		

3 �
4am�4

�0	�1�0	

���������������
1��2

o

p
�1� �2

�0		
2�1� �2

�0		
3

�
"�

� �2
�0	

�1� �2
�0		�1� �

2
�0		

5

�675�4
�0	�

2

128
�

8�1� �2
�0		

2

�ro � rs	
2 ��

8
�0	

� 2�6
�0	 � 2�4

�0	 � 1	r2
o � 2rsro�2

�0	��
4
�0	 � 2�2

�0	 � 4	 � r2
s ��

8
�0	 � 2�6

�0	 � 4�4
�0	 � 8�2

�0	 � 3	
�

�
5��0	�1� 12�8

�0	 � 27�6
�0	 � 17�4

�0	 � 17�2
�0		�1�0	�

16�1� �2
�0		

2��2
�0	 � 1	5

am
���������������
1��2

o

q
�

�
�2
�0	 �

6�1� �4
�0		�

2
1�0	

�1� �2
�0		

2

�

�
2�4
�0	

�1� �2
�0		

3��2
�0	 � 1	3

a2
m�1��

2
o	

�
"2 �O�"3	: (57)

The luminous amplification depends on the angular mo-
mentum only through terms proportional to a

���������������
1��2

o

p
.

VI. CRITICAL CURVES AND CAUSTICS

Critical curves are the locus of all images with formally
infinite magnification. Points in the lens plane are critical
when the Jacobian is singular, J � 0. We look for a para-
metric solution in the form

 �1 � �E cos’f1� ��E;�1	�’	"� ��E;�2	�’	"
2g; (58)

 �2 � �E sin’f1� ��E;�1	�’	"� ��E;�2	�’	"
2g; (59)

where ’ is the polar angle in the POS, i.e. tan’ �
tan�2= tan�1. In Eqs. (58) and (59), we have already con-
sidered that the critical curve for the Schwarzschild black
hole is a circle of radius equal to the Einstein radius �E.
The condition J � 0 is fulfilled order by order when

 ��E;�1	�’	 �
15�
32
� am

���������������
1��2

o

q
cos’; (60)

 

��E;�2	�’	 � �
675�2

2048
� 4�1�D	 �

4

3
D2 cos�4’	

�
15

32
�am

���������������
1��2

o

q
cos’

�
1

2
a2
m�1��

2
o	sin2’: (61)

The critical curve corresponding to the above equations is a
circle in the plane ftan�1; tan�2g. With respect to the static
black hole, the circle center is displaced along the equato-
rial direction by

 

ma
���������������
1��2

o

p
ro

�
1�

15�
32

"�O�"2	

�
; (62)

the angular momentum does not contribute to the radius,
which can be written as

 �E

�
1�

15�
32

"�
�

4�1�D�D2	 �
675�2

2048

�
"2

�O�"3	

�
: (63)

Note that 4D"2 � m=ro.
The corresponding locations in the source plane are the

caustics. Given the circular symmetry of the critical curve,
the caustics will be pointlike and centered in

 fB1; B2g ’

�
4Dam

���������������
1��2

o

q
"2

�
1�

5�
16
"�O�"2	

�
; 0
�
:

(64)

At this leading order in B, the tangent can be approximated
by the angle.

At the first order correction in a, a circle whose radius is
equal to the critical radius in the spherically symmetric
case and displaced from the black hole along the equatorial
direction by a distance ��� a

���������������
1��o

p
	  "2 maps onto a

circle in the source plane displaced by the same amount
(�� a

���������������
1��o

p
) and of radius � [8]. At the next order in a,

circles map in circles only for displacements of higher
order, ��� a

���������������
1��o

p
	  "3.

VII. CONCLUSIONS

In this paper we have addressed the study of gravita-
tional lensing by a Kerr black hole in the weak deflection
limit. Lensing by rotating objects has been considered a
number of times in the past and with very different ap-
proaches. Here, we built up the lens equations starting from
the geodesics for light rays and then solved for the lensing
quantities with a standard perturbative technique. This
method allowed us to consider corrections proportional
to a2rSch and ar2

Sch. We showed as pure spin terms / a2,
a3 do not contribute to the observable lensing quantities, in
particular, to the deflection angle.

Up to the first order correction in the spin, the Kerr lens
is equivalent to a displaced Schwarzschild deflector. This is
a very general property of spinning lenses [23]. To the next
order, this degeneracy is broken and some particular fea-
tures show up. The two perturbed images are no more
aligned with a fixed position. The degeneracy between
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the absolute value of the spin and its inclination on the line
of sight is also broken. All observable quantities at the first
order correction in the spin are functions of a sin#o but
terms proportional to a cos#o appear at the next order in
the angular coordinates of the images in the plane of the
sky. However, the angular displacement of the images from
the center is still a function of a sin#o. The shape of the
critical curve is still a circle displaced along the equatorial
direction and the caustic is still pointlike. The finite size of
the caustic should show up at the next order due to terms
/ a2r2

Sch as suggested by numerical results [8].
It could be of interest to draw some comparison with the

case of the strong deflection limit [9–11]. Such a limit has
been treated considering small values of the angular mo-
mentum and including corrections proportional to a2; that
is two orders beyond the Schwarzschild lens. This was
enough to obtain finite shaped caustics. In the present study
of the weak deflection limit, we made no assumptions on
the absolute value of the spin and still considered two
orders beyond the spherically symmetric lens but we did
not get the caustic structure. This is only an apparent
discrepancy, as we have to remind that the minimum
distance in the strong deflection limit is of order of the
gravitational radius. In fact the finite size of the caustic
springs from terms proportional to �a2r2

Sch	=r
4
min. Since in

the strong deflection limit rmin  rSch, we see as these
terms are included in an analysis at the second order in a.

If the supermassive black hole at the galactic center has a
significant angular momentum, some features of Kerr lens-
ing could be detected by a future space astrometric mission
with a planned resolution of the microarcsecond.

In a forthcoming paper we will present an analytical
treatment of Kerr lensing in the weak deflection limit
accounting for the caustic structure.
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APPENDIX A: RADIAL INTEGRALS

These appendices are devoted to the resolution of the
integrals in the geodesic equations. Let us start with some
considerations on the radial integrals. The sign convention
in the geodesic equations reminds us that integrations must
be performed summing up with the same sign all contri-
butions from paths bounded by consecutive inversion
points. For a standard gravitational lensing configuration,
the r-motion, rs ! rmin ! ro, has only one inversion point
so that we have to add the contributions due to the ap-

proach and the departure of the photon. Integrals can be
easily evaluated expanding the integrand as a Taylor series
in � and then performing the integration term by term.
When evaluating the expanded primitive function in the

extrema rs and ro, we remind that
���������������
J2 �Q

p
=rs and���������������

J2 �Q
p

=ro are of order of �. Let us first consider the
left-hand side of Eq. (4). The integral reads
 Z rs

rmin

dr����
R
p �

Z ro

rmin

dr����
R
p ’

���������������
J2�Q

p �
2

J2�Q
rSch

�
15�r2

Sch

16�J2�Q	3=2
�

4JarSch

�J2�Q	2

�
a2��2J2�Q	

4�J2�Q	5=2
�

16r3
Sch

3�J2�Q	2

�
15aJ�r2

Sch

4�J2�Q	5=2
�
a4�6J2�2Q	rSch

�J2�Q	3

�
J2�Q

6r3
o

�
J2�Q

6r3
s

�
1

r0
�

1

rs
: (A1)

Let us now consider the radial integral in the right-hand
side of Eq. (5). We have

 

Z rs

rmin

a�rSchr� aJ	

��
����
R
p dr�

Z ro

rmin

a�rSchr� aJ	

��
����
R
p dr

’
2rScha

J2 �Q
�

�a2

2�J2 �Q	3=2
�

4JrScha
2

�J2 �Q	2

�
5�r2

Scha

4�J2 �Q	3=2
: (A2)

Corrections due to the finiteness of ro and rs in Eq. (A2) are
of order �4. We remark that radial integrals can be more
easily solved changing to the variable u � rmin=r.

APPENDIX B: ANGULAR INTEGRALS

The angular integrals follow the photon polar trajectory
from the source, #s, to the turning point, which is either the
minimum #min or the maximum #max, to the observer at
#o. As for the radial motion, the integration is a path
integral over the whole trajectory of the photon with all
contributions to be summed with the same sign. The two
branches, i.e. #s ! �#min; #max	 ! #o sum up positively if
we take the sign of

�����
�
p

to be positive (negative) if inte-
grating from #s to #max (#min) and negative (positive) from
#max (#min) to #o. It is useful to change to � � cos#. The
right-hand side of Eq. (4) can be then rewritten as

 I� �
Z 1

�
��������
��

q d�; (B1)

where

 �� � a2��2
� ��2	��2

� ��
2	; (B2)
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 �2
� �

�����������������������������
b2
JQ � 4a2Qm

q
� bJQ

2a2 ; (B3)

 bJQ � a2 � J2 �Q: (B4)

The turning point in the polar motion is a zero of ��, i.e.
���, with�� corresponding to #min. To the lowest orders

 �� ’

���������������
Q

J2 �Q

s �
a2J2

2�J2 �Q	2
�
a4J2�3J2 � 4Q	

8�J2 �Q	4

�O�"6	

�
: (B5)

The primitive function of the integral in Eq. (B1) is

 PI��	 �
1

a��
F�sin�1��=��	;����=��	2	 �O�"6	;

(B6)

where F is the elliptic integral of the first kind. We remark
as the integral in Eq. (B1) can be more easily solved in
terms of the integration variable �=�� [5,11,16]. The
function in Eq. (B6) can be expanded as

 PI��	 ’
1���������������

J2 �Q
p �

sin�1�
 �

�
2J2 �Q�1��2


	

4�J2 �Q	

�
�
����������������

1��2



p �
Q� 2J2

4�J2 �Q	
sin�1�


�
a2

J2 �Q

�
;

(B7)

with �
 � �=
�������������������������
Q=�J2 �Q	

p
. In � � ��, the primitive

function reduces to

 PI���	 ’
�

2
���������������
J2 �Q

p �
a2��2J2 �Q	

8�J2 �Q	5=2
: (B8)

The turning point is attained in either �� or���, accord-
ing to which photon gets a minimum or a maximum polar
angle, respectively. We remind that � is a decreasing

function of # so that the considerations on the signs
must be accordingly updated. Using the property that
PI����	 � �PI���	 and following the sign convention
sum, we sum up the paths as

 I� � 2PI���	 � ��1	k
PI��s	 � PI��o	�; (B9)

with k an integer number defined to be even (odd) if the
photon gets to the observer from below (from the top), i.e.
after having reached #max (#min).

Let us now consider the angular integral in the right-
hand side of Eq. (5),

 J# �
Z csc2#

�
�����
�
p d#: (B10)

In terms of �, the above integral can be written as

 J� �
Z 1

��1��2	
��������
��

q d�; (B11)

the primitive function can be expressed in terms of the
incomplete elliptic integral of the third kind,

 PJ��	 � �
J���2

�;�sin�1� ���	j �
�2
�

�2
�
	

a��
: (B12)

To the lowest orders, Eq. (B12) reduces to
 

PJ��	 ’ tan�1

�
J�
���������������

J2 �Q
p ����������������

1��2



p �

�
a2J

2�J2 �Q	3=2

�
�
����������������

1��2



p � sin�1�


�
: (B13)

In � � ��,

 PJ���	 ’
J�a2

4�J2 �Q	3=2
�
J�
2jJj

: (B14)

The sum convention works as in Eq. (B9).
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