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Gravitational lensing distorts the cosmic microwave background (CMB) temperature and polarization
fields and encodes valuable information on distances and growth rates at intermediate redshifts into the
lensed power spectra. The non-Gaussian band-power covariance induced by the lenses is negligible to
l � 2000 for all but the B polarization field where it increases the net variance by up to a factor of 10 and
favors an observing strategy with 3 times more area than if it were Gaussian. To quantify the cosmological
information, we introduce two lensing observables, characterizing nearly all of the information, which
simplify the study of non-Gaussian impact, parameter degeneracies, dark energy models, and comple-
mentarity with other cosmological probes. Information on the intermediate-redshift parameters rapidly
becomes limited by constraints on the cold dark matter density and initial amplitude of fluctuations as
observations improve. Extraction of this information requires deep polarization measurements on only
5%–10% of the sky, and can improve Planck lensing constraints by a factor of �2–3 on any one of the
parameters fw0; wa;�K;

P
m�g with the others fixed. Sensitivity to the curvature and neutrino mass is the

highest due to the high-redshift weight of CMB lensing but degeneracies between the parameters must be
broken externally.
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I. INTRODUCTION

Primary cosmic microwave background (CMB) anisot-
ropy from recombination has proven itself to be a veritable
gold mine of cosmological information. One of the most
important secondary signals that should be detected by
upcoming cosmic microwave background experiments is
the distortion to the temperature and polarization fields due
to gravitational lensing by the large-scale structure of the
universe (see [1] for a recent review). Lensing distortions
add cosmological information on parameters such as
curvature, neutrino masses and dark energy that change
the expansion and growth rate at intermediate redshifts
(z & 5).

This distortion in real space couples power in harmonic
space and hence introduces non-Gaussianity into the CMB
temperature and polarization fields. Beyond power spectra,
this non-Gaussianity is a source of information in that it
allows direct reconstruction of the convergence field [2–
6]. On the other hand, for purposes of extracting cosmo-
logical information from lensed power spectra as consid-
ered here, this non-Gaussianity is largely an impediment as
it makes power spectrum estimates covary across a wide
range of multipoles.

The purpose of this paper is twofold. First, we calculate
the full non-Gaussian covariance between all combinations
of temperature and polarization band powers in the lensed
CMB. This extends previous work in which the tempera-
ture [7–9] and B-mode polarization covariance [10] were
calculated separately. Second, we present a general frame-
work for studying the extra information on cosmological

parameters that lensed CMB spectra supply, paying par-
ticular attention to the impact of non-Gaussianity.

Previous works have noted that the lensed CMB signal
may be used to study the dark energy [11–15] and neutrino
mass [16]. These studies did not compute the non-Gaussian
covariance but assumed either that the information is en-
coded in the unlensed primary CMB and a reconstruction
of the lenses or by approximating the non-Gaussian cova-
riances with a degradation factor from [10]. Our results
lend support to these analyses. We also study the sensitivity
of lensing to curvature and find that future CMB measure-
ments can provide interesting constraints on it. Our work is
complementary to [17], in which parameter constraints
from non-Gaussian lensed B modes alone were studied in
smaller parameter spaces, using a likelihood formalism
which goes beyond the Fisher approximation used here.
We find that retaining a sufficiently large parameter space
to have the expected cosmological parameter degeneracies
is critical in assessing the impact of non-Gaussianity.

This paper is organized as follows. In Sec. II, we com-
pute non-Gaussian contributions to the covariance between
all lensed CMB temperature and polarization band powers.
We then describe in Sec. III how this non-Gaussian covari-
ance propagates into Fisher matrix parameter forecasts and
present formal bounds on its impact. In Sec. IV, we define
two parameter-independent observables which contain es-
sentially all information from the lensed CMB and discuss
their relationship to distance and growth as well as their
degeneracy with parameters that control the matter power
spectrum. Armed with this general framework, we show
how constraints on these observables can be interpreted in
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the context of common parametrizations of the dark energy
and dark matter in Sec. V. Finally, in Sec. VI we show how
future CMB surveys can be optimized for sensitivity to the
lensing observables. We conclude in Sec. VII and briefly
address the issues of goodness of fit in Appendix A and
scaling with the fiducial cosmology in Appendix B.

II. LENSED POWER SPECTRUM COVARIANCE

In this section, we compute the non-Gaussian covariance
between all CMB temperature and polarization band
powers to lowest order in the lensing power spectrum
C��l . The results [Eqs. (16), (18), and (19)] will be founda-
tional in subsequent sections, as they will permit the effects
of non-Gaussianity to be incorporated into parameter fore-
casts. However, the details of the calculation will not be
needed, so the reader may wish to skip this section on a first
reading.

First, we recall some preliminaries concerning lensed
CMB fields. We work in the flat-sky approximation; we
will see (Sec. III B) that non-Gaussian covariance only
becomes important when combining band powers over a
wide range of l, so that all-sky corrections from the discrete
nature of l should be negligible. The lensed CMB tempera-
ture T�x� and unlensed temperature ~T�x� are related by

 T�x� � ~T�x�r��x��: (1)

The projected potential � is given by the line-of-sight
integral:

 ��n̂� � 2
Z
dD

DA�Ds �D�
DA�D�DA�Ds�

��Dn̂; D�; (2)

whereD �
R
dz=H is the comoving distance along the line

of sight,Ds denotes the comoving distance to the surface of
last scattering, and

 DA�D� �
1��������������

�KH2
0

q sinh�
��������������
�KH2

0

q
D� (3)

is the comoving angular diameter distance.
Polarization fields are lensed in the same way; the lensed

Stokes parameters Q�x�,U�x� and unlensed versions ~Q�x�,
~U�x� are related by

 Q�x� � ~Q�x�r��x��; U�x� � ~U�x�r��x��:
(4)

The Fourier versions of Eqs. (1) and (4) are [18]
 

T�l� � ~T�l� �
Z d2l0

�2��2
WT�l; l0� ~T�l0���l� l0� �O��2�;

E�l� � ~E�l� �
Z d2l0

�2��2
WE�l; l0� ~E�l0���l� l0� �O��2�;

B�l� �
Z d2l0

�2��2
WB�l; l0� ~E�l0���l� l0� �O��2�; (5)

where the kernels are defined by
 

WT�l; l0� � ��l0 � �l� l0�	;

WE�l; l0� � ��l0 � �l� l0�	 cos2�’l � ’l0 �;

WB�l; l0� � �l0 � �l� l0�	 sin2�’l � ’l0 �;

(6)

and the E and B fields are related to the Stokes parameters
as

 �E�l� 
 iB�l�	 � �Q�l� 
 iU�l�	 exp��2i’l�: (7)

Here ’l is the angle between l and the x̂ axis. We have
assumed that the unlensed ~B � 0 such that the observed B
field is generated from ~E by lensing alone [19].

We define ideal, noise-free band-power estimators by

 �̂ XY
i �

1

A�i

Z
l2i
d2l

�
l2

2�

�
X��l�Y�l�; (8)

where XY 2 fTT; EE; TE; BBg, A is the survey area in
steradians, and

 �i �
Z

l2i
d2l (9)

is the l-space area of band i. We define power spectra as
usual,

 hX��l�Y�l0�i � �2��2�2�l� l0�CXYl  A�l;l0CXYl ; (10)

such that

 �XY
i �

def
h�̂XY

i i �
1

�i

Z
l2i
d2l

�
l2

2�

�
CXYl : (11)

(As a technical point, when propagating C��l to lensed
power spectra, we use the all-sky correlation function
approach of [20], for consistency with CAMB.)

Now let us consider the covariance of these estimators in
nonoverlapping l bands. We split the band-power covari-
ance into Gaussian and non-Gaussian pieces:

 CIJ �
def
h�̂XY

i �̂ZW
j i � �XY

i �ZW
j � GXY;ZW

ij �N XY;ZW
ij :

(12)

Here and below we will use the shorthand notation I to
denote a unique band power specified by the l-band i and
the power spectrum XY. The Gaussian piece is given by

 G XY;ZW
ij � �ij

�2��2

A�2
i

Z
l2i
d2l

�
l2

2�

�
2
�CXZl CYWl

� CXWl CYZl �; (13)

where the power spectra which appear are lensed. In the
presence of instrumental noise, the power spectra in this
formula are replaced as

 CXYl ! CXYl � N
XY
l ; (14)

where the noise power spectra for white detector noise with
a Gaussian beam are given by
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 NXX
l �

�
�X

TCMB

�
2
el�l�1��2

FWHM=8 ln2; (15)

for XX 2 TT, EE, BB and are vanishing for other spectra.
We will also take �E � �B � �P.

In [10], we computed the non-Gaussian piece N XY;ZW
ij

for the case of two BB band powers:
 

N BB;BB
ij �

2

A�i�j

Z
li2i

d2li
Z

lj2j
d2lj

Z d2l
�2��2

l2i l
2
j

�2��2

� �al
lilj
� bl

lilj
� cl

lilj
� �O�C��l �

3; (16)

where
 

al
lilj
� W2

B�li; li � l�W2
B�lj; lj � l� ~CEEli�l

~CEElj�l�C
��
l �

2;

bl
lilj
� W2

B�li; l�W
2
B�lj; l�� ~C

EE
l �

2C��li�lC
��
lj�l;

cl
lilj
� WB�li; li � l�WB��li; lj � l�WB�lj; lj � l�

�WB��lj; li � l� ~CEEli�l
~CEElj�lC

��
l C��li�lj�l;

(17)

with ~CXYl �
def
C ~X ~Y
l as the unlensed power spectra.

Here, we consider two additional cases. First, we com-
pute the non-Gaussian covariance of one BB band power
with a band power �̂XY

i , where X, Y 2 fT; Eg:
 

N XY;BB
ij �

2

A�i�j

Z
li2i

d2li

�
Z

lj2j
d2lj

l2i l
2
j

�2��2
WB�lj; li�2 ~CEXli

~CEYli C
��
li�lj

:

(18)

Second, we compute the covariance of two band powers
�̂XY
i , �̂ZW

j , where X, Y, Z, W 2 fT; Eg:
 

N XY;ZW
ij �

1

A�i�j

Z
li2i

d2li
Z

lj2j
d2lj

l2i l
2
j

�2��2

� C��li�lj
��XY;ZWlilj

� �ZW;XYljli
� �XY;ZWlilj

� �XY;WZlilj
� �YX;ZWlilj

� �YX;WZlilj
�: (19)

Here,
 

�XY;ZWlilj
� WX�li; lj�WY�li; lj�� ~C

XZ
lj

~CYWlj �
~CXWlj

~CYZlj �;

�XY;ZWlilj
� WX�li; lj�WZ�lj; li� ~C

XW
lj

~CYZli : (20)

Taken together, Eqs. (16), (18), and (19) constitute a com-
plete calculation of the �4Nband�-by-�4Nband� covariance
matrix.

In Table I, we show the correlations

 RIJ �
CIJ���������������
CIICJJ
p (21)

and variance degradation factors

 DI �
�C�II

�CG�II
(22)

for all combinations of fTT; TE; EE;BBg in two large l
bands, with Monte Carlo results from 105 simulations
shown for comparison. Here CG represents the Gaussian
contribution to the covariance matrix. Throughout this
paper, we use a fiducial model consistent with the third-
year WMAP [21] data:

 

f�bh
2;�ch

2; �; ln�	; ns; rg � f0:0223; 0:104; 0:088;�10; 0:951; 0g;�
�DE;�K;

X
m�;w0; wa

�
� f0:76; 0; 0:061 eV;�1; 0g:

(23)

TABLE I. Band-power correlations and variance degradation factors D [see Eq. (22)] using two bands in l: �lo� � �100; 1000	 and
�hi� � �1000; 2000	. Upper diagonal values were calculated analytically using the lowest-order expressions, Eqs. (16), (18), and (19);
lower diagonal values (in parentheses) were calculated from 105 Monte Carlo simulations. The large correlations between TE and
fTT; EEg are dominated by the Gaussian contribution.

TTlo TThi TElo TEhi EElo EEhi BBlo BBhi D

TTlo 1 0.007 �0:053 0.001 0.074 0.001 0.025 0.009 1.007 (1.012)
TThi (0.008) 1 0.001 �0:312 0.003 0.089 0.014 0.025 1.020 (1.019)
TElo ��0:055� (0.002) 1 0.003 �0:098 0.001 �0:036 �0:010 1.000 (1.000)
TEhi (0.001) ��0:311� (0.004) 1 0.001 �0:306 �0:049 �0:086 1.010 (1.011)
EElo (0.076) ��0:001� ��0:096� (0.001) 1 0.004 0.316 0.137 1.012 (1.011)
EEhi (0.002) (0.090) (0.002) ��0:311� (0.003) 1 0.137 0.283 1.039 (1.039)
BBlo (0.022) (0.027) ��0:048� ��0:030� (0.311) (0.117) 1 0.754 4.323 (4.416)
BBhi (0.005) (0.039) ��0:021� ��0:067� (0.132) (0.262) (0.754) 1 7.595 (7.619)
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The first set represents parameters that control the intrinsic
power spectra from recombination, whereas the second set
represents the intermediate-redshift parameters of interest
to lensing. Here �	 /

����
A
p

is the amplitude of initial curva-
ture fluctuations at k � 0:05 Mpc�1 and r is the tensor-to-
scalar ratio. The dark energy (DE) equation of state is
parametrized as

 w�a� � w0 � �1� a�wa: (24)

When wa � 0 we will use the variables w and w0 inter-
changeably. We implicitly consider models that can evolve
across w � �1 and in these cases we assume that the dark
energy remains smooth during this transition.

The most important part of the non-Gaussian covariance
is between two BB band powers, where the analytic and
Monte Carlo results agree well. The second most important
contributions are the correlations between EE and BB
which appear at the 10%–30% level. Here the agreement
between Eq. (18) and the Monte Carlo results for the
correlation are at the 10%–20% level, indicating that
higher order contributions are not entirely negligible.
However, they represent a small correction to a small
correlation and we neglect it throughout. In the remaining
parts of the covariance matrix, including the entire
fTT; TE; EEg covariance, the non-Gaussian contributions
are small.

Since the non-Gaussianity manifests itself as a small
correlation across a wide range of multipoles, it is only
visually apparent when combining the multipoles into
large bands as in Table I. In practice, in the following
sections we compute the non-Gaussian covariance by first
sampling the integrands in Eqs. (16), (18), and (19) with
spacing �li � �lj � 10 out to lmax � 2000, and then in-
terpolating the integrands in �li; lj�. Fisher matrices are
then computed using bins with �l � 1 for l � 40 and
�l � 5 for l > 40. All results in the paper are robust to
binning more finely.

III. PARAMETER FORECAST FORMALISM

We review the Fisher matrix formalism for forecasting
parameter errors in the presence of non-Gaussian errors in
Sec. III A. We then apply this formalism to place formal
bounds on the impact of non-Gaussianity in Sec. III B.

A. Fisher matrix

The Fisher matrix provides a useful way of assessing the
impact of the non-Gaussian band-power covariance on
parameter estimation. Even for cases where the likelihood
function cannot be evaluated directly, it can be approxi-
mated as the linear propagation of errors from band-power
space to another parameter space p�. In Sec. II, we gave a
complete calculation, to lowest order in C��l , of the
�4Nband�-by-�4Nband� covariance CIJ between bands I and
J specified by the power spectrum combination and the l

range [see Eq. (12)]. In terms of this covariance, we define
an approximate Fisher matrix as

 F�� �
X
IJ

�@��I��C�1�IJ�@��J�; (25)

where �, � run over a basis set of directions in parameter
space. In this section we will use upper indices to denote
quantities that transform as a contravariant tensor under a
reparametrization and lower indices for those that trans-
form as a covariant tensor. For example, Eq. (25) repre-
sents the transformation of the inverse covariance matrix
from the band-power space to the parameter basis space.

Given this transformation, the inverse of the Fisher
matrix can be thought of as an estimate of the covariance
matrix of the basis parameters. As such, it gives the vari-
ance of any linear combination of basis parameters as

 Var ��� �
X
��

�@����F�1����@���: (26)

As a special case, if � corresponds to a basis direction �,
then the marginalized uncertainty is given by the diagonal
element �F�1���.

The Fisher matrix quantifies the local curvature of the
likelihood function in the parameter space. Fisher forecasts
therefore suffer from several problems (see e.g., [22,23]),
especially in the presence of nearly degenerate parameter
directions. If the derivatives in Eq. (25) are not constant
across the extent of the degeneracy, this curvature is also
not constant and hence confidence regions in parameter
space are not well approximated by ellipsoids in either
their shape or extent. Fisher matrix forecasts should only
be interpreted as confidence limits on parameters for well-
constrained directions in the parameter space and as a tool
to expose parameter degeneracies. Finally, even if the
parameter derivatives vary significantly only outside of
the predicted error ellipsoid, Fisher matrix forecasts still
depend on the choice of the fiducial model. These points
should be kept in mind when considering the parameter
forecasts in the next two sections.

B. Formal bounds on non-Gaussian impact

Before turning to parameter forecasts in specific pa-
rameter spaces, it is instructive to quantify general bounds
on the impact of non-Gaussianity. One of the main results
of this paper is that non-Gaussian power spectrum covari-
ance is essentially negligible when considering lensed
fT; Eg alone at lmax � 2000 (cf. [7] for higher lmax).
Beyond this lmax, other secondary sources of temperature
and polarization will likely prohibit the extraction of cos-
mological information.

To state this in a precise way, we introduce Karhunen-
Loève (KL) eigenvalues between the non-Gaussian and
Gaussian band-power covariances. The KL eigenvalues

K and eigenvectors vK are defined by
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X
J

�C�IJ�vK�J � 
K
X
J

�CG�IJ�vK�J; (27)

where C, CG denote the band-power covariances with and
without non-Gaussian contributions. With cosmic variance
limited fTT; TE; EEg band powers to lmax � 2000, we find
that each 
K is between 
min � 0:94 and 
max � 1:08 in
the fiducial cosmology. The exact values depend on the
normalization of the power spectrum but remain around
unity for all reasonable variations.

These eigenvalues limit the excess variance on parame-
ter errors from non-Gaussianity. More precisely, we now
prove that for any cosmological parameter �, the ratio of
uncertainties with and without including non-Gaussian
covariance satisfies

 
min �
Var���

VarG���
� 
max: (28)

This inequality holds even after marginalizing any set of
additional parameters.

The first step in the proof of Eq. (28) is to note that, in a
basis consisting of KL eigenvectors in the band powers,
both the non-Gaussian and Gaussian band-power covari-
ance matrices are diagonal:

 �C�KK
0
� 
K�KK0 ; �CG�KK

0
� �KK0 : (29)

(More generally, this holds true for symmetric matrices as
long as one of them is positive-definite.) Now consider any
estimator Ê which is linear in the band powers. In the KL
basis, it can be written

 Ê �
X
K

�ÊK��̂
K: (30)

Combining Eqs. (29) and (30), the ratio between the esti-
mator variance calculated with and without non-Gaussian
covariance satisfies

 

Var�Ê�

VarG�Ê�
�

P
K

K�ÊK�2P
K
�ÊK�

2
: (31)

In this form, it is seen that

 
min �
Var�Ê�

VarG�Ê�
� 
max: (32)

Next we observe that, in the Fisher approximation, the
estimator for any cosmological parameter � depends lin-
early on the estimated band powers. (This is still true if
additional parameters are marginalized, although margin-
alization will change the optimal estimator.) We denote the
estimator which is optimal with the non-Gaussian covari-
ance included by �̂ and that without by �̂G. Then

 
min �
Var��̂�

VarG��̂�
�

Var��̂�

VarG��̂G�
�

Var��̂G�

VarG��̂G�
� 
max;

(33)

where we have combined Eq. (32) with the inequalities
VarG��̂G� � VarG��̂� and Var��̂� � Var��̂G�, which fol-
low from the optimality of each estimator. This completes
the proof of Eq. (28).

The KL eigenvectors also illuminate the nature of the
non-Gaussian covariance. The first (largest 
) eigenvector
is the combination of band powers whose variance de-
grades the most (relative to Gaussian) when non-
Gaussianity is included; the second eigenvector degrades
the second most, and so on. For fTT; TE; EEg, all eigen-
values are close to 1, and the variance degradation is
essentially negligible, as quantified by the inequality in
Eq. (28), in any direction in parameter space.

For BB band powers, we show the first few eigenvalues
and eigenvectors in Fig. 1. The main effect of the non-
Gaussian covariance is to degrade the variance, by a factor
of �10, for one KL component which is coherent across a
wide range of l and has roughly the same shape as the
fiducial BB spectrum. This is consistent with [10], in which
we found that non-Gaussianity degraded the uncertainty in
the overall amplitude of the BB spectrum by a factor of
�10 when sample variance limited to lmax � 2000. Here
we see that this single statement roughly characterizes the
entire non-Gaussian covariance between fTT; TE;EE;BBg
band powers.

IV. CMB LENSING OBSERVABLES

In this section, we quantify the information in terms of
the power spectrum of the lenses. An examination of the
information contained in the power spectrum of the lenses

 

FIG. 1 (color online). First three KL eigenmodes, defined by
Eq. (27), for the BB power spectrum. These represent principal
components in CBBl whose true variance is larger than the
variance estimated from Gaussian statistics; the eigenvalue 

is the ratio of the two.
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serves a dual purpose: it is a parametrization independent
quantification of the additional information from lensing
(Secs. IVA and IV B), and it exposes the origin of the non-
Gaussian covariance of the CMB as arising from the
sample variance of the lenses (Sec. IV C).

A. Principal components

We begin by choosing the parameters of interest to be
fluctuations pl in the power spectrum of the lenses around
the fiducial model

 C��l � �1� pl�C
��
l jfid: (34)

With these parameters in the Fisher matrix of Eq. (25), the
covariance matrix

 �C�ll
0
� �F�1�ll

0
(35)

can be interpreted as that of the measurements of C��l
under the assumption that the parameters that control the
unlensed CMB are fixed.

The principal components or eigenvectors of this covari-
ance matrix determine the best constrained linear combi-
nations of C��l . We find that, if lensing B modes are not
observed, the covariance Cll0 is dominated by one well-
constrained component K1�l�, which we show in Fig. 2.
Equivalently, this means that only one observable inC��l is
constrained by lensed fT; Eg power spectra:

 �1 �
def X

l

C��l
C��l jfid

K1�l�: (36)

The power spectrum C��l jfid of the fiducial model is scaled
out of the weights K1�l�, such that deviations from �1 � 1
represent the fractional change in the weighted amplitude

of the power. Hence the normalization is chosen such thatP
lK1�l� � 1.
On the other hand, if we make the artificial assumption

that lensing Bmodes are observed but lensed fT; Eg are not,
then we find that the covariance is dominated by a single
broad component K2, which peaks at l� 200 and includes
a wide range of l. Lensed B-mode measurements therefore
constrain a second observable,

 �2 �
def X

l

C��l
C��l jfid

K2�l�: (37)

The principal components Ki�l� were computed assum-
ing cosmic variance limited CMB measurements to lmax �
2000; however, the shape of the eigenmodes remains
nearly the same if lmax is lowered, or if a white noise power
spectrum is used in place of a cutoff in l. Therefore, the
observables �i provide a parameter-independent represen-
tation of the information in the lensed CMB regardless of
the noise characteristics. A caveat to this statement is that
we never consider CMB multipoles beyond lmax � 2000 in
this paper; relaxing this assumption may permit additional
modes in the lensing potential to be constrained.

For BB, the higher principal components are not com-
pletely negligible; the second-best constrained component
has a variance which is worse than K2�l� by a factor of 7.
We have found that constraints from higher components
can almost always be neglected in parameter forecasts, but
can have some impact on degenerate directions involving
curvature for a measurement of lensing B modes which is
close to all-sky cosmic variance limited. In the rest of the
paper, we will ignore higher components from lensed B
modes.

The structure of the two eigenmodes is related to the
lensing kernels of Eq. (6). Given that power in the deflec-
tion angles peaks at l1 < 100 in the fiducial model, lensing
mainly acts as a convolution kernel of width l1 on the high l
CMB power spectrum. The fT; Eg kernels share a similar
structure since the angle between the lensed and unlensed l
is of order l1=l. The B kernel is weighted toward higher l1
for the same reason. Likewise, the dominance of a single
mode in fT; Eg reflects the tight range in l1 of the con-
volution compared with typical structure in the unlensed
power spectra.

B. Parameter sensitivity

Next, to understand how sensitivity to these eigenmodes
translates into cosmological parameters, let us examine
their construction in both the multipole and redshift direc-
tions. The change in the observables due to cosmological
parameters can be derived from Eqs. (36) and (37) once the
change in C��l is known.

In Fig. 3 we plot the derivatives @C��l =@p� for several
cosmological parameters p�. The corresponding deriva-
tives of the observables are given in Table II. Since the

 

FIG. 2 (color online). Principal components K1�l�, K2�l� of the
lensing potential C��‘ obtained from CMB measurements to
lmax � 2000, as described in Sec. IVA. These represent modes
in C��l which are constrained by measuring either lensed fT; Eg
or lensed B modes, respectively.
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acoustic peaks constrain

 lA �
def
�DA�Ds�=ss; (38)

where ss is the sound horizon at recombination Ds, we take
these derivatives at fixed lA (by adjusting �DE). They then
quantify the additional sensitivity to cosmological parame-
ters introduced by lensing.

Notice that the derivatives of the power spectra are quite
flat compared across the multipoles where the two princi-
pal components have support (see Fig. 2). Hence the
sensitivity of the observables to most parameters can be
accurately determined from the sensitivity of the power
spectra at the median multipoles lKi of the principal com-
ponents, defined by

PlKi
i�1 Ki�l� � 1=2: lK1 � 114 and

lK2 � 440.
Next, to understand the relative sensitivities to different

parameters, consider the fact that C��l is determined by a
projection of the matter power spectrum with a well-
defined redshift sensitivity. In Fig. 4, we plot this sensitiv-
ity Zi�z�, where

 C��lKi
� C��lKi

jfid
Z
dzZi�z�: (39)

These weights are calculated under the Limber approxi-
mation (see e.g. [18]). In the fiducial model

R
dzZi � 1, so

that fluctuations in Zi determine fluctuations in the observ-
ables as

 ��i 
�C��lKi
C��lKi jfid

�
Z
dz�Zi�z�: (40)

We expect this to be a reasonable approximation since
�C��l is not a rapidly varying function of l (see Fig. 3).

To make the above considerations more concrete, con-
sider the sensitivity to changes in the distance DA, expan-
sion rateH, growth rate of the gravitational potentialG and
the shape of the matter power spectrum �2

m � k3P�k�=2�3

at the lens redshift

 

�Zi
Zi
�

�
ni
�DA

DA
�
�H
H
� 2

�G
G
� 2

�DA�Ds �D�
DA�Ds �D�

�
;

ni �
def

3�
d ln�2

m

d lnk

��������k��lKi=DA�

: (41)

A typical value for the slope of the power spectrum gives
ni � 1.

CMB lensing is sensitive mainly to high-redshift
changes in the amount of lensing, and correspondingly
�1 has a median redshift of z� 2 and �2, z� 3. The

TABLE II. Derivatives of the observables �1, �2 with respect
to parameters of interest (top) and nuisance parameters (bottom).
In all rows except the last, the derivatives are taken adjusting
�DE to hold lA fixed. Units for

P
m� are eV.

�1 �2

@�i=@�
P
m�� �0:24 �0:34

@�i=@w0 �0:14 �0:12
@�i=@wa �0:072 �0:061
@�i=@�K �8:24 �9:17

@�i=@��ch
2� 17.0 24.7

@�i=@ ln�	 2.00 2.09
@�i=@ lnlA 2.37 2.99

 

FIG. 4 (color online). Redshift sensitivity of the lensing ob-
servables �i near the fiducial model. To a good approximation
the observables constrain the amplitude of C��li around multi-
poles near the median of the eignmodes of Fig. 2, lK1 � 114,
lK2 � 440. The redshift sensitivities Zi at these multipoles [see
Eq. (39)] are plotted for the fiducial model.

 

FIG. 3 (color online). Derivatives of C��l with respect to the
parameters

P
m�, w0, wa, and �K, illustrating the different l

dependence. As in Table II, the derivatives are taken adjusting
�DE to hold lA fixed.
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observables best constrain cosmological parameters that
change the geometry and growth in a coherent fashion at
these redshifts. For example, a negative spatial curvature
decreases the angular diameter distance to the lens red-
shifts given the fixedDs and also decreases the growth rate.
Both of these effects persist to z� 2–3 and hence lensing is
highly sensitive to the curvature. Likewise, massive neu-
trinos slow the growth from the time they become non-
relativistic near recombination. They also create a
substantial change at high redshift.

For the dark energy, we take its equation of state to be
parametrized by fw0; wag according to Eq. (24). These
parameters suffer in sensitivity in that the changes they
induce on the geometric and growth parameters are domi-
nant at z < 1. Furthermore, their effects on the expansion
rate, distance and growth tend to cancel in the observables
(see [24] for a more extended discussion). Note that this is
a feature of the specific parameter set chosen and may not
apply to all dark energy models. The principal component
technique allows a parameter-independent way of quanti-
fying the lensing information.

The geometric and growth parameters are not the only
ones that affect the observables. Since the observables are
directly related to the power spectrum of the lenses, any
parameter that alters it also alters the observables causing
parameter degeneracies (see Sec. V). The most important
of these are �ch2 and the amplitude of the initial power
spectrum �	 . The sensitivity of the observables to these
parameters is given in Table II. For completeness, we also
give the sensitivity to lA, though errors on this parameter
from the acoustic peaks will be negligible for lensing
purposes.

C. Sample and noise variance

The sample and noise variance of the lensing observ-
ables determines the errors on cosmological parameters.
Furthermore, this characterization of the errors illuminates
the origin of the non-Gaussian band-power covariance.

In Fig. 5, we show the 1� errors on �i which are
obtained for different instrumental sensitivities. Com-
bined with the sensitivity of �i to cosmological parame-
ters, these results may be used to forecast parameter errors
(see Sec. V).

As the instrumental noise goes to zero, the errors satu-
rate at the combined sample variance limits of the lenses
and unlensed CMB. To understand the relationship be-
tween sample variance and non-Gaussian covariance, con-
sider first an ideal noise-free direct measurement of the
lensing potential �. From the definition (36), the sample
variance limit on a measurement of the observables arising
from the lenses is given by

 �2
SV��i� �

X
l;l0
Ki�l�Ki�l0��CSV�

ll0 � f�1
sky

X
l

2

2l� 1
Ki�l�2:

(42)

Here we have taken Cll0
SV � 2f�1

sky�ll0=�2l� 1� under the
assumption that � is a Gaussian field.

In Fig. 5, the sample variance limits of Eq. (42) are
shown as dashed horizontal lines. In the limit of zero noise,
lensed CMB measurements can measure �1 and �2 at
nearly their sample variance limits. Direct measurements
of the � field, e.g. from CMB lens reconstruction, do
however contain more information than the observables
�i. They are only two of many quantities that can be
constructed with a sample variance limited Cll0

SV. These
other quantities are related to changes in the shape of
C��l and may be useful for breaking degeneracies.

The two observables do however contain the majority of
the low l information on the amplitude of C��l . To see this,
consider the mode pl � A� 1 in Eq. (34). This parameter

 

FIG. 5 (color online). Uncertainty on �1 from lensed T alone
(top panel) and lensed fT; Eg (middle panel), and uncertainty on
�2 from lensed B (bottom panel), for varying beam size and
noise level �P. We assume �T is given by �P=

���
2
p

throughout,
including the top panel. Only multipoles below lmax � 2000 are
included. For the zero beam cases, we also show the uncertain-
ties that would be obtained if Gaussian statistics were falsely
assumed (dashed line). The impact of non-Gaussian contribu-
tions is negligible in fT; Eg but significant for B. The horizontal
lines are sample variance limits given by Eq. (42).
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can be measured to

 �2
SV�A� �

" X
l�l�max

2l� 1

2
fsky

#
�1

: (43)

The qualitative difference between Eqs. (42) and (43) is
that the former is limited by the multipoles with the largest
weighted sample variance. The latter is limited by the
smallest and hence determined by the cutoff l�max. In the
fiducial model �2

SV�A� � �2
SV��1� at l�max � 198 and

�2
SV�A� � �2

SV��2� at l�max � 705. Given that CMB
power spectrum measurements out to lmax � 2000 capture
nearly all of the information on the two observables, they
also capture essentially all of the information on the am-
plitude of the lens power spectra near the median of the
weights of the eigenmodes.

Finally, if Gaussian statistics are falsely assumed for BB,
then one would conclude that a high sensitivity measure-
ment of CMB B modes constrains the lensing observable
�2 better than the sample variance limit (see Fig. 5). From
this perspective, one can gain intuition into why non-
Gaussianity is significant for lensed B modes. If the B
modes were perfectly Gaussian, then the overall amplitude
of the lensing could be constrained to within the sample
variance of the smallest scale fluctuations in the CMB. In
reality, the amplitude of the lensing is limited by the
sample variance of the lenses near the median of the
eigenvectors, i.e. on degree scales. Band powers below
this scale covary in amplitude since the induced B modes
share the same lens fluctuations. This covariance becomes
noticeable when the intrinsic sample variance of the E
modes becomes subdominant due to binning.

The principal component analysis also shows why non-
Gaussianity is not a significant limitation for fT; Eg. The
Gaussian errors on �1 from observations of lensed fT; Eg
(Fig. 5) never exceed the sample variance limit. This is
because the sample variance of the high l unlensed fT; Eg
fields still dominates the measurement of the small frac-
tional changes induced by lensing. The B field does not
suffer from this problem in that at high l it is completely
generated by lensing.

V. PARAMETER CASE STUDIES

We now study parameter constraints from the lensed
CMB, with non-Gaussian contributions to the power spec-
trum covariance included. In general, parameters which
affect the high-redshift universe or the angular diameter
distance to last scattering are well measured even without
lensing. Lensing mainly helps in breaking degeneracies
that leave the observables at recombination fixed. We
illustrate this degeneracy breaking with massive neutrinos
f
P
m�g, a constant dark energy equation of state fwg,

equation of state evolution fw0; wag, and spatial curvature
f�Kg. Given that the lensed CMB adds two new observ-
ables as described in the previous section, we will study

these additional parameters two at a time. We start by
examining the f

P
m�;wg case extensively, as an illustra-

tion of the impact of non-Gaussianity, as well as a worked
example of the use of the lensing observables �i.

Throughout this section, we will consider a reference
survey (Table III) which consists of Planck measurements
on most of the sky, combined with a smaller deep survey
which measures lensing of the temperature and polariza-
tion with higher signal-to-noise. (We assume that the deep
survey area is a subset of the Planck survey area.)

A. Neutrinos and constant equation of state

We consider here the constraints in the f
P
m�;wg plane

at fixed �K employing a direct Fisher matrix forecast in the
parameter space and through the intermediary measure-
ment of the lensing observables, first by adding its infor-
mation to the unlensed spectra in the full parameter space
and then by premarginalizing parameters that control the
high-redshift physics at recombination.

1. Direct forecasts

In Fig. 6, left panels, we show the constraints falsely
assuming Gaussian statistics. For illustrative purposes, we
first show the errors with the parameters f�ch

2; ln�	 g,
fixed to their fiducial values (top left), but with the remain-
ing parameters f�DE;�bh2; �; ns; rg marginalized. As we
shall see, the former two parameters affect the lensing
observables and cause degeneracies with the parameters
of interest.

The large surrounding ellipse in the top left panel rep-
resents the double angular diameter distance degeneracy
expected from the unlensed CMB. Adding information
from lensed fT; Eg (horizontally shaded) constrains a
slightly different combination of degenerate parameters
than adding information from lensed B (vertically shaded).
This is because changes in the two parameters f

P
m�;wg

affect C��l differently in l (Fig. 3) and hence change the
two lensing observables described in Sec. IV in different
proportions.

We next consider the effect of including the non-
Gaussian covariance, in the top right panel of Fig. 6.
Compared to Gaussian uncertainties, the constraints from
lensed fT; Eg are unaffected (as expected from Sec. III B),

TABLE III. Assumed experimental specifications for the ref-
erence survey in Sec. V, consisting of Planck and a deep
polarization field with 10% of sky. The noise parameters �T
and �P are given in units of �K-arcmin. For the combined
reference survey, ���1� � 0:025 and ���2� � 0:008.

� �FWHM �T �P fsky

Planck 100 GHz 9:20 51 � � � 0.8
143 GHz 7:10 43 78 0.8
217 GHz 5:00 65 135 0.8

Deep10% � � � 1:00 1.00 1.41 0.1
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while constraints from lensed B are degraded for the best
constrained combination of the two parameters. Note that,
because we have considered a nearly degenerate two pa-
rameter space, even here the effect of non-Gaussianity is
hidden from the errors on a single parameter marginalized
over the other.

However, the discussion so far has assumed perfect
priors for the parameters f�ch2; ln�	 g. If these are margi-
nalized with only information from the reference survey,
the effect of non-Gaussianity is overwhelmed by the effect
of marginalizing (see Fig. 6, bottom panels). This is true
even if B were the only source of lensing information or if
there were only one additional parameter.

Nonetheless the effect of non-Gaussianity in the full
parameter space is not negligible; it does enlarge the
volume which is allowed. The enlargement occurs along
a direction which is a combination of several parameters
f�ch

2; ln�	; w;
P
m�g. Though hidden by marginalization,

this degradation can be exposed if there are external prior
measurements of other combinations of these parameters.
It can also reduce the apparent goodness of fit to the best-fit
model (see Appendix A). Finally, for different reference
surveys, e.g. a smaller but deeper survey, a Gaussian
assumption can again give a misleading answer on the
utility of the B modes (see Sec. VI).

These results can be reproduced and understood using
the lensing observables �i as we shall now see.

2. Additive-observables forecasts

The lensing observables provide a general framework
for forecasting the additional constraints supplied by lens-
ing in any parameter space. We can use the direct forecasts
from the preceding section as a basis for comparison with
the following construction:

(1) From the parameters of the survey under considera-
tion (sky coverage, noise, and beam), compute un-
certainties (see Fig. 5) on the observables �i and
assume they are independent, obtaining a 2� 2
covariance matrix:

 Cov ��i;�j� �
�2��1� 0

0 �2��2�

� �
: (44)

(2) Transform these parameter errors into a Fisher ma-
trix in the desired parameter space with

 Flens
�� � �@��i�Cov��i;�j�

�1�@��j� (45)

and add this to the Fisher matrix of the unlensed
CMB or any external data set.

Some of the more common parameter derivatives for use
in Eq. (45) are given in Table II. Others can be approxi-
mated by evaluating C��l at the median multipole. An
advantage of the observables scheme is that it automati-
cally includes the effect of non-Gaussianity without refer-

 

FIG. 6 (color online). Degeneracy breaking in the
P
m�–w plane from CMB lensing, for the reference survey in Table III. Ellipses

here and throughout are plotted at �2 � 1 and not 68% CL. In each panel, the surrounding ellipse represents parameter constraints
from unlensed fT; Eg, the blue/horizontally shaded ellipse represents constraints from lensed fT; Eg, the red/vertically shaded ellipse
represents constraints from unlensed fT; Eg � lensed B, and the inner solid ellipse represents constraints from lensed fT; E; Bg. In the
top panels, we show Gaussian (top left) and non-Gaussian (top right) constraints with f�ch

2; ln�	 g held fixed, and the remaining
parameters f�bh

2;�DE; �; ns; rg marginalized. In the bottom panels, we show Gaussian (bottom left) and non-Gaussian (bottom right)
constraints with all parameters marginalized.
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ence to the band-power covariance matrix. One simply
uses the non-Gaussian errors from Fig. 5.

The main caveat to the observables prescription is that it
implicitly assumes that lensing is an additive source of
information. It should not be used to forecast parameters
for which lensing destroys information such as tensors or
features in the initial power spectrum. In the particular case
of the tensor-to-scalar ratio r, we find that non-Gaussianity
in the lensed CMB is always negligible when forecasting
uncertainties, even when low-redshift parameters are
marginalized.

We show the w�
P
m� example in Fig. 7. Note the

excellent agreement with the direct Fisher calculation in
Fig. 6 (lower right panel) in all respects.

3. Nuisance-marginalized observables

This prescription can be further simplified so as not to
require computation of the unlensed CMB Fisher matrix or
external information for forecasting parameter errors
which rely mainly on the lensing information. In this
case the extra information is utilized to remove the pa-
rameter degeneracy from �ch

2 and ln�	 in the observables
�i. These parameters can be premarginalized and dropped
from the Fisher matrix constructed from �i.

Operationally, to premarginalize the nuisance parame-
ters, we add the ‘‘nuisance errors’’

 

Covnuis��i;�j� �
def @�i

@�ch2

@�j

@�ch2 �
2��ch2�

�
@�i

@ ln�	

@�j

@ ln�	
�2�ln�	 � (46)

to the ‘‘measurement errors’’ defined by Eq. (44), to get an
effective covariance matrix Coveff � �Cov� Covnuis�. We
then use Coveff instead of Cov in Eq. (45), to obtain a
Fisher matrix in a parameter space where f�ch2; ln�	 g is
excluded.

In (46), we have neglected the correlations between
�ch

2 and ln�	 but these provide a negligible effect if the
source of information is internal to the CMB. Note that
Coveff will typically show a high degree of correlation
between the two observables since the increase in the
effective errors is along directions that are degenerate
with the two parameters. For parameters that do not induce
a degenerate change, this correlation reflects extra infor-
mation (see Sec. VI B).

Let us illustrate this premarginalization scheme for
f
P
m�;wg and the reference survey. For comparison with

Fig. 6, we will compute errors with priors on f�ch
2; ln�	 g

that fix them completely, and priors that are derived from
determinations internal to the reference survey (see
Table IV). The former case also corresponds to using
Cov [Eq. (44)] in place of Coveff . Combined with the
parameter derivatives from Table II, the result of this
procedure is shown in Fig. 8.

The constraints agree well with the direct Fisher calcu-
lation in the right panels of Fig. 6 along the best con-
strained direction. For example, with

P
m� fixed, the

TABLE IV. Uncertainties in lensing observables from third-
year WMAP [21], Planck alone (Table III, top), the reference
experiment consisting of both parts of Table III, and an ideal
survey which is all-sky cosmic variance limited in temperature
and polarization to lmax � 2000. Top: Measurement errors on the
lensing observables f�1;�2g computed from the raw sensitivity
to lensed fT; Eg and B, respectively, as in Fig. 5. Middle:
‘‘Nuisance’’ errors of Eq. (46) on lensing observables, computed
by propagating each survey’s unlensed uncertainties on
f�ch

2; ln�	 g (also shown) using derivatives from Table II.
Bottom: Total errors on lensing observables, computed by adding
2� 2 covariance matrices (Coveff � Cov� Covnuis). As de-
scribed in the text, these are the effective errors on lensing
observables when constraining low-redshift parameters with
nuisance parameters f�ch

2; ln�	 g premarginalized.

WMAP3 Planck Reference Ideal

���1� � � � 0.050 0.025 0.0089
���2� � � � � � � 0.008 0.0023

���ch
2� 0.01 0.0011 0.0009 0.0005

��ln�	 � 0.03 0.0045 0.0040 0.0023
�nuis��1� 0.18 0.020 0.017 0.0094
�nuis��2� 0.25 0.028 0.023 0.011
Corrnuis��1;�2� 0.99 0.99 0.99 0.99

�eff��1� � � � 0.054 0.030 0.013
�eff��2� � � � � � � 0.025 0.013
Correff��1;�2� � � � � � � 0.52 0.71

 

FIG. 7 (color online). Forecasted errors in f
P
m�;wg as in

Fig. 6 (lower right panel, non-Gaussian, fully marginalized)
but with the additive-lensing-observables prescription from
Sec. VA 2. Note the excellent agreement between the direct
and observables approaches.
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uncertainty ��w� is 0.150 from the direct Fisher calculation
(Sec. VA 1), 0.170 from the additive-observables prescrip-
tion (Sec. VA 2), and 0.178 from the premarginalized-
observables prescription described in this section. In prac-
tice, the main difference between the last two is that, in the
premarginalized-observables prescription, the constraints
computed are from lensing alone; information from the
unlensed CMB which helps constrain intermediate-redshift
parameters, such as the integrated Sachs-Wolfe (ISW)
effect, is not included.

A pedagogical advantage of premarginalization is that it
clarifies the limiting source of uncertainty. For example, in
our reference survey, �nuis��2� is substantially larger than
���2�. The utility of the lensing observable is therefore
limited by the nuisance parameters and not by the sample
or noise variance on lensing. This also explains the negli-
gible impact of non-Gaussian sample variance on margi-
nalized parameter errors in Fig. 6.

B. Evolution of equation of state

We now consider CMB constraints on a time-dependent
dark energy equation of state through fw0; wag [see
Eq. (24)]. For purposes of this subsection, we assume
that both the neutrino mass and spatial curvature are fixed
and marginalize f�DE;�bh2;�ch2; �; ns; rg.

In Fig. 9, we show errors onw0 andwa, for the reference
survey of Table III, using the premarginalized-observables
scheme from Sec. VA 3. In the top panel we show the direct
Fisher matrix calculation for comparison. One parameter
combination is constrained by CMB lensing, but the com-
plementary direction is degenerate, acquiring CMB con-
straints only from the unlensed CMB through the ISW
effect (cf. [11]).

 

FIG. 9 (color online). Joint uncertainties on dark energy pa-
rameters fwa; w0g, for the reference survey in Table III, with
f
P
m�;�Kg fixed to their fiducial values and all other parameters

marginalized. The top panel shows the direct Fisher matrix
calculation; the bottom panel shows errors calculated using the
premarginalized-observables scheme (Sec. VA 3). In this pa-
rameter space, the lensing observables are degenerate; the �1

constraints (blue/horizontally shaded), the �2 constraints (red/
vertically shaded), and the combined constraints (solid) are
nearly identical. Given this nearly perfect degeneracy, the
Fisher forecast should not be interpreted literally along the full
extent of the degeneracy.

 

FIG. 8 (color online). Forecasted errors in f
P
m�;wg as in

Fig. 6 (right panels, non-Gaussian) but with the
premarginalized-observables prescription from Sec. VA 3. The
blue/horizontally shaded regions show only the �1 constraint
from lensed fT; Eg, the red/vertically shaded regions show only
the �2 constraint from lensed B, and the solid regions show the
combined constraint from both observables. The top panel shows
the case where f�ch

2; ln�	 g are completely fixed by the external
prior; the bottom panel shows the case where the parameters are
internally determined by the reference survey itself.
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The fw0; wag degeneracy can be seen directly by noting
that the w0 and wa derivatives, taken at constant angular
diameter distance, of C��l are nearly proportional (Fig. 3),
so that a parameter space direction exists which preserves
both C��l and the unlensed CMB. This is also seen in
Table II, where the w0 and wa derivatives of f�1;�2g are
nearly proportional.

The degeneracy can be interpreted as the statement that
the lensed CMB constrains w�z� mainly around the pivot
redshift zp � 1 with uncertainty ��wp� � 0:15 for the
reference survey. The pivot redshift can be interpreted as
a combination of the high-redshift weight of CMB lensing
discussed in Sec. IV B and the dark energy parameters
which change observables strongly only at z < 1. Note
that this pivot redshift is substantially higher than many
other cosmological probes and implies that CMB lensing
will provide complementary constraints on the evolution
of the equation of state. We also note that the pivot

redshift and ��wp� will depend on the underlying fiducial
model.

C. Curvature

Given the sensitivity of CMB lensing to changes at high
redshift, constraints on spatial curvature are much stronger
than those on the dark energy when compared with low-
redshift probes of the expansion history. In Fig. 10, we
show the reference constraints in the f�K; wg plane with
f�bh2;�ch2;�DE; �; ns; rg marginalized and f

P
m�;wag

fixed.
The two observables are again nearly degenerate in this

plane. The direction of the degeneracy is well but not
perfectly matched in the observables scheme for the case
of �1. The reason for this is that the unlensed CMB carries
information on the curvature both from the ISW effect and
from the intrinsic sharpness of the acoustic peaks (see [25],
Fig. 11). The latter effect comes from the geometrical
projection of k-space power to l space through the radial

 

FIG. 10 (color online). Joint uncertainties on f�K;w0g, for the
reference survey of Table III, with f

P
m�;wag fixed to their

fiducial values and all other parameters marginalized. The top
panel shows the direct Fisher matrix calculation; the bottom
panel shows errors calculated using the premarginalized-
observables scheme from Sec. VA 3. As expected, the two agree
in the well-constrained direction, but the second scheme over-
estimates the errors in the poorly constrained, ISW-limited
direction.

 

FIG. 11 (color online). Joint uncertainties on dark energy
parameters f

P
m�;�Kg with fw0; wag fixed to their fiducial

values, for the reference survey of Table III, using the direct
Fisher calculation (top panel) and the premarginalized-
observables scheme (bottom panel). (In the top panel, the red/
vertically shaded ellipse representing unlensed fT; Eg and lensed
B is hidden by the solid ellipse representing lensed fT; E; Bg.)
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eigenfunctions. Unlike lensing, this effect smooths (nega-
tive curvature) or sharpens (positive curvature) even the
low order peaks, as it is associated with the curvature
across the last scattering surface as a whole. For the high
order peaks it destructively interferes with the lensing
effect and mildly violates the assumption that lensing is
an independent additive source of information. The inter-
ference and the rotation it causes however are small and, if
desired, can be accounted for by a �20% lowering of
@�1=@�K for surveys that utilize information near lmax �
2000.

More importantly, the direction that is well constrained
has a large �K and only a small w component, i.e. the
degeneracy is very steep in the curvature direction. The
implication is that it takes only a weak external constraint
onw to break this degeneracy completely. When combined
with other dark energy probes, the lensing observables can
be thought of as fixing the curvature. We explore this use of
CMB lensing further in a separate piece [26].

Even given other probes that break the f�K;wg degen-
eracy, �K remains nearly degenerate with

P
m�. In

Fig. 11, we show constraints in this plane with fw0; wag
fixed. The observables approach again accurately models
the well-constrained direction aside from the slight rotation
of the �1 constraint which makes curvature nearly per-
fectly degenerate with neutrinos. Breaking this degeneracy
externally will require independent probes with limits of
���K� � 0:005 (perhaps with measurements of the angu-
lar diameter distance to z� 3 [27]) or��

P
m�� � 0:2 eV.

VI. SURVEY OPTIMIZATION

In the previous section, we quantified the information
supplied by CMB lensing in the context of a specific
reference survey. We conclude this paper by considering
how surveys can optimize the extraction of cosmological
information from lensed power spectra.

A. �ch
2, �, and lmax

We have seen in Sec. IV that imperfect knowledge of
f�ch

2; ln�	 g results in nuisance errors which limit the
ability to extract cosmological information from lensing.
The nuisance errors �nuis��i� represent a floor below
which improving sensitivity to each lensing observable
individually does not improve cosmological parameter
constraints. More precisely, improving ���i� beyond this
level will correlate low-redshift parameters to
f�ch

2; ln�	 g, in such a way that marginalized uncertainties
do not improve if only one of the observables is measured.
Joint measurement can slightly improve on this ‘‘floor’’
due to the difference in how the nuisance parameters affect
the two.

One source of nuisance error arises from uncertainty in
�ch2 as measured from the primary CMB or external data.
This is the dominant source of error throughout Table IV, in
which we have assumed that the range of multipoles from

which cosmology can be extracted is limited to lmax �
2000. This cut reflects an estimate of possible contamina-
tion from other secondaries and foregrounds and is cur-
rently uncertain. Fortunately, the dependence of ���ch

2�
on lmax is not particularly strong (see Fig. 12), provided
that it exceeds the knee at lmax � 700, corresponding to the
trough between the second and third acoustic peaks.

Another conclusion from Fig. 12 is that achieving cos-
mic variance limited measurement of E-mode acoustic
peaks at intermediate l would significantly improve �ch2

constraints from Planck. For example, an ideal measure-
ment of fT; Eg with lmax � 500 would obtain �ch

2 con-
straints comparable to Planck, even though Planck will
measure CMB temperature anisotropy well into the damp-
ing tail. We have found that the inability to extract �ch

2

constraints from the temperature damping tail is due to
confusion with the spectral index ns; if ns is fixed rather
than marginalized, then Planck’s �ch2 constraints signifi-
cantly improve.

As lmax is increased in Fig. 12, the error on �ch
2

improves, but the error on our second nuisance parameter
ln�	 stays nearly constant. This is because the degeneracy
between ln�	 and � in the unlensed CMB is broken only by
the reionization signal at low polarization multipoles. Even
at lmax � 2000, the largest value we consider in this paper,
the nuisance errors are dominated by uncertainty in �ch

2.
This may suggest that ln�	 is never important as a nuisance
parameter. There are three reasons why this may not be the
case in practice.

First, errors on �ch2 can, in principle, be improved over
CMB determinations by external sources such as weak
lensing of galaxies or even from the CMB itself through
lens reconstruction, whereas amplitude uncertainties from
reionization will likely remain. Second, we assume that
large angle polarization foregrounds can be perfectly re-

 

FIG. 12 (color online). Uncertainty ���ch
2� from CMB mea-

surements with varying lmax, for Planck sensitivity (Table III),
and ideal measurement of unlensed CMB temperature and
polarization.
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moved to the cosmic variance limit through the frequency
channels not used for cosmology. These foregrounds are
now known to dominate the polarization signal in all bands
[21].

Third, our parameter forecasts so far have implicitly
assumed sharp reionization, characterized by the single
parameter �, the total optical depth to recombination.
More general models of reionization can include additional
parameters which degrade uncertainties on � [28,29], and
therefore our nuisance parameter ln�	 , beyond what is
shown in Table IV.

If we conservatively assume that the ionization history
takes an arbitrary form, uncertainties rise to ���� �
��ln�	 � � 0:01 [30] and, by Table II, the corresponding
nuisance errors are �nuis��1� � �nuis��2� � 0:02.
Comparing with Table IV, this would be a comparable
source of nuisance error to �ch2 for Planck, and would
represent the dominant uncertainty for an ideal experiment
that achieves cosmic variance on the Emodes (cf. Fig. 12).

Finally, the choice of lmax also affects constraints on �1.
For example, scaling back to lmax � 1500 would degrade
���1� by 1.2 for Planck and 1.6 for the ideal measurement.

B. Optimizing sensitivity to lensing B modes

An important issue for upcoming polarization experi-
ments is optimizing sky coverage with the total integrated
sensitivity fixed. In general, this is not a well-posed ques-
tion since the sky coverage can be optimized with respect
to systematic errors, foreground contamination, sensitivity
to the E-mode power spectrum, sensitivity to tensor B
modes, detection of lensing B modes, B-mode reconstruc-
tion of the lensing fields, or sensitivity to cosmological
parameters from the B-mode power spectrum. Here, we
consider only the last of these, paying particular attention
to how optimizing the sensitivity is affected by non-
Gaussian statistics.

The integrated sensitivity� has units of temperature and
is given by �=

��������
NT
p

where � is the instantaneous sensitivity
(in mK

�������
sec
p

) per Stokes parameter per detector, N is the
number of detectors, and T is the total integration time. The
noise variance per steradian in Eq. (15) is then given by
�P � �

����
A
p

where A is the survey area in steradians.
In Sec. IV, we found that all cosmological constraints

from the lensing B-mode power spectrum are derived from
the single observable �2. Therefore, there is a natural
figure of merit for optimizing sky coverage: the 1� error
���2�. In Fig. 13, we show ���2� for varying fsky, assum-
ing fixed integrated sensitivity � � 2 nK. Incorporating
non-Gaussian statistics increases the optimal value of fsky

by a factor of 3 relative to Gaussian, and significantly
steepens the dependence of ���2� on fsky in a manner
which disfavors small fsky.

We have shown the fsky optimization in detail for inte-
grated sensitivity � � 2 nK; in general, the optimal fsky

will scale with � as fsky / ��2. The same scaling is
obtained assuming either Gaussian or non-Gaussian statis-
tics; therefore, the optimal patch size with non-Gaussian
statistics incorporated is a factor of 3 larger than the
Gaussian value, independent of the integrated sensitivity.
Another way of stating the optimality criterion is as fol-
lows: the optimal patch size is always chosen so that the
noise per steradian takes the value

 ��P�optimal � 4:7 �K-arcmin: (47)

This criterion makes no reference to the value of � but
does assume zero beam; we have found that ��P�optimal is
nearly independent of beam size, provided that �FWHM �
15 arcmin. [We note that if Gaussian statistics were falsely
assumed for lensing B modes, then one would obtain
��P�optimal � 2:8 �K-arcmin.]

Another conclusion of the previous section was that, for
sufficiently precise measurements of lensing B modes, the
ability to extract cosmological information from the CMB
alone is primarily limited by uncertainty in �ch2 from the
primary CMB and secondarily limited by reionization if
the ionization history is complex. More precisely, when the
measurement error���2� becomes as good as the nuisance
error �nuis��2�, then improved sensitivity to lensing B
modes serves mainly to correlate low-redshift and nuisance
parameters, rather than improving marginalized uncertain-
ties on either. In Fig. 14, we have shown the dependence of
���2� on total sensitivity and sky coverage.

We now consider optimization of a deep ground-based
polarization survey designed to complement Planck. For

 nuisance error (Planck)

nuisance error (Ideal)

FIG. 13 (color online). Dependence of the figure of merit
���2� on fsky, for fixed integrated sensitivity � � 2 nK. The
solid line shows the result using non-Gaussian statistics for
lensed B modes (Sec. II); the dashed line shows the result if
Gaussian statistics are falsely assumed. The horizontal lines
represent the nuisance errors on �2 from imperfect measurement
of f�ch

2; ln�	 g, for Planck and for ideal measurement of the
unlensed CMB (Table IV).
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the Planck prior on �ch
2, we found �nuis��2� � 0:028

(Table IV). Comparing with Fig. 14, it is seen that a
narrow-beam polarization survey with integrated sensitiv-
ity � � 1–2 nK, and covering a few percent of the sky,
will achieve ���2�  �nuis��2� and is therefore nearly
optimal for extracting cosmological information from lens-
ing B modes alone, within the limits of the Planck prior.

This conclusion that a few percent of the sky is optimal
for extracting the B-mode information alone is slightly
modified once the T and E information from Planck and
the deep ground-based survey itself are considered. The T
and E measurements supply �1 and the nuisance parame-
ters. The first modification is that if Planck succeeds in
measuring �1 to the forecasted ���1� � 0:05, then it

alone has lensing information that is comparable to an
fsky � 0:01 B-mode survey. The second modification is
that, as the deep survey improves the nuisance parameters
directly or through �1, the nuisance floor on the B modes
correspondingly drops. Both considerations favor slightly
larger fsky. To illustrate this we show in Fig. 15 the direct
forecast on a single low-redshift parameter, e.g. w, if
Planck is complemented by a deep survey with varying
fsky. For fsky less than the ‘‘knee’’ at fsky � 0:05, the
uncertainty in w from the B-mode measurement itself
improves as f�1=2

sky but only becomes stronger than the
lensing constraint from Planck for fsky * 0:01. For fsky *

0:05, improvements scale more slowly as�f�1=3
sky . Half the

total improvement comes from fsky < 0:1. In fact, a deep
survey with fsky � 0:05 can improve Planck lensing un-
certainties on any one of fw0; wa;�K;

P
m�g, with the

others fixed, by a factor of�2 (Table V) through measure-
ment of the B-mode observable. Moreover, if lensing con-
straints from Planck prove impossible to extract due to
foreground and secondary contamination, this improve-
ment represents another factor of �2 in errors.

VII. DISCUSSION

We have provided a comprehensive study of the addi-
tional cosmological information supplied by lensed power
spectra of the CMB temperature and polarization fields
including the non-Gaussian covariance between band-
power estimates. This covariance originates from the sam-
ple variance of the degree scale lenses on the CMB fields at
smaller scales. It is nearly irrelevant for the temperature
and E-polarization fields out to lmax � 2000 due to the
larger sample variance of the unlensed CMB. For the
amplitude of the B-polarization field, it increases the vari-
ance by up to a factor of �10 and changes the optimal
observing strategy to one that covers a factor of �3 times
more sky area.

The impact of non-Gaussianity on parameter estimation,
as well as the net information content of the lensed spectra,

 

FIG. 15 (color online). Uncertainty on the single low-redshift
parameter w, marginalized over high-redshift parameters, for
Planck complemented by a deep survey with varying sky cover-
age fsky. For the deep survey, we assume �T � �P=

���
2
p

and
consider three sensitivity levels as indicated.

TABLE V. Uncertainties on each of fw0; wa;�K;
P
m�g sepa-

rately with the others fixed, and high-redshift parameters margi-
nalized. Here, ‘‘Deep5%’’ stands for a deep survey with
fsky � 0:05, zero beam, and �P �

���
2
p

�T � 4:7 �K-arcmin
[see Eq. (47)]. The reference survey is as in Sec. V and covers
fsky � 0:10, and ‘‘Ideal’’ refers to all-sky cosmic variance lim-
ited fT; E; Bg to lmax � 2000. Forecasts here are from the direct
Fisher approach.

Unmarg. Lensed Planck Planck� Deep5% Reference Ideal

��w0� 0.31 0.18 0.15 0.07
��wa� 0.65 0.38 0.30 0.15
���K� 0.0076 0.0032 0.0025 0.0013
��
P
m�� 0.20 0.085 0.063 0.032

 

FIG. 14 (color online). Level contours for the figure of merit
���2� in the fsky-� plane, assuming zero beam.
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is more subtle. These answers depend on the choice of
parameters and the external priors associated with them.
We have provided a framework of lensing observables that
greatly simplifies these examinations.

In this framework, lensed CMB power spectra provide
information on only two observables, one which deter-
mines the lens power spectra at l� 100 associated with
the fT; Eg fields and one which determines it at l� 500
associated with the B field. The observables are con-
structed from the principal components of the lensing
power spectrum C��l . Non-Gaussianity is then automati-
cally incorporated in the errors on the observables which
will eventually approach, but never exceed, the sampling
errors of the lenses as the measurements improve.

This construction also illuminates the origin of parame-
ter degeneracies which can rapidly become the limiting
source of uncertainties for parameters of interest. Any
combination of parameters that leaves the lensing observ-
ables and the CMB at recombination fixed within the errors
cannot be determined. To illustrate these effects, we have
isolated two parameters, �ch2 and ln�	 , that determine the
shape and amplitude of the matter power spectrum, respec-
tively, and marginalized their uncertainties assuming inter-
nal CMB determinations of each from the Planck satellite.
These become the limiting uncertainties once the observ-
ables are determined to the several percent level and are
only slowly improved as the lensing survey itself improves
the nuisance errors. While �ch

2 constraints can be im-
proved externally to the CMB, those on ln�	 are more
difficult to improve and may be limited by our understand-
ing of reionization.

It is interesting to compare our results to those of [17],
where the impact of non-Gaussianity is considered and it is
shown, for example, that Fisher errors in the �w; r� plane
can be significantly affected by non-Gaussian statistics if
no additional parameters are marginalized and lensing B
modes alone are considered. We agree with this result and a
similar effect can be seen by comparing the red/vertically
shaded ellipses in the top panels of Fig. 6. However, when
fT; Eg modes are also included and the parameter space is
enlarged to include �ch2 and ln�	 , we have found that the
effect of non-Gaussianity is hidden in practice by nuisance
errors, which tend to dominate at noise levels where non-
Gaussianity would otherwise become important. The main
results of [17], comparing different likelihood approxima-
tions in the presence of non-Gaussianity, are outside of the
scope of the Fisher approximation used throughout this
paper, and are complementary to our treatment.

There are also degeneracies within the space of the
parameters of interest that control the expansion rate and
growth of structure at intermediate redshifts. When taken
one at a time, uncertainties on the parameters fw0; wa;
�K;

P
m�g can be improved by a factor of �2–3, relative

to Planck alone, by a deep ground-based polarization
survey on 5%–10% of the sky. However, fw0; wag are

nearly perfectly degenerate in the lensing observables as
are f�K;

P
m�g separately. The degeneracy between two

parameters in each pair is weakly broken by the two
observables. For example, when errors on

P
m� are margi-

nalized over w0, they degrade by a factor of 2 for the
reference survey (see Fig. 6). However, sensitivity to the
f�K;

P
m�g pair is much greater than to the dark energy

parameters due to the high-redshift weights of the lensing
observables. When combining lensed CMB power spectra
with other more incisive probes of the dark energy, lensing
essentially fixes one well-defined combination of
f�K;

P
m�g [26].

Our conclusions have several caveats associated with
them. The observables framework implicitly assumes that
lensing is an independent and additive source of cosmo-
logical information that may be combined with the intrin-
sic CMB anisotropy. An important exception to this
statement occurs for tensor modes, where lensing B modes
mask the intrinsic B modes. Forecasts for tensor modes
should be made employing lensed power spectra as a
destructive contribution, but here the Gaussian approxima-
tion suffices. The conversion between instrumental noise
and errors on the observables depends only mildly on the
fiducial model given current cosmological constraints, but
we give a crude scaling in Appendix B.

Second, we have considered only the information con-
tained in the lensed power spectrum. Beyond the power
spectrum, non-Gaussianity from lensing allows a direct
reconstruction of the lensing fields [5,6,31] which carries
substantially more information that can break parameter
degeneracies [12,16]. It may also allow ‘‘delensing’’ tech-
niques that recover the intrinsic B modes from tensor
modes [32–34]. However, techniques have yet to be de-
veloped that can remove systematics and contamination at
the levels required.

Third, our parameter forecasts employ the Fisher matrix
approximation. It is well known that Fisher matrix fore-
casts are not accurate along ill-constrained directions in the
parameter space. Hence, our results are only robust for
quantities that lensed power spectra constrain well. Finally,
we never consider CMB multipoles beyond lmax � 2000 in
this paper. Well beyond this limit there is extra information
on the high multipole structure of the lensing field but this
is likely to prove difficult to extract in the presence of other
secondaries and foregrounds.
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APPENDIX A: GOODNESS OF FIT

Given that lensing non-Gaussianity induces covariance
in the band power estimates, it is interesting to ask whether
the correct cosmological model would be inferred to be a
bad fit to the observed band powers if non-Gaussian corre-
lations were not included in the 2. This question was
raised in the context of the first-year WMAP analysis
[35]. Correspondingly, we define the naive 2 statistic as
a sum over bands,

 2 �
X
i

��̂i � h�̂ii�
2

Gii
; (A1)

where the band-power average h�̂ii is computed using
lensed power spectra, and the Gaussian variance Gii is
computed assuming lensed power spectra and Gaussian
statistics, as in Eq. (14).

The 2 statistic defined by Eq. (A1) fully incorporates
the effects of lensing at the power spectrum level but
neglects the non-Gaussian covariance between band
powers. With non-Gaussianity included, the distribution
is no longer a perfect 2, but acquires corrections

 h2i � Ndof ��h2i; Var�2� � 2Ndof ��Var�2�;

(A2)

where the excess contributions �h2i, �Var�2� arise only
from higher-point correlations in the lensed CMB. In this
appendix, we study the size of these contributions, as a way
to quantify the impact of non-Gaussianity.

The first contribution in Eq. (A2) can be written in terms
of the band-power covariance defined in Eq. (12):

 �h2i �
X
i

N ii

Gii
: (A3)

In contrast, the full non-Gaussian contribution to Var�2�
is an eight-point correlation between CMB fields, and the
results of this paper do not permit every term to be com-
puted. However, if we make the approximation that the
band powers �̂i are Gaussian variables, then it is given by

 �Var�2�  2
X
ij

N ijN ij � 2GijN ij

GiiGjj
: (A4)

Since each band power is an average over many Fourier
modes [see Eq. (8)], the central limit theorem implies that
this should be an accurate approximation. This general
observation shows that, in the limit of wide bands, the
band powers �̂i should always behave as Gaussian varia-
bles; lensing simply induces a Gaussian covariance be-
tween the band powers. Note that this is a statement
about the statistics of the observed band powers in a fixed
fiducial model and not about the posterior likelihood of the

model power spectra given noisy data, which is signifi-
cantly non-Gaussian [17]. It is the conditional probability
of �̂i (given a model) that is directly relevant for the 2

statistic defined in Eq. (A1).
We have found that the non-Gaussian contributions

�h2i, �Var�2� to unreduced 2 values are nearly inde-
pendent of the number of bands or degrees of freedom. In
Fig. 16, we show these contributions for lensed TT, EE and
BB power spectra, and for varying lmax, in two extreme
cases: a ‘‘many-band’’ fit with �l � 10, and a ‘‘one-band’’
fit across all multipoles up to lmax. The non-Gaussian
contributions are always negligible for TT and EE; for
BB they are significant if the number of bands is small and
lmax is sufficiently large, but can be hidden if the fit is
performed using many bands. This is consistent with the
discussion in Sec. II; non-Gaussianity is hidden when
considering narrow l bands, but appears as extra variance

 

FIG. 16 (color online). Non-Gaussian corrections �h2i (top
panel) and �Var�2� (bottom panel), as given by Eqs. (A3) and
(A4). We consider sample variance limited measurements of TT,
EE, and BB power spectra separately, up to maximum multipole
lmax. For fixed lmax, the corrections are nearly independent of the
number of bands; we illustrate this by showing a many-band fit
and a one-band fit for each power spectrum. The corrections are
negligible for TT and EE but important for BB, if Nbands is small
and lmax is large.
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when estimated BB power is averaged over a wide range
in l.

In Fig. 16, we have computed �h2i using Eq. (A3), and
�Var�2� using the approximation of Eq. (A4). To check
this approximation, and the approximation that N ij can be

computed to lowest order in C��l , we have also computed
h2i, Var�2� using Monte Carlo simulations of the lensed
CMB, and found excellent agreement throughout Fig. 16.

APPENDIX B: FIDUCIAL MODEL DEPENDENCE

Throughout this paper, we have presented results for the
fiducial model of Eq. (23) which has a low ionization
optical depth and, correspondingly, a low �8 � 0:73. For
small deviations around the fiducial model, we have found
that the shape of the principal components (Fig. 2) is
unchanged, but the translation between the noise level
and uncertainties ���i� in the lensing observables
(Fig. 5) can be affected. Denoting the uncertainty at noise

level �P by ���i; �P�, we find the following rough scal-
ing, which is expected from signal-to-noise considerations
assuming that the unlensed CMB is fixed:

 ���1; �P� 

 
C��lK1

C��lK1;fid

!
�fid��1; �P�;

���2; �P�  �fid

"
�2;

 
C��lK2

C��lK2;fid

!
�1=2

�P

#
:

(B1)

Here, lK1 � 114, lK2 � 440 are the median multipoles
from Sec. IVA. The scaling for �1 follows from consid-
ering the unlensed CMB as a fixed noise source, whereas
for �2 it follows from direct signal-to-noise scaling.

The optimal noise level from Eq. (47) for measuring
lensing B modes scales roughly as �C��lK2

=C��lK2;fid
�1=2 for the

same reason.
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