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The coalescence of massive black holes generates gravitational waves (GWs) that will be measurable
by space-based detectors such as LISA to large redshifts. The spins of a binary’s black holes have an
important impact on its waveform. Specifically, geodetic and gravitomagnetic effects cause the spins to
precess; this precession then modulates the waveform, adding periodic structure which encodes useful
information about the binary’s members. Following pioneering work by Vecchio, we examine the impact
upon GW measurements of including these precession-induced modulations in the waveform model. We
find that the additional periodicity due to spin precession breaks degeneracies among certain parameters,
greatly improving the accuracy with which they may be measured. In particular, mass measurements are
improved tremendously, by one to several orders of magnitude. Localization of the source on the sky is
also improved, though not as much—low redshift systems can be localized to an ellipse which is roughly
10� a few� 10 arcminutes in the long direction and a factor of 2 smaller in the short direction. Though
not a drastic improvement relative to analyses which neglect spin precession, even modest gains in source
localization will greatly facilitate searches for electromagnetic counterparts to GW events. Determination
of distance to the source is likewise improved: We find that relative error in measured luminosity distance
is commonly �0:1%–0:4% at z� 1. Finally, with the inclusion of precession, we find that the magnitude
of the spins themselves can typically be determined for low redshift systems with an accuracy of about
0.1%–10%, depending on the spin value, allowing accurate surveys of mass and spin evolution over
cosmic time.
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I. INTRODUCTION

A. Background to this analysis

Observations have now demonstrated that massive black
holes are ubiquitous in the local universe. It appears that all
galaxies with central bulges contain black holes whose
masses are strongly correlated with the properties of the
bulge [1,2]. Hierarchical structure formation teaches us
that these galaxies assembled over cosmic history through
the repeated coalescence of the dark matter halos in which
they reside [3]. Taken together, these suggest that coales-
cences of massive black holes should be relatively frequent
events, especially at high redshift when halo coalescences
were common [4].

Massive black hole coalescences are extremely strong
gravitational wave (GW) sources. In the relevant mass
band—thousands to millions of solar masses—the GWs
these binaries generate are at low frequency (f� 10�4:5–
10�1 Hz) where ground-based GW antennae have poor
sensitivity due to geophysical and other terrestrial noise
sources. Measuring GWs from massive black holes re-
quires going into the quiet environment of space. LISA,
the Laser Interferometer Space Antenna, is being designed
as a joint NASA-ESA mission to measure GWs in this
frequency band; cosmological massive black hole coales-
cences are among its highest priority targets. By measuring
these GWs, one can infer the properties of the source that
generated the waves. Some particularly important and
interesting properties are the masses of the binary’s mem-

bers, their spins, the binary’s location on the sky, and its
distance from the solar system barycenter. Measuring a
population of coalescence events could thus provide a
wealth of data on the cosmological distribution and evolu-
tion of black hole masses and spins.

Most analyses of how well binary black hole parameters
can be determined by LISA measurements have ignored
the impact of spin-induced precession [5–7]. Under such
an assumption, subsets of parameters can be highly corre-
lated with each other, increasing the errors in parameter
estimation. One such subset comprises the binary’s ‘‘chirp
mass’’ M, its reduced mass �, and the spin parameters �
and � (which are written out explicitly in Sec. II A). These
four parameters influence the GW phase �. As discussed
in [8,9], the correlation coefficient between � and � is
nearly 1. It is thus difficult to ‘‘detangle’’ these parameters
from one another in a measurement.

Another such subset consists of a binary’s sky position,
orientation, and distance. To see why these parameters are
strongly correlated, consider the form of the two polar-
izations of the strongest quadrupole harmonic of the gravi-
tational waveform:

 h��t� � 2
M5=3��f�2=3

DL
�1� cos2�� cos��t�; (1.1)

 h��t� � �4
M5=3��f�2=3

DL
cos� sin��t�: (1.2)

(We work in units with G � 1 � c; a convenient conver-
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sion factor in this system is 106M� � 4:92 seconds.) The
quantity � is the binary’s inclination relative to the line of
sight: cos� 	 L̂ 
 n̂, where L̂, the direction of the binary’s
orbital angular momentum, defines its orientation and n̂
is the direction from observer to source. The quantity DL
is the luminosity distance to the source, and f�t� 	
�1=2��d�=dt.

One does not measure the polarizations h� and h�
directly; rather, one measures a sum hM�t� in which the
two polarizations are weighted by antenna response func-
tions as follows:

 hM�t� � F���N;�N;  N�h��t� � F���N;�N;  N�h��t�:

(1.3)

(This equation should be taken as schematic; see Sec. II C
for a more detailed and definitive description.) The angles
�N and �N denote the location of the source on the sky in
some appropriate coordinate system. The angle  N , known
as the ‘‘polarization angle,’’ fixes the orientation of the
component of L̂ perpendicular to the line of sight. (In other
words, L̂ is fixed by � and  N .)

Measuring the phase determines chirp mass with high
accuracy; the fractional error in M is often �10�3–10�4.
As far as amplitude is concerned, the chirp mass can be
regarded as measured exactly. What remains is to deter-
mine, from the measured amplitude and the known M, the
angles �N , �N ,  N , �, and the distance DL.

As Eqs. (1.1), (1.2), and (1.3) illustrate, these five pa-
rameters are strongly correlated. The motion of LISA
around the sun1 breaks these degeneracies to some ex-
tent—the angles �N and �N appearing in Eq. (1.3) can
be regarded as best defined in a coordinate system tied to
LISA. As the antenna orbits the sun, these angles become
effectively time dependent. The one-year periodicity im-
posed by this motion makes it possible to detangle these
parameters. Analyses typically find that the position of a
merger event at z� 1 can be determined, on average, to an
ellipse which is a degree across in the long direction and
a few� 10 arcminutes across in the short direction2

[5,7,10]. The distance to such a binary can be determined
to 1% accuracy on average (less in some exceptional cases)
[6,7,10].

B. Black hole spin and spin precession

The preceding discussion ignores an important piece of
relativistic physics: the precession of each binary mem-
ber’s spin vector due to its interaction with the spacetime in
which it moves. In general relativity, the spacetime of an
isolated object can be regarded as having an ‘‘electric

piece,’’ arising from the object’s mass and mass distribu-
tion, and a ‘‘magnetic piece,’’ arising from the object’s
mass currents and their distribution.3 Spin precession con-
sists of a geodetic term, arising from the parallel transport
of the spin vector in the gravitoelectric field of the other
hole, and Lense-Thirring terms, caused by the gravitomag-
netic field of the other hole. The basic physics of gravito-
magnetic precession can be simply understood by analogy
with a similar (and closely related) electromagnetic phe-
nomenon—the precession of a magnetic dipole � im-
mersed in an external magnetic field B. An object’s spin
angular momentum S can be regarded as a gravitational
‘‘magnetic dipole.’’ When immersed in a ‘‘gravitomagnetic
field,’’ one finds that S feels a torque, just as a magnetic
dipole� experiences a torque when immersed in magnetic
field B. In a binary black hole system, the gravitomagnetic
field arises from the binary’s orbital motion and the spins
of its members. Precession thus includes both spin-orbit
(geodetic and orbital gravitomagnetic) and spin-spin ef-
fects [12]. (The major goal of the ‘‘Gravity Probe B’’
experiment is to measure the effects of geodetic and
spin-spin Lense-Thirring precession upon a gyroscope in
low Earth orbit [13].)

As the spins precess, they do so in such a way that the
total angular momentum J � L� S1 � S2 is held con-
stant; the orbital angular momentum L precesses to com-
pensate for changes in S1 and S2. As a consequence, the
inclination angle � and polarization angle  N become time
varying (as do certain other quantities appearing in the GW
phase function �). Figure 1 shows the so-called ‘‘polar-
ization amplitude,’’ defined in Sec. II C, of the waveform
measured by a particular detector. Without precession, this
quantity is modulated by the orbital motion of LISA, help-
ing to provide some information about the binary’s sky
position. The polarization amplitude also depends on the
angles � and  N , so it undergoes additional modulation
when precession is included. Such precession-imposed
time variations quite thoroughly break many of the degen-
eracies which have been found to limit parameter measure-
ment accuracy in earlier analyses.

It is without a doubt that black holes in nature spin.
Observations are not yet precise enough to indicate the
value of typical black hole spins; the evidence to date does,
however, seem to indicate that fairly rapid rotation is
common. For example, the existence of jets from active
systems seems to require non-negligible black hole spin—
jets appear to be ‘‘launched’’ by the shearing of magnetic
field lines (supported by the highly conductive, ionized
material accreting onto the black hole) by the differential
rotation of spacetime around a rotating black hole [14,15].

1LISA is being designed as a constellation of three spacecraft
whose centroid orbits the sun with a period of one year; see
http://lisa.nasa.gov for further details.

2It is worth bearing in mind that the full moon subtends an
angle of about 30 arcminutes.

3This analogy is most apt in the weak field. In that limit, one
can recast the Einstein field equations of general relativity into a
form quite similar to Maxwell’s equations; see [11] for a detailed
discussion. Though the analogy does not fit quite so well in
strong field regions, it remains accurate enough to be useful.
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Also, observations of highly distorted iron K-� lines—a
very sharp fluorescence feature in the rest frame of the
emitting iron ions—indicate that this emission is coming
from very deep within a gravitational potential (at radii less
than the Schwarzschild innermost radius 6M) and is
smeared by near luminal relativistic speeds to boot [16].
Though perhaps influenced somewhat by selection ef-

fects,4 these pieces of evidence are strong hints that the
black holes which will form the binaries we hope to
measure will be strongly influenced by spin.

The only limit in which spin precession can be neglected
is that in which the spins of the binary’s members are
exactly parallel (or antiparallel) to one another and to the
orbital angular momentum L. Since the target binaries of
this analysis are created by galactic merger processes, their
members will almost certainly have no preferred align-
ment—random spin and orbit orientation is expected to
be the rule. (This expectation is borne out by work [18]
showing that jets in active galaxies are oriented randomly
with respect to the disks of their host galaxies.) Taking into
account spin precession is thus of paramount importance
for GW observations of merging black hole systems.

A great deal of work has gone into developing families
of model waveforms (‘‘templates’’) sufficiently robust to
detect GWs from spinning and precessing binaries, at least
in the context of measurements by ground-based detectors
[19–25]. The key issue in this case is that the various
modulations on the waveform imposed by the binary’s
precession smear its power over a wider spectral range,
making it much more difficult to detect at the (relatively)
low signal-to-noise ratios (SNRs) expected for ground-
based observations. Not as much work has gone into the
complementary problem of measuring these waves—ex-
amining the impact precession has upon the precision with
which binary properties may be inferred from the waves.
To date, the most complete and important analysis of this
type is that of Vecchio [26]. Vecchio focuses (for simplic-
ity) on equal mass binaries and only includes the leading
‘‘spin-orbit’’ precession term. This limit is particularly nice
as a first analysis of this problem, since it can be treated
(largely) analytically (cf. discussion in Sec. III B of
Ref. [26]).

Vecchio’s work largely confirms the intuitive expecta-
tion discussed above—the precision with which masses
are measured is substantially improved; in particular, the
reduced mass of the system can be measured with several
orders of magnitude more accuracy. Parameters such as the
sky location of the binary and the luminosity distance
are also measured more accurately, but only by a factor
of 2–10.

C. This analysis

Our goal here is to update Vecchio’s pioneering analysis
by taking the precession equations and the wave phase to
the next higher order and by performing a broader parame-
ter survey (including the impact of mass ratio). By taking
the precession equations to higher order, we include ‘‘spin-
spin’’ effects—precessional effects due to one black hole’s
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FIG. 1. These figures depict the ‘‘polarization amplitude’’
Apol�t� of the signal measured in detector I as a function of
time. The curves are as follows: solid line, 	1 � 	2 � 0; dashed
line (nearly overlapping the solid line), 	1 � 	2 � 0:1; dotted
line, 	1 � 	2 � 0:5; and dot-dashed line, 	1 � 	2 � 0:9. (	 �
S=m2 is the dimensionless spin parameter.) The top figure covers
the last two years of inspiral. The spinless curve has periodicity
of one year, corresponding to the motion of LISA around the sun.
Notice that, as spin is introduced, the curves become more
strongly modulated, with the number of additional oscillations
growing as the spin is increased. By tracking these spin-preces-
sion-induced modulations, it becomes possible to better measure
parameters like mass and sky position and to measure spin for
the first time. The bottom figure shows a close-up of the final
months of inspiral.

4The systems for which we have constraints on spin are
systems which are actively accreting, and, ipso facto, those
which are most likely to be rapidly spinning [17].
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spin interacting with gravitomagnetic fields from the other
hole’s spin. By taking the wave phase to higher order, we
include, among other terms, a time-dependent spin-spin
interaction. Finally, when the mass ratio differs from 1, the
geodetic spin-orbit term causes the two spins to precess at
different rates, even without the spin-spin corrections.

Including these effects means that we cannot model the
precession with a simple, analytic rule—we are forced to
integrate the equations of precession numerically as inspi-
ral proceeds, incurring a significant performance cost.
Fortunately, the basic ‘‘engine’’ on which this code is
based [6] runs extremely fast, thanks largely to the use of
spectral integrators (which, in turn, is thanks to a sugges-
tion by E. Berti [7]), so total run time remains reasonable.

The cost in efficiency due to the inclusion of higher-
order effects is offset by the more complete description of
the signal they provide. An important consequence is that it
now becomes possible from GW measurements to deter-
mine the spin of each member of the binary. With
Vecchio’s approximations, only three components of the
black holes’ vector spins can be determined—enough to
constrain, but not determine, their spin magnitudes. Our
more general approach allows us to measure all six vector
spin components. To our knowledge, this is the first analy-
sis indicating how well spin can be measured from merging
comparable mass binary systems. (As Barack and Cutler
have shown [27], spin is very well determined by measure-
ments of GWs from extreme mass ratio binaries—those in
which the system’s mass ratio m2=m1 & 10�4 or so.)

Our error estimates are computed using the maximum
likelihood formalism first introduced in the context of GW
measurements by Finn [28]. A potential worry is that we
are using a Gaussian approximation to the likelihood func-
tion. This approximation is very convenient since it allows
us to directly compute a Fisher information matrix. Its
inverse is the covariance matrix, which directly encodes
the estimated 1-� errors in measured parameters, as well as
correlations among different parameters. The Gaussian
approximation is known to be accurate when the SNR is
‘‘high enough’’ [8,28].

Unfortunately, it is not particularly obvious what ‘‘high
enough’’ really means. In our case, we are estimating
measurement errors on 15 parameters5—a rather fearsome
number to fit. The Gaussian approximation almost cer-
tainly underestimates measurement error, since it assumes
the likelihood function is completely determined by its
curvature in the vicinity of a maximum, missing the pos-
sibility of a long tail to large error. We thus fear that our
estimates are likely to be optimistic, especially for events
with relatively small SNR. It would be quite salubrious to

‘‘spot check’’ a few cases by directly computing the like-
lihood function in a few important corners of parameter
space and comparing to the Gaussian predictions. This
would both quantify the degree to which our calculations
are too optimistic and help to determine how large SNR
must be for this approximation to be reliable.

In addition to concerns about the Gaussian approxima-
tion, it must be noted that the waveform family we use for
our analysis is somewhat limited. We use a post-Newtonian
description of the GWs from these binaries. Since our
analysis requires us to follow these binaries deep into the
strong field where the usual post-Newtonian expansion is
likely to be somewhat unreliable, it is likely that we are
introducing some systematic error. In particular, the equa-
tions of spin precession that we are using are only given to
the leading order needed to see spin-orbit and spin-spin
precession effects [29]. Higher spin-orbit corrections to the
equations of motion and precession have recently been
derived [30], as have their impact on the waves’ phasing
[31]. Another analysis [32] has worked out higher-order
spin-spin corrections to the post-Newtonian metric, from
which it would not be too difficult to work out equations of
motion and precession and then the modification to the
waves’ phase. It would be interesting to see what effect the
higher-order corrections have on these results.

Finally, it should be noted that the frequency domain
expression of the signal which we are using is derived
formally using a ‘‘stationary phase’’ approximation. This
approximation is based on the idea that the binary’s orbital
frequency is changing ‘‘slowly.’’ The orbital frequency is
thus well defined over ‘‘short’’ time scales. Quantitatively,
this amounts to a requirement that the time scale on which
radiation reaction changes the orbital frequency, Tinsp, be
much longer than an orbital period, Torb. Precession intro-
duces a new time scale, Tprec, the time it takes for the
angular momentum vectors to significantly change their
orientations. For the stationary phase approximation to be
accurate, we must in addition require Tprec � Torb, a some-
what more stringent requirement than Tinsp � Torb. No
doubt, a certain amount of error is introduced due to the
breakdown of this condition late in the inspiral.

Thus, the results which we present here should be taken
as indicative of how well LISA is likely to be able to
measure the parameters of massive black hole binaries,
but cannot be considered definitive. We are confident,
however, that the improvement in measurement accuracy
obtained by taking spin precession into account is robust.
Specifically, we see that errors in masses are reduced
dramatically, from one to several orders of magnitude.
Errors in sky position and distance are also reduced, but
by a smaller factor. Such improvement may nonetheless
critically improve the ability of LISA to interface with
electromagnetic observatories [33–35]. Finally, the added
information in the precession signal allows us to measure
the spins of the holes. These improvements due to preces-

5Two masses; 2 angles specifying the initial orientation of the
binary’s orbit; 4 angles specifying the initial orientation of the
spins; 2 spin magnitudes; the time at which coalescence occurs;
the phase at coalescence; 2 angles specifying the binary’s
position on the sky; and the distance to the binary.
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sion will certainly survive and play an important role even
in an analysis which addresses the caveats we list above.

D. Organization of this paper

The remainder of the paper is organized as follows. In
Sec. II, we discuss the gravitational waveform generated
by binary black hole coalescence, focusing upon the slow,
adiabatic inspiral. Section II A describes the ‘‘intrinsic’’
waveform produced by the motion of the orbiting black
holes as given in the ‘‘restricted post-Newtonian expan-
sion’’ of general relativity. Section II B then describes the
post-Newtonian precession equations which we use to
model the evolution of the spins of a binary’s members,
as well as how those precessions influence the waveform.
Finally, in Sec. II C we describe ‘‘extrinsic’’ effects which
enter the measured waveform through its measurement by
the LISA constellation.

In Sec. III we summarize our parameter estimation
formalism; this section will be largely a review to readers
familiar with the literature on GW measurements. Sec-
tion III A first summarizes the maximum likelihood for-
malism we use to estimate measurement errors. In
Sec. III B, we then describe the up-to-date model for the
noise which we expect to accompany LISA measurements.

Section IV presents our results. After describing some
critical procedural issues in the setup of our calculations in
Sec. IVA, we summarize our results for parameters intrin-
sic to the binary (particularly masses and spins) in
Sec. IV B and for extrinsic parameters (particularly sky
position and luminosity distance) in Sec. IV C. In both
cases, we compare, when appropriate, to results from a
code which does not incorporate spin-precession physics.
(This code was originally developed for the analysis pre-
sented in Ref. [6].) The general rule of thumb we find is
that the accuracy with which masses can be determined is
improved by about one to several orders of magnitude
when precession physics is taken into account. In addition,
we find that for low redshift (z� 1) binaries LISA should
be able to determine the spins of the constituent black holes
with a relative precision of 0.1%–10%, depending (rather
strongly) on the spin value. Likewise, we find improvement
in the measurement accuracy of extrinsic parameters,
though not quite as striking—half an order of magnitude
improvement in source localization and distance determi-
nation is a good, rough rule of thumb.

An important consequence of these improvements is that
LISA should be able to localize low redshift binaries—
using GW measurements alone—to an elliptical ‘‘pixel’’
that is perhaps 10� a few� 10 arcminutes across in its
widest direction and about a factor of 2 smaller along its
minor axis. For higher redshift binaries (z� 3–5), this
pixel is several times larger, perhaps a degree to a few
degrees in the long direction and tens of arcminutes to a
degree or two in the narrow one. These results suggest that
it should not be too arduous a task to search for electro-

magnetic counterparts to a merging binary black hole’s
GW signal [33–35]—particularly at low redshift, these
pixel sizes are comparable to the field of view of planned
large scale surveys.

A concluding and summarizing discussion is given in
Sec. V. Along with summarizing our major results and
findings, we discuss future work which could allow us to
quantitatively assess the consequences of some of the
simplifying assumptions we have made.

At several points in this analysis, we need to convert
between a source’s redshift z and luminosity distance DL.
To make this conversion, we assume a flat cosmology
(�total � 1) with contributions from matter (�M � 0:25)
and from a cosmological constant (equation of state pa-
rameter w � �1, �� � 0:75). We also choose a Hubble
constant H0 � 75 km s�1 Mpc�1. These choices are in
concordance with the latest fits presented by the WMAP
team in their three-year analysis of the cosmic microwave
background [36]. The luminosity distance as a function of
redshift is then given by

 DL�z� �
�1� z�c
H0

Z z

0

dz0����������������������������������������
�M�1� z0�3 ���

p : (1.4)

II. GRAVITATIONAL WAVES FROM BINARY
BLACK HOLE INSPIRAL

The coalescence of a black hole binary can be divided
into three stages: (1) an adiabatic inspiral, (2) a merger, and
(3) a ringdown, when the resulting black hole settles down
to its final state. In this paper, we will focus on the inspiral.
Ringdown waves have been analyzed in other work
[6,28,37,38]; the most comprehensive recent analysis was
performed by Berti, Cardoso, and Will [39]. The merger
waveform, describing the strong field and (potentially)
violent process of the two black holes merging into a single
body, has historically been poorly understood. Recent
breakthroughs in numerical relativity may soon correct
this [40–42].

The inspiral waveform which will be measured by LISA
is a combination of the intrinsic waveform created by the
source and extrinsic features related to its location on the
sky and modulation effects caused by the motion of the
detector. In this section we review the relevant physics
involved in the construction of the waveform.

For sources at cosmological distances, all time scales
redshift by a factor 1� z. In the G � c � 1 units that we
use, all factors of mass enter as time scales; thus, masses
are redshifted by this 1� z factor. [Likewise, quantities
such as spin which have dimension �time�2 acquire a factor
�1� z�2, etc.] In the equations written below, we do not
explicitly write out these redshift factors; they should be
taken to be implicit in all our equations. When discussing
results, we will always quote masses as they would be
measured in the rest frame of the source, with redshift
given separately.
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A. Intrinsic waveform

We treat the members of our binary as moving on
quasicircular orbits; eccentricity is very rapidly bled
away by gravitational radiation reaction [43], so it is ex-
pected that these binaries will have essentially zero eccen-
tricity by the time they enter LISA’s frequency band (at
least at the mass ratios we consider in this paper, 1 �
m1=m2 � 10). We use the post-Newtonian formalism, an
expansion in internal gravitational potential U and internal
source velocity v, to build our waveforms. A detailed
review of the post-Newtonian formalism can be found in
the article by Blanchet [44]; the key pieces which we will
use can be found in Refs. [44–48].

The post-Newtonian equations of motion, taken to sec-
ond post-Newtonian (2PN) order, yield the following gen-
eralization of Kepler’s third law relating orbital angular
frequency � and orbital radius (in harmonic coordinates) r
[46]:
 

�2 �
M

r3

�
1� �3� 
�

�
M
r

�
�
X2

i�1

�
2
m2
i

M2 � 3

�

�
L̂ 
 Si
m2
i

�
M
r

�
3=2
�

�
6�

41

4

� 
2 �

3

2




m2
1m

2
2

� S1 
 S2 � 3�L̂ 
 S1��L̂ 
 S2��

��
M
r

�
2
�
: (2.1)

Here M � m1 �m2 is the total mass of the system, and

 � �=M, where � � m1m2=M is the reduced mass. L̂ is
the direction of the orbital angular momentum, and Si is
the spin angular momentum of black hole i. The magnitude
of the spin can be expressed as Si � 	im2

i , where 0 �
	i � 1. The leading term is the standard result from
Newtonian gravity. The O�M=r� term is the first post-
Newtonian correction; this is the same physics that, in
solar system dynamics, causes the precession of the peri-
helion of Mercury. The O��M=r�3=2� term contains spin-
orbit corrections to the equation of motion. Finally, the
O��M=r�2� term is a 2PN correction, which also includes
spin-spin terms. From the equations of motion, the orbital
energy of the binary E can also be computed; see [46].

The waveform that we will use is the ‘‘restricted’’ 2PN
waveform. This approximation can be understood by writ-
ing the waveform (somewhat schematically) as [8]

 h�t� � Re
�X
x;m

hxm�t�eim�orb�t�
�
; (2.2)

where x labels PN order, m is a harmonic index, and
�orb�t� �

R
t ��t0�dt0 is the orbital phase. In the restricted

post-Newtonian waveform, we throw out all amplitude
terms except h0

2 (the ‘‘Newtonian quadrupole’’ term) but
compute �orb�t� to some specified PN order. The restricted
PN approximation is motivated by the fact that matched
filtering—matching a signal in noisy data by cross-
correlating with a theoretical template—is much more

sensitive to phase information than to the amplitude.
Since the h0

2 harmonic contributes most strongly to the
waveform over most of the inspiral, the restricted PN
approximation is expected to capture the most important
portion of the inspiral waveform. It is worth noting, how-
ever, that there is additional information encoded by the
harmonics that we are neglecting. Especially for the SNRs
expected for typical LISA binary black hole measure-
ments, this additional information could play an important
role in measuring source characteristics, as pointed out by
Hellings and Moore [49].

At any rate, within the restricted PN approximation, the
waveform can be written

 hij�t;x� � �
4M5=3��f�2=3

jxj

�

cos��t� sin��t� 0
sin��t� � cos��t� 0

0 0 0

264
375; (2.3)

where jxj is the distance to the binary, M � �3=5M2=5 is
the ‘‘chirp mass’’ (so called because it largely determines
the rate at which the system’s frequency evolves, or
‘‘chirps’’), f � �=� � 2forb is the GW frequency, and
��t� �

R
t 2�f�t0�dt0 � 2�orb is the GW phase. We have

chosen a coordinate system oriented such that the binary’s
orbit lies within the xy-plane; this tensor will later be
projected onto polarization basis tensors to construct the
measured polarizations h� and h�.

The rate at which the frequency changes due to the
emission of gravitational radiation is given by [46]
 

df
dt
�

96

5�M2 ��Mf�11=3

�
1�

�
743

336
�

11

4


�
��Mf�2=3

� �4�� ����Mf� �
�
34 103

18 144
�

13 661

2016

�

59

18

2

� �
�
��Mf�4=3

�
: (2.4)

Notice that the chirp mass M dominates the rate of change
of f; the reduced mass � and parameters � and � have an
influence as well. The parameter � describes spin-orbit
interactions and is given by

 � �
1

12

X2

i�1

�
113

�
mi

M

�
2
� 75

�
M

�
L̂ 
 Si
m2
i

: (2.5)

The parameter � describes spin-spin interactions:

 � �
�

48M�m2
1m

2
2�
721�L̂ 
 S1��L̂ 
 S2� � 247�S1 
 S2��:

(2.6)

Notice that � and � depend on the angles between the
binary’s angular momentum and the two spins. In previous
analyses which have neglected precession, � and � are
constants; precession makes them time dependent.
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Using Eq. (2.4), we can now integrate to find
 

t�f� � tc �
5

256
M��Mf��8=3

�
1�

4

3

�
743

336
�

11

4


�

� ��Mf�2=3 �
8

5
�4�� ����Mf� � 2

�
3 058 673

1 016 064

�
5429

1008

�

617

144

2 � �

�
��Mf�4=3

�
: (2.7)

The parameter tc formally defines the time at which f
diverges within the post-Newtonian framework. In reality,
we expect finite size effects to significantly modify the
binary’s evolution as the members come into contact. The
system evolves so quickly as the bodies come together that
tc is nonetheless a useful surrogate for a ‘‘time of coales-
cence.’’ Finally, the wave phase ��t� �

R
t 2�f�t0�dt0 as a

function of f is given by
 

��f� � �t�f�� � �c �
1

16
��Mf��5=3

�
1�

5

3

�
743

336

�
11

4


�
��Mf�2=3 �

5

2
�4�� ����Mf�

� 5
�
3 058 673

1 016 064
�

5429

1008

�

617

144

2 � �

�

� ��Mf�4=3

�
; (2.8)

where �c is the phase at time tc. The restricted PN wave-
form is then constructed by inserting (2.8) into (2.3).

B. Precession equations

We next examine the effects of precession on the binary
system. As discussed in the Introduction, spin-orbit and
spin-spin interactions cause the black hole spins S1 and S2

to precess. Precession occurs, at leading order,6 on a time
scale Tprec / r

5=2 at large separations [50]. Since this is
smaller than the inspiral time scale Tinsp, we treat the total
angular momentum J � L� S1 � S2 as constant over
Tprec. The orbital angular momentum L must then precess
to compensate for changes in S1 and S2. Since Tprec is
longer than the orbital time scale Torb, we use an orbit-
averaged version of the precession equations [29]:
 

_S1 �
1

r3

��
2�

3

2

m2

m1

�
�

�������
Mr
p

L̂
�
� S1

�
1

r3

�
1

2
S2 �

3

2
�S2 
 L̂�L̂

�
� S1; (2.9)

 

_S2 �
1

r3

��
2�

3

2

m1

m2

�
�

�������
Mr
p

L̂
�
� S2

�
1

r3

�
1

2
S1 �

3

2
�S1 
 L̂�L̂

�
� S2; (2.10)

where7 r � M1=3=��f�2=3. These equations each have two
pieces [12]. Consider the equation for _S1. The first piece,
which contains no S2 dependence, is the spin-orbit term.
This term, which comes in at 1PN order, is due to the
geodetic precession of S1 as hole 1 orbits in the spacetime
generated by the mass of hole 2, and to the Lense-Thirring
precession of S1 in the gravitomagnetic field generated by
the orbital motion of hole 2. The second piece is the spin-
spin term, which enters at 1.5PN order. This term can be
understood as the Lense-Thirring precession of S1 in the
gravitomagnetic field generated by the spin of hole 2. Note
that the magnitudes of the spins do not change at this order;
see [29] for more details. From conservation of total an-
gular momentum on short time scales, we have

 

_L � �� _S1 � _S2�: (2.11)

Over longer time scales, we must also consider the change
in total angular momentum due to the radiation reaction,
which is given by

 

_J � �
32

5

�2

r

�
M
r

�
5=2

L̂ (2.12)

to lowest order.
Considering only the spin-orbit terms and taking the

limit S2 � 0 or m1 � m2 leads to a system whose preces-
sion can be described analytically; this is the ‘‘simple
precession’’ limit described in [29]. Simple precession
can be visualized as a rotation of L and S � S1 � S2

around the total angular momentum J. (Since inspiral
shrinks J, the precession is actually around a slightly
different direction J0; see [29] for further discussion.)

Since Vecchio restricts his analysis tom1 � m2 and does
not include the spin-spin interaction, this limit is appro-
priate for his work [26]. As a consequence, Vecchio takes
the quantities L̂ 
 Ŝi, Ŝ1 
 Ŝ2, and � to be constant. (He
does not include the spin-spin term � in the analysis.)
Here, we will study the impact of the full (albeit orbit-
averaged) precession equations, including spin-spin terms,
and include the impact of mass ratio. An analytic descrip-
tion is not possible in this case, so we must integrate these
equations numerically. The behavior is qualitatively simi-
lar to the simple precession case, but with significant
quantitative differences. For example, � now oscillates
around an average value. For unequal masses (say
m1=m2 * 2), the difference due to precession can be sub-
stantial [47]. Such cases are also astrophysically the most

6Several effects are built in to the precession equations dis-
cussed below, leading to precessions that occur on time scales
scaling as r5=2 and r3. Since we integrate these equations
numerically, all of these effects are included in our analysis.
For the purposes of this discussion, we subsume these effects
into the leading-order time scale Tprec discussed here.

7We use only the lowest-order Newtonian orbital quantities in
these equations. Including more terms would introduce higher-
order effects into the precession.
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interesting—a mass ratio of roughly 10 is favored in
binary black hole formation scenarios arising from hier-
archical structure formation [51].

The precession of the orbital plane causes a change in
the orbital phase �orb�t� [29]. Multiplying by a factor of 2,
the change in the wave phase is

 �p��t� � �
Z tc

t
�p _��t0�dt0; (2.13)

where

 �p _��t� �
2L̂ 
 n̂

1� �L̂ 
 n̂�2
�L̂� n̂� 
 _̂L; (2.14)

and n̂ is the direction of the binary on the sky. At this point,
we note that precession has several effects on the observed
waveform. It changes the orbital phase, even at Newtonian
order, by the amount (2.13), and it modifies the functions �
and � which appear in the post-Newtonian phase (2.8) and
time-frequency relation (2.7). In the next section, we con-
sider extrinsic effects on the waveform and find that pre-
cession of the orbital plane modifies them as well.

C. Extrinsic effects

We have now constructed the intrinsic GWs emitted by a
precessing binary in the restricted post-Newtonian ap-
proximation. The waveform measured by LISA will also
include extrinsic effects due to the binary’s location on the
sky and the motion of the detector.

We can write the wave as a combination of two orthogo-
nal polarizations propagating in the�n̂ direction. Define p̂
and q̂ as axes orthogonal to n̂, with p̂ � n̂� L̂=jn̂� L̂j
and q̂ � p̂� n̂. These are the principal axes for the wave;
that is, they are defined so that the two polarizations are
exactly 90� out of phase. The polarization basis tensors for
these axes are H�ij � pipj � qiqj and H�ij � piqj � qipj:

 hij�t� � h��t�H�ij � h��t�H
�
ij ; (2.15)

where
 

h��t� � 2
M5=3��f�2=3

DL
1� �L̂ 
 n̂�2�

� cos��t� � �p��t��; (2.16)

 h��t� � �4
M5=3��f�2=3

DL
�L̂ 
 n̂� sin��t� � �p��t��:

(2.17)

These expressions were first discussed in the Introduction
(albeit without the precessional phase correction). HereDL
is the luminosity distance to the source. Notice that the
weighting of the two polarizations depends upon the di-
rection of the angular momentum vector relative to the sky
position.

We now consider the GW as measured by the detector.
All of this analysis is done using the long wavelength (��
L, where L is the LISA arm length) approximation intro-
duced by Cutler [5]; more details can be found there. This
approximation is appropriate for our purposes since most
of the signal accumulates at low frequencies where the
wavelength is in fact greater than the arm length. The full
LISA response function, including arm-length effects, is
discussed in [52,53].

LISA consists of three spacecraft arranged in an equi-
lateral triangle, 5� 106 km apart. The center of mass of
the configuration orbits the sun 20� behind the Earth. The
triangle is oriented at 60� to the ecliptic, so the orbits of the
individual spacecraft will all be in different planes. This
causes the triangle to spin around itself as it orbits the sun.
Following Cutler, we define a barred ‘‘barycenter’’ coor-
dinate system � �x; �y; �z�, which is fixed in space with the
�x �y -plane aligned with the ecliptic, and an unbarred ‘‘de-
tector’’ coordinate system �x; y; z�, which is attached to the
detector. The z axis always points toward the sun, 60�

away from vertical, while the x and y axes pinwheel around
it. A particular binary will have fixed coordinates in the
barycenter system, but its detector coordinates will be time
varying.

The three arms act as a pair of two-arm detectors. We are
first interested in the strain measured in detector I, that
formed by arms 1 and 2:

 hI�t� �
�L1�t� � �L2�t�

L
; (2.18)

where �L1�t� and �L2�t� are the differences in length in
arms 1 and 2 as the wave passes. L is the unperturbed
length of the arms. Using the geometry of the detector and
the equation of geodesic deviation [54], we find

 hI�t� �

���
3
p

2

�
1

2
�hxx � hyy�

�
: (2.19)

To obtain hxx and hyy for use in these equations, we must
rotate the waveform from the principal axes into the de-
tector frame. The result is that detector I measures both
polarizations, modulated by the antenna pattern of that
detector:

 

hI�t� �

���
3
p

2

M5=3��f�2=3

DL
�21� �L̂ 
 n̂�2�F�I ��N;�N;  N�

� cos��t� � �p��t�� � 4�L̂ 
 n̂�F�I ��N;�N;  N�

� sin��t� � �p��t���: (2.20)

Detector I acts like a ‘‘standard’’ 90� GW interferometer
(e.g. LIGO), with the response scaled by

���
3
p
=2 (due to the

60� opening angle of the constellation). The antenna pat-
tern functions are given by
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F�I ��N;�N;  N� �
1
2�1� cos2�N� cos2�N cos2 N

� cos�N sin2�N sin2 N; (2.21)

 F�I ��N;�N;  N� �
1
2�1� cos2�N� cos2�N sin2 N

� cos�N sin2�N cos2 N; (2.22)

where �N and �N are the spherical angles for the binary’s
direction n̂ in the (unbarred) detector frame and  N is the
polarization angle of the wave in that frame:

 tan N �
q̂ 
 ẑ
p̂ 
 ẑ

�
L̂ 
 ẑ� �L̂ 
 n̂��ẑ 
 n̂�

n̂ 
 �L̂� ẑ�
: (2.23)

In order to use these expressions, we must relate the time-
dependent angles in the unbarred detector frame, �N, �N ,
and  N , to quantities in the barred barycenter frame.
Again, the details can be found in Cutler [5].

Similar expressions hold for detector II. Following
Cutler, we construct the signal from detector II as

 hII�t� �
1���
3
p hI�t� � 2hII0 �t��; (2.24)

where hI is the signal from detector I (2.18), and hII0 �
��L2�t� � �L3�t��=L is the signal formed from the differ-
ence in the lengths of arms 2 and 3. This choice makes the
noise in detector I uncorrelated with the noise in
detector II; we will exploit this property in Sec. III to treat
detectors I and II as independent detectors. From (2.24), we
obtain

 hII�t� �

���
3
p

2

�
1

2
�hxy � hyx�

�
: (2.25)

The result is that detector II also behaves like a 90�

interferometer (scaled by
���
3
p
=2), but rotated by 45� with

respect to detector I. Thus the antenna patterns for
detector II are

 F�II ��N;�N;  N� � F�I ��N;�N � �=4;  N�; (2.26)

 F�II ��N;�N;  N� � F�I ��N;�N � �=4;  N�: (2.27)

We now rewrite the waveform in terms of an amplitude and
phase. Letting i � I, II label detector number, the wave-
form as measured by detector i is
 

hi�t� � 2
M5=3��f�2=3

DL
Apol;i�t� cos��t� � ’pol;i�t�

� ’D�t� � �p��t��; (2.28)

where
 

Apol;i�t� �

���
3
p

2
�1� �L̂ 
 n̂�2�2F�i �t�

2� 4�L̂ 
 n̂�2F�i �t�
2�1=2

(2.29)

is the ‘‘polarization amplitude’’ and

 ’pol;i�t� � tan�1

�
2�L̂ 
 n̂�F�i �t�

1� �L̂ 
 n̂�2�F�i �t�

�
(2.30)

is the ‘‘polarization phase’’ [5]. We have introduced the
‘‘Doppler phase’’ ’D�t�, which arises from the detector’s
motion around the sun and is given by

 ’D�t� � 2�f�t�R� sin ��N cos ��D�t� � ��N�; (2.31)

where ��D�t� is the orbital phase of the detector and R� �
1 AU.

Much of our analysis is done in the frequency domain.
We define the Fourier transform of the signal as

 

~h�f� �
Z 1
�1

e2�ifth�t�dt: (2.32)

To evaluate the Fourier transform, we make use of the
stationary phase approximation [8,9]. This approximation
relies on the fact that the orbital time scale Torb is much
shorter than the precession time scale Tprec, as well as the
inspiral time scale Tinsp and detector orbital time scale
TD � 1 yr. The result thus differs from the true Fourier
transform by terms of order Torb=Tprec and Torb=Tinsp [29].
The Fourier transform is thus likely to be inaccurate near
the end of the inspiral, when all of these time scales
become comparable. Using (2.7) and (2.8), we have

 

~h i�f� �

������
5

96

s
��2=3M5=6

DL
Apol;it�f��f

�7=6ei���f��’pol;it�f���’Dt�f����p�t�f���; (2.33)

where the phase ��f� is given by
 

��f� � 2�ftc ��c �
�
4
�

3

128
��Mf��5=3

�
1�

20

9

�
743

336
�

11

4


�
��Mf�2=3 � 4�4�� ����Mf�

� 10
�

3 058 673

1 016 064
�

5429

1008

�

617

144

2 � �

�
��Mf�4=3

�
: (2.34)

In the work by Cutler [5], the separation of time scales that
we used above leads to an interpretation of the polarization
amplitude, polarization phase, and Doppler phase as mod-

ulations, in amplitude and phase, of an underlying carrier
signal. These modulations make it possible to measure the
sky position of the source, which also helps to measure the
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luminosity distance DL [6]. With the addition of preces-
sion, the polarization amplitude and polarization phase
include additional modulations which further improve the
measurement of these parameters. In conjunction with the
purely intrinsic effects of precession, these effects also help
us to better measure the masses and spins of the system.

III. MEASUREMENT AND PARAMETER
ESTIMATION WITH LISA

A. Theory

In the previous section, we constructed the expected
form for the GW strain that LISA is being designed to
measure. The signal si�t� as measured by detector i will of
course also include noise ni�t�:

 si�t� � hi�t� � ni�t�: (3.1)

The LISA noise spectrum is discussed in Sec. III B; in this
section, we discuss the theory of parameter estimation with
a noisy signal. First, consider only one detector. We assume
that the noise is zero mean, wide-sense stationary, and
Gaussian. Wide-sense stationary means that the autocovar-
iance function

 Kn�t; t0� � hn�t�n�t0�i � hn�t�ihn�t0�i (3.2)

depends only on the time difference  � t� t0.
(Throughout this section, quantities within angle brackets
are ensemble averaged with respect to the noise distribu-
tion.) A process is Gaussian if every sample of the process
can be described as a Gaussian random variable and all
possible sets of samples of the process are jointly Gaussian.
However, the noise is colored, not white. A white noise
process is defined to be a process which is uncorrelated
with itself at different times; that is, its autocovariance is a
delta function. Because the noise is colored, it has an
interesting (nonflat) power spectral density (PSD), which
is defined as the Fourier transform of the autocovariance
function:

 Sn�f� � 2
Z 1
�1

de2�ifKn��: (3.3)

The factor of 2 follows [8]; we actually use the one-sided
PSD. Since the noise is Gaussian, it is described entirely by
its second moments. Therefore, we will only need the PSD,
and not the full probability density function, to analyze the
effect of the noise on the signal.

Incidentally, it can be shown that wide-sense stationarity
implies that the Fourier transform of n�t� is a nonstationary
white noise process in frequency:

 h~n�f�~n��f0�i � 1
2��f� f

0�Sn�f�: (3.4)

The Fourier components are thus independent Gaussian
random variables.

Now briefly consider both detectors. We explicitly con-
structed the second detector (2.24) [with h�t� ! s�t�] so

that the noise in it is uncorrelated with, and thus indepen-
dent of, noise in the first detector. Thus we have

 h~ni�f�~n�j �f�i �
1
2�ij��f� f

0�Sn�f�: (3.5)

The uncorrelated nature of these two noises will allow us to
easily generalize discussion from one detector to the full
two effective detector system.

Let us write our generalized GW as h���, where the
components of the vector � represent the various parame-
ters on which the waveform depends. We now assume that
a GW signal with particular parameters ~� is present in the
data (i.e., ‘‘detection’’ has already occurred), and want to
obtain estimates �̂ of those source parameters. Finn [28]
shows that the probability for the noise to have some
realization n0�t� is given by

 p�n � n0� / e��n0jn0�=2; (3.6)

where the inner product used here is given by

 �ajb� � 4 Re
Z 1

0
df

~a��f�~b�f�
Sn�f�

(3.7)

 � 2
Z 1

0
df

~a��f�~b�f� � ~a�f�~b��f�
Sn�f�

: (3.8)

This product is a natural one for the vector space of
(frequency domain) signals a�f�. (Note that this definition
of the inner product differs from [28] by a factor of 2.)

Given a particular measured signal s�t�, the probability
that the GW parameters are given by ~� is the same as the
probability that the noise takes the realization s� h� ~��:

 p� ~�js� / e��h� ~���sjh� ~���s�=2; (3.9)

where the constant of proportionality may include prior
probability densities for the parameters ~�. For simplicity,
we take these to be uniform.

We can estimate the parameters ~� by the maximum
likelihood (ML) method. This method involves finding
the parameters �̂ that maximize (3.9), or alternatively,
minimize �h� ~�� � sjh� ~�� � s�, which can be considered a
distance in signal space. A bank of template waveforms is
correlated with the received signal and, assuming that any
template produces a statistically significant correlation, the
one with the highest correlation is the one with the ML
parameters. The SNR for this signal is then given by [8]

 � � �h��̂�jh��̂��1=2 � �h� ~��jh� ~���1=2: (3.10)

To quantify the errors in the ML estimate, we expand (3.9)
around the most likely values �̂. We can then write the
probability density as [8,9]:

 p� ~�js� / e��ab��a��b=2; (3.11)

where ��a � ~�a � �̂a and
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 �ab �
�
@h
@�a

�������� @h@�b
�
; (3.12)

evaluated at � � �̂, is the Fisher information matrix. For
small deviations from the ML estimate, the distribution is
Gaussian. This expression holds for large values of the
SNR (3.10). It is worth emphasizing at this point that, in
our evaluation of Eq. (3.12), most derivatives are taken
numerically using finite differencing—the complicated
nature of the signal (due to the inclusion of spin preces-
sion) makes it essentially impossible to evaluate all but a
few of our derivatives analytically. This is another reason
that the code we have developed for this analysis is sub-
stantially slower than those developed for analyses which
do not include spin-precession physics.

Now we return again to the two detector case. Using
(3.5), we can write a total Fisher matrix as the sum of the
individual Fisher matrices for each detector:

 �tot
ab � �I

ab � �II
ab: (3.13)

The Fisher matrix is then inverted to produce the covari-
ance matrix �ab � ���1

tot �
ab. The diagonal terms of the

covariance matrix represent measurement errors:

 ��a 	
�����������������
h���a�2i

q
�

��������
�aa

p
: (3.14)

The off-diagonal terms can be expressed as correlation
coefficients, ranging from �1 to 1:

 cab 	
h��a��bi

��a��b
�

�ab����������������
�aa�bb
p : (3.15)

B. LISA detector and astrophysical noise

We turn now to a discussion of the noise we expect in
LISA measurements. Our model for the instrumental noise
spectrum, Sinst

h �f�, is based on that described in Ref. [55].
(From now on, we use the notation Sh for strain noise
instead of Sn for general noise.) In particular, we use the
online sensitivity curve generator provided by S. Larson,
which implements the recipe of [55] (see [56]). The output
of Larson’s webtool gives a sky averaged amplitude sensi-
tivity curve, hLarson. To convert to the noise we need for our
analysis, we square this amplitude and insert two numeri-
cal factors:

 Sinst
h �f� �

1

5
�

� ���
3
p

2
hLarson

�
2
�

3

20
h2

Larson: (3.16)

The factor of 1=5 accounts for the averaging of the antenna
pattern functions over all sky positions and source orienta-
tions. This factor is only correct for measuring radiation
with wavelength �� L (where L is the LISA arm length).
As a consequence, our instrumental noise will be inaccu-
rate at high frequencies. This will have little impact on our
analysis since, as already argued, the signal from merging
binary black holes accumulates at low frequencies.

The factor
���
3
p
=2 arises due to the 60� opening angle of

the interferometer arms; we have already accounted for
this factor in our discussion of the interferometer’s inter-
action with a GW [cf. Eqs. (2.19) and (2.25)]. The numeri-
cal factor 3=20 has been the source of some confusion;
Berti, Buonanno, and Will very nicely straightened this
out. See Sec. IIC of Ref. [7] for further discussion of these
factors.

Besides purely instrumental noise, LISA data will con-
tain ‘‘noise’’ from a background of confused binary
sources,8 mostly white dwarf binaries. An isotropic back-
ground of indistinguishable sources can be represented as
noise with spectral density [27]

 Sconf
h �f� �

3

5�
f�3�c�GW�f�; (3.17)

where �c � 3H2
0=8� is the critical energy density to close

the universe and �GW � �f=�c�d�GW=df is the energy
density in GWs relative to �c per logarithmic frequency
interval. Using this form and the results of Farmer and
Phinney [57], we model the confusion noise due to extra-
galactic binary sources by

 Sexgal
h �f� � 4:2� 10�47

�
f

1 Hz

�
�7=3

Hz�1: (3.18)

From Nelemans et al. [58], we take the galactic white
dwarf confusion noise to be

 Sgal
h �f� � 2:1� 10�45

�
f

1 Hz

�
�7=3

Hz�1: (3.19)

The combined instrumental and galactic confusion noise is
given by [27]
 

Sinst�gal
h �f� � minSinst

h �f�= exp���T�1
missiondN=df�;

Sinst
h �f� � S

gal
h �f��: (3.20)

The choice taken in Eq. (3.20) reflects the fact that, at
sufficiently high frequency, the number of binaries per
bin should be small enough that they are no longer truly
confused and can be subtracted from the data stream (at
least partially). The factor exp���T�1

missiondN=df� is the
fraction of ‘‘uncorrupted’’ frequency bins. We choose � �
4:5 [59], Tmission is the mission duration (which we take to
be three years), and

 

dN
df
� 2� 10�3

�
1 Hz

f

�
11=3

Hz�1 (3.21)

is the number density of galactic binaries per unit fre-
quency [6].

8While surely noise when studying cosmological black holes,
this background is signal to those interested in stellar
populations.
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Finally, the total noise is given by

 Sh�f� � Sinst�gal
h �f� � Sexgal

h �f�: (3.22)

IV. RESULTS

A. Procedure

1. Parameter space

Seventeen parameters describe the most general binary
black hole inspiral waveform [26]. Two of these are the
orbital eccentricity and the orientation of the orbital el-
lipse; since we only consider circular orbits, we can ignore
these two. The other 15 parameters are all necessary to
describe the full post-Newtonian waveform with preces-
sion effects that we described in Sec. II.

We divide this set into intrinsic and extrinsic parameters.
In our labeling system, intrinsic parameters are those
which label properties intrinsic to the binary itself; extrin-
sic parameters label properties which depend upon the
position and placement of the binary relative to the ob-
server. One can regard intrinsic parameters as describing
the physics or astrophysics of the binary system, and
extrinsic parameters as describing the binary’s astronomi-
cal properties.

The intrinsic parameters we use are lnm1; lnm2;
��L�0� 	 cos ��L�0�� and ��L�0�, the initial direction of the

orbital angular momentum; ��S1
�0� 	 cos ��S1

�0��, ��S1
�0�,

��S2
�0� 	 cos ��S2

�0��, and ��S2
�0�, the initial directions of

the spins; 	1 and 	2, the dimensionless spin parameters; tc,
the time at coalescence; and �c, the phase at coalescence.
(Note that tc and �c could very well be considered extrin-
sic in our labeling system, since they just label the system’s
state at some particular time. At any rate, neither tc nor �c
is of much physical interest, so their categorization is not
too important.) Our extrinsic parameters are ��N � cos ��N
and ��N , the sky position in barycenter coordinates; and
lnDL, the luminosity distance to the binary. All of these
parameters must be fit in a measurement and thus must be
included in our Fisher matrix analysis. We are not neces-
sarily interested in all of them, however. In particular, we
will focus on the masses, the dimensionless spin parame-
ters, the sky position, and the luminosity distance.

It is worth noting that this choice of parameters is not the
same as that used in analyses which neglect precession. In
that case, the direction of the angular momentum L̂ is
constant, and so the system’s orientation is constant and
fully described using two angles (e.g., ��L and ��L).
Including precession, L̂ is no longer constant, but evolves
according to (2.11). The solution to this differential equa-
tion requires two initial conditions, for instance, ��L�0� and
��L�0�, which can be used as parameters of the system.

Since these initial conditions are taken at the (somewhat
arbitrary) starting point of our calculations, they do not
hold much physical interest (though they must be fit for and
thus included in our Fisher matrix).

Previous analyses, including the precursor to this work
[6], have used� (2.5) and� (2.6) as parameters—these are
constants when precession is neglected. They are also the
only combinations of the spin magnitudes and spin angles
that enter into the expression for the waveform. Boiling the
six numbers which characterize S1 and S2 down to two
greatly simplifies the parameter space, but also restricts us
from being able to measure, for example, the black holes’
spin magnitudes. When precession is included,� and� are
no longer constants. In addition, they no longer fully
characterize the signal, since the precession equations
(2.9), (2.10), and (2.11) depend on all of the components
of the spins. We thus need six spin-related parameters to
fully describe the signal: the magnitudes of the spins and
their orientations at some initial time. The orientations are
again uninteresting, but the fact that we can measure the
magnitudes of the spins and quantify their errors is quite
interesting and new to this analysis.

Finally, we break from tradition and use lnm1 and lnm2

to parametrize our masses rather than lnM and ln�. The
chirp mass and reduced mass have been used in most
previous work because of their appearance in the waveform
phase ��f�. However, the precession equations, as well as
the spin parameters � and �, depend on the individual
masses of the black holes. It is a simple matter in principle
to just solve for m1;2�M; �� and substitute into the pre-
cession equations. Unfortunately, the Jacobian of the trans-
formation between �M; �� and �m1; m2� is singular when
m1 � m2, leading to problems in evaluating the Fisher
matrix.

These problems can be illustrated analytically. Consider
how derivatives of some function f�m1; m2�with respect to
M behave:

 

@f
@M

�
X2

i�1

@f�m1; m2�

@mi

@mi�M; ��
@M

: (4.1)

When m1 � m2, the final derivative diverges—a behavior
that we have seen numerically. The Fisher information is
infinite, and the Gaussian approximation breaks down; the
same problem occurs for �. Thus, we argue that, when
precession is included, M and � are no longer a good
choice of parameters to describe the system. Since we are
still interested in the errors in lnM and ln� (which are
determined to higher accuracy than the individual masses),
we convert using the propagation of errors formulas

 �
�M

M

�
2
�

�
m1

M

�
2
�
@M
@m1

�
2
�

�m1

m1

�
2

�

�
m2

M

�
2
�
@M
@m2

�
2
�
�m2

m2

�
2

�

�
m1m2

M2

��
@M
@m1

��
@M
@m2

�
�lnm1;lnm2 ; (4.2)
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�
�lnm1;lnm2 : (4.3)

For unequal masses, we find that computing errors in m1

and m2 and then converting gives the same result as simply
computing errors in M and� directly. We do not find good
agreement in the equal mass case; for the reasons discussed
above, however, we do not trust the �M; �� parametriza-
tion in this case. At any rate, the case m1 � m2 is quite
implausible in nature, so this is almost certainly a moot
point as far as real measurements are concerned.9 We note
that Vecchio [26], for simplicity, considers the equal mass
case exclusively but does not report any anomalous behav-
ior such as we have seen. We are puzzled about this
discrepancy.

2. Calculations

The code we use to calculate parameter measurement
errors is based on that used in [6]. It is written in C�� using
several routines taken, sometimes with slight modification,
from [60]. As in [6], we perform Monte Carlo simulations
in which we specify rest-frame masses and redshift and
then randomly choose sky position, initial angular momen-
tum and spin directions, spin magnitudes, and time of
coalescence within the three-year LISA mission window.
We specify spin magnitudes for some studies as well.

The primary function of the code is the calculation of the
full gravitational waveform, including precessional effects.
In order to effectively use the formulas of Sec. III, we take
the wave frequency f as the independent variable. The
elapsed time is related to the frequency using (2.7). The
calculation is started when the waveform enters LISA’s
band (taken to be fmin � 3� 10�5 Hz throughout this
paper) or when the LISA mission begins, whichever is
later. (By treating the time of coalescence as a
Monte Carlo variable, some signals will be partially cut
off because they are already in band when LISA begins
observations.) The calculation proceeds until the binary
reaches the Schwarzschild innermost stable circular orbit
(ISCO) at orbital separation r � 6M. Though perhaps a
somewhat crude choice, we use this criterion for simplicity.
Choosing slightly different cutoff radii does not change our
results very much; at any rate, the post-Newtonian phase
formula and precession equations we use in this regime are
unlikely to be very accurate. The frequency at this point,
which we call the ‘‘merge frequency,’’ can be found using
(2.1) for r � 6M (plus f � �=�). Note that f depends on
the directions of the angular momentum and spin vectors as
a function of time; since we have not found them yet, this
value can only be an estimate of where to stop. Any

error due to this approximation is no doubt unimportant
compared to the arbitrary selection of r � 6M for the
transition.

Once the frequency range has been determined, the true
work begins. We integrate the precession equations (2.9),
(2.10), and (2.11) using a Runge-Kutta routine to find the
values of L̂, Ŝ1, and Ŝ2 over the duration of the signal. The
routine is a fifth-order adaptive step algorithm in the fre-
quency domain. At each frequency, the code takes the
results for the three orbital angular momentum components
and six spin components and uses them to calculate ��L,
��L, �, and �. It also computes the integrated correction to

the phase using the derivative (2.14).
As already discussed, our derivatives are taken numeri-

cally rather than analytically. We therefore must do the
integration described above a total of 21 times: once for the
given values of the parameters, and twice more for small
shifts in each parameter which requires a numerical de-
rivative. This repetition slows the code quite drastically
compared to its earlier incarnation—an unfortunate but
unavoidable cost.

Once all of the necessary integrations are complete, the
SNR (3.10) and the Fisher matrix (3.12) can be calculated
for each of the two effective detectors of LISA using the
noise Sh�f� (see Sec. III B). Some previous work [5,7]
investigated parameter estimation using the signal from
only one synthesized detector; we will always assume
that both are operational. It would be interesting to see
how measurement degradation due to only having a single
operating detector can be ameliorated by including preces-
sion effects.

At this stage, the necessary integrals are performed
using Curtis-Clenshaw quadrature, which depends on the
decomposition of the integrand into Chebyshev polyno-
mials [60]. This method keeps the code reasonably fast
even with the addition of the Runge-Kutta routine. At each
step of the integration, the integrator uses the values that
were calculated using that Runge-Kutta routine to evaluate
the waveform and/or its appropriate derivatives. The de-
rivatives are calculated using

 

df
d�
�
f��� ��

2 � � f���
��
2 �

��
: (4.4)

For all parameters, we use �� � 10�5�. We invert the
Fisher matrix using LU decomposition to produce the
covariance matrix [60]. In ‘‘poor’’ cases (e.g., high mass
binaries at large redshift), the Fisher matrix can be nearly
singular, with a large condition number.10 In such a case,
the covariance matrix produced by the code may not be the
true inverse of the Fisher matrix (and may not even be

9It is worth noting that even a slight mass difference (a few
percent) is sufficient for the two approaches to match.

10The ‘‘condition number’’ is the ratio of the largest eigenvalue
of a matrix to the smallest. A rule of thumb is that matrix
inversion breaks down when the logarithm of the condition
number of a matrix exceeds the number of digits of accuracy
in the matrix elements (see, e.g., discussion in [60]).

MEASURING COALESCING MASSIVE BINARY BLACK . . . PHYSICAL REVIEW D 74, 122001 (2006)

122001-13



positive definite). This problem is largely ameliorated by
representing our numerical data in long double for-
mat—this improves (relative to type double) matrix
inverses in many ‘‘bad’’ cases but leaves all other cases
essentially unchanged.

It is worth noting that the bad cases are typically ones in
which the binary executes very few orbits over the course
of the measurement. We are confident in our results for all
cases in which the number of measured orbits, Norb �
�orb=2�, is greater than �10–20. When the number of
orbits is small (and the condition number is concomitantly
high), the errors are so large that they are basically mean-
ingless. In such a case, measurement would not determine
the system’s characteristics in any meaningful sense.

B. Black hole masses and spins

Representative examples of our results are shown in
Figs. 2 and 3. These histograms show the spread of errors
in M and� for a sample of 104 binaries at z � 1 with rest-
frame masses m1 � 106M� and m2 � 3� 105M�. Each
figure compares the results of the new code to those of the
original code of [6], which neglects precession. (This code
has been updated to reflect up-to-date models for LISA
noise; some minor coding errors have also been corrected.)
Clearly, including spin precession leads to a significant
improvement in the measurement of these mass parame-
ters. The reduced mass �, in particular, is improved. This
is because the time variation of � and � breaks a near
degeneracy between those terms and � in the post-
Newtonian phase (2.34). The masses also control the pre-
cession rate, as seen in (2.9), (2.10), and (2.11). (Recall
that, in those equations, Si � 	im2

i .) This means that they

now influence the polarization amplitude and polarization
phase; they do not influence those quantities when preces-
sion is neglected. These precession-induced influences on
the waveform make it possible to determine the masses
even more accurately than before.

As discussed earlier, we have found the masses m1 and
m2 to be more useful parameters than M and � when
precession is included. Figure 4 shows the error in mea-
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FIG. 3. Distribution of errors in reduced mass � for 104

binaries with m1 � 106M� and m2 � 3� 105M� at z � 1.
The dashed line is the precession-free calculation; the solid
line includes precession. Precession has an enormous effect on
the reduced mass, which was previously highly correlated with
the parameters � and �.
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FIG. 2. Distribution of errors in chirp mass M for 104 binaries
with m1 � 106M� and m2 � 3� 105M� at z � 1. The dashed
line is the precession-free calculation; the solid line includes
precession. Precession reduces the measurement error by about
an order of magnitude.
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FIG. 4. Distribution of errors in individual hole masses for 104

binaries at z � 1. The solid line is m1 � 106M�, while the
dashed line is m2 � 3� 105M�. The individual masses are not
determined as well as M and �, but they are better behaved
parameters when precession is introduced.
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surements of the individual masses for our example sys-
tem. While these masses are measured quite accurately,
they are not measured as accurately as M and �. This
reflects the fact that, even though the individual masses
play a role in the precession, the other parts of the wave-
form depend explicitly on the combinations M and �.
Notice also that the smaller mass is typically determined a
bit better than the larger one, though the difference is not
large.

Precession makes it possible to determine the spins of
the binary’s members. Figure 5 shows the error in mea-
surements of the two dimensionless spin parameters 	1 and
	2. We see that 	 is generally determined very well:
Taking a typical spin parameter to be about 0.5 (recall we
randomly choose 	 between 0 and 1), the bulk of this
distribution corresponds to errors of a bit less than a
percent. For this entirely random distribution of 	, the
dimensionless spin parameter of the larger hole tends to
be better determined than that of the smaller hole. This
appears to be a simple consequence of the fact that black
hole spin scales as mass squared (Si � 	im2

i ), and larger
spin has more of an impact on the waveform.

Next, we examine how well spin is measured as a
function of spin magnitude. Figure 6 shows the error in
	1 for the same system as in Fig. 5, except that we set 	1 �
	2 � 0:9 (solid line) and 	1 � 	2 � 0:1 (dashed line),
rather than randomly distributing their values. This allows
us to more accurately assess how well spin is determined as
a function of its value, as well as to more accurately
determine the percent error we expect in these measure-
ments. For 	1 � 	2 � 0:1, the error is almost 10%, while

for 	1 � 	2 � 0:9, the error is closer to 0.1%. This is a
considerable difference and is easily ascribed to the fact
that rapid spin has a much stronger impact on the
waveform.

Table I shows the median errors in intrinsic parameters
for different mass ratios at z � 1. We continue to include
the errors in M and� for comparison with the precession-
free case, but only in binaries of unequal mass where the
Gaussian approximation is well defined. Examining the
table, we see some interesting features. The errors, in
general, are worse for higher mass binaries, which spend
less time in the LISA band. At m1 � m2 � 107M�, the
mass errors jump to nearly 10%, compared to tenths of a
percent at the next lower mass combination. In addition,
the spin determination becomes very unreliable. Mass ratio
also has an important effect on the results. Taking into
account the general trend caused by total mass, we see that
unequal mass ratios generally produce better results. This
is good news for eventual measurements of astrophysical
systems, since merger tree calculations show that binaries
are most likely to have mass ratios of about 10 [51]. To
understand the mass ratio dependence, we again turn to the
precession equations (2.9), (2.10), and (2.11). For unequal
mass ratios, the geodetic spin-orbit and spin-spin terms
will cause the two spins to precess at different rates, creat-
ing richer features in the signal than for equal mass ratios.
This illustrates the importance of effects beyond the ‘‘sim-
ple precession’’ of [26,29]. We also see that the trends of
Figs. 4 and 5 hold for each unequal mass binary in the
table. That is, the mass of the smaller hole is determined
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FIG. 5. Distribution of errors in dimensionless spin parameters
	1 (solid line) and 	2 (dashed line) for 104 binaries with m1 �
106M� and m2 � 3� 105M� at z � 1. In each binary, the spin
values are randomly selected between 0 and 1. The higher mass
then has, on average, higher total spin and more effect on the
precession.
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FIG. 6. Distribution of errors in dimensionless spin parameter
	1 for 104 binaries with m1 � 106M� and m2 � 3� 105M� at
z � 1. Here, spin magnitudes have been set to a specified
value—low spin, 	1 � 	2 � 0:1 (dashed line), and high spin,
	1 � 	2 � 0:9 (solid line). Since greater spin more strongly
impacts the waveform, the high spin case is measured more
accurately.
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better than the mass of the larger hole, but the spin of the
larger hole is determined better than the spin of the smaller
hole.

Tables II and III show the same results for z � 3 and
z � 5, respectively. The trends we see at z � 1 largely
continue at these redshifts. In general, the errors get worse
at higher redshift as the signal amplitude degrades and
more of the signal is redshifted out of band. It is worth
noting that the change is generally greater from z � 1 to
z � 3 than from z � 3 to z � 5. This effect was also seen
by Berti, Buonanno, and Will [7] and can be explained by
considering the redshift dependence of the wave ampli-
tude. Neglecting all the angular factors and remembering
to redshift quantities with the dimensions of time, we find
that the amplitude scales like �1� z�=DL�z� � 1=DM�z�,
where DM�z� is the proper motion distance. This distance
measure varies more strongly with z at low redshift than at
high redshift. (See [61] for a plot of DM�z�.) Consequently,

when moving from z � 1 to z � 3, the amplitude, and thus
the SNR, decreases more than when moving from z � 3 to
z � 5. For lower mass binaries, this amplitude decrease
plays a bigger role in the loss of SNR than does redshifting
the spectrum to a lower frequency; most of the SNR is
accumulated late in the inspiral, where the orbits are in a
relatively flat region of the sensitivity curve.

By contrast, for the highest mass binaries, redshifting of
the spectrum can have a dramatic effect. So much of their
signal is moved out of band that LISA may measure their
waves for only a very short time. As such, measurement
may not provide sufficient information to constrain 15 pa-
rameters. This is reflected in the high condition numbers
associated with such cases. Their Fisher matrices are thus
nearly singular, and their inverses are untrustworthy. In
fact, measurement error in these binaries actually degrades
when precession is included. The time in band is too short
for precession effects to accumulate. They do not aid

TABLE II. Median errors in intrinsic quantities for 104 binaries of various masses at z � 3.

m1�M�� m2�M�� �m1=m1 �m2=m2 �	1 �	2

�M=M
(no precession)

�M=M
(precession)

��=�
(no precession)

��=�
(precession)

105 105 0.002 95 0.002 95 0.0165 0.0160 
 
 
 
 
 
 
 
 
 
 
 


3� 105 105 0.003 23 0.002 62 0.006 68 0.0144 0.000 422 3:27� 10�5 0.0742 0.001 16
3� 105 3� 105 0.004 76 0.004 74 0.0245 0.0240 
 
 
 
 
 
 
 
 
 
 
 


106 105 0.002 74 0.001 93 0.003 53 0.0188 0.001 24 6:75� 10�5 0.133 0.001 51
106 3� 105 0.005 51 0.004 41 0.008 79 0.0187 0.001 82 9:42� 10�5 0.238 0.002 12
106 106 0.0120 0.0120 0.0576 0.0568 
 
 
 
 
 
 
 
 
 
 
 


3� 106 3� 105 0.004 84 0.003 46 0.004 82 0.0299 0.006 83 0.000 283 0.485 0.002 71
3� 106 106 0.0160 0.0131 0.0174 0.0342 0.007 46 0.000 675 0.606 0.005 85
3� 106 3� 106 0.0690 0.0678 0.402 0.404 
 
 
 
 
 
 
 
 
 
 
 


107 106 0.0250 0.0287 0.0359 0.333 0.0195 0.009 51 0.690 0.0243
107 3� 106 0.437 0.346 0.327 0.619 0.0192 0.0704 0.646 0.177
107 107 21.6 21.2 104 104 
 
 
 
 
 
 
 
 
 
 
 


TABLE I. Median errors in intrinsic quantities for 104 binaries of various masses at z � 1, including comparisons with the ‘‘no
precession’’ case where possible. We have omitted the errors in chirp mass and reduced mass for equal mass binaries because that
parametrization of the waveform fails the Gaussian approximation at those points.

m1�M�� m2�M�� �m1=m1 �m2=m2 �	1 �	2

�M=M
(no precession)

�M=M
(precession)

��=�
(no precession)

��=�
(precession)

105 105 0.000 629 0.000 629 0.003 60 0.003 55 
 
 
 
 
 
 
 
 
 
 
 


3� 105 105 0.000 584 0.000 475 0.001 16 0.002 62 6:15� 10�5 5:33� 10�6 0.0119 0.000 210
3� 105 3� 105 0.000 890 0.000 888 0.004 79 0.004 68 
 
 
 
 
 
 
 
 
 
 
 


106 105 0.000 557 0.000 393 0.000 791 0.004 28 0.000 161 1:12� 10�5 0.0187 0.000 307
106 3� 105 0.000 998 0.000 796 0.002 00 0.004 29 0.000 177 1:19� 10�5 0.0285 0.000 383
106 106 0.001 61 0.001 61 0.008 04 0.007 78 
 
 
 
 
 
 
 
 
 
 
 


3� 106 3� 105 0.000 819 0.000 580 0.000 965 0.005 29 0.000 606 2:53� 10�5 0.0572 0.000 454
3� 106 106 0.002 04 0.001 65 0.002 79 0.005 57 0.001 31 4:52� 10�5 0.149 0.000 732
3� 106 3� 106 0.005 13 0.005 14 0.0250 0.0254 
 
 
 
 
 
 
 
 
 
 
 


107 106 0.002 09 0.001 60 0.001 95 0.0152 0.008 26 0.000 238 0.496 0.001 27
107 3� 106 0.007 43 0.006 05 0.007 17 0.0163 0.008 82 0.000 630 0.614 0.003 01
107 107 0.0903 0.0886 0.542 0.542 
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parameter estimation; instead, the need to fit extra parame-
ters causes errors to be worse.

C. Sky position and distance to source

We now focus on extrinsic parameters, the sky position
and the luminosity distance to the source. We find that the
determination of these parameters is likewise improved
when precession physics is taken into account, though
not as strongly as for intrinsic parameters. This might be
expected, since precession is an intrinsic effect local to the
binary and has no direct dependence on these extrinsic
parameters. Precession’s impact on the extrinsic parame-
ters is somewhat more indirect—it largely improves their
determination by reducing the (otherwise quite strong)
correlation between sky position and the orbital angular
momentum direction L̂ and between these angles and the
source’s luminosity distance.

In our analysis, a binary’s position on the sky is charac-
terized by the two parameters � � � ��N � cos ��N; ��N�.
Consider the subspace containing just these two parame-
ters. The Fisher matrix is a 2� 2 matrix which character-
izes the probability density for the true parameters given a
measured signal [see (3.11)]:

 p� ~�js� / exp��1
2�ab��

a��b�: (4.5)

To accurately describe the error ellipse on the sky, we need
to manipulate the right-hand side of (4.5) in several ways.
First, we change coordinates from ��N to ��N , while leaving
��N alone; schematically, we can represent this as �a !
�a
0
. This transformation gives � ��N � �d ��N=d ��N�� ��N �

�� ��N= sin ��N .
Next, we need to redefine what we mean by ‘‘error’’ in

order to make the results more relevant to observations. To
do so, we define the ‘‘proper’’ angular errors � ��pN � � ��N
and � ��p

N � sin ��N� ��N . The proper angular errors are just
the normal coordinate errors rescaled by the metric of the

sphere to correctly account for the proper size of a segment
� ��N at different ��N . Substituting all of these changes into
(4.5), we obtain

 p� ~�js� / exp��1
2�

p
a0b0��

a0
p ��

b0
p �; (4.6)

where we have defined a proper Fisher matrix for the
parameters � ��N; ��N�. In terms of the original Fisher matrix,
the elements are

 �p��N ��N
� sin2 ��N� ��N ��N

; (4.7)

 �p��N ��N
� �p��N

��N
� �� ��N

��N
; (4.8)

 �p��N
��N
� csc2 ��N� ��N

��N
: (4.9)

Finally, we diagonalize the Fisher matrix by rotating our
parametrization, �a

0
! �â, such that the probability (4.6)

becomes

 p� ~�js� / exp
�
�

�
���1̂

p�
2

2��p
1̂
�2
�
���2̂

p�
2

2��p
2̂
�2

��
: (4.10)

In these coordinates, the covariance matrix is

 �â b̂
p �

��p
1̂
�2 0

0 ��p
2̂
�2

" #
: (4.11)

Following Cutler [5], we define the error ellipse such that
the probability that the source lies outside the error ellipse
is e�1. The semiaxes of the error ellipse are given by�����������������

2��p
1̂;2̂
�2

q
. These quantities follow from the eigenvalues

of the covariance matrix (4.11); since eigenvalues are
invariant under rotation, we can calculate them before
performing the rotation. In terms of our original covariance
matrix, the major axis 2a and minor axis 2b of the ellipse
are given by

TABLE III. Median errors in intrinsic quantities for 104 binaries of various masses at z � 5. The results for the highest masses are
meaningless—the parameters are completely undetermined.

m1�M�� m2�M�� �m1=m1 �m2=m2 �	1 �	2

�M=M
(no precession)

�M=M
(precession)

��=�
(no precession)

��=�
(precession)

105 105 0.006 46 0.006 45 0.0348 0.0340 
 
 
 
 
 
 
 
 
 
 
 


3� 105 105 0.007 35 0.005 97 0.0151 0.0312 0.001 07 8:06� 10�5 0.178 0.002 64
3� 105 3� 105 0.0109 0.0109 0.0542 0.0527 
 
 
 
 
 
 
 
 
 
 
 


106 105 0.005 95 0.004 21 0.007 01 0.0384 0.003 36 0.000 184 0.313 0.003 30
106 3� 105 0.0133 0.0107 0.0183 0.0387 0.004 58 0.000 309 0.491 0.005 16
106 106 0.0373 0.0374 0.181 0.184 
 
 
 
 
 
 
 
 
 
 
 


3� 106 3� 105 0.0141 0.0105 0.0130 0.0961 0.0122 0.001 35 0.652 0.008 30
3� 106 106 0.0517 0.0426 0.0515 0.105 0.0113 0.003 74 0.635 0.0193
3� 106 3� 106 0.422 0.419 2.60 2.60 
 
 
 
 
 
 
 
 
 
 
 


107 106 0.260 0.315 0.387 3.41 0.0416 0.137 0.713 0.273
107 3� 106 15.5 11.5 10.1 16.4 0.120 2.75 0.797 5.97
107 107 57 400 57 100 262 000 261 000 
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 2
�

csc2 ��N� ��N ��N � sin2 ��N�
��N

��N

�

������������������������������������������������������������������������������������������������
�csc2 ��N� ��N ��N � sin2 ��N�

��N
��N �2 � 4�� ��N

��N �2
q �

1=2
;

(4.12)

taking the plus and minus for major and minor axes,
respectively. We also find the area of the error ellipse:

 ��N � �ab � 2�
������������������������������������������������������
� ��N ��N�

��N
��N � �� ��N

��N �2
q

: (4.13)

Many previous analyses have reported the ellipse’s area
��N or

�����������
��N

p
, the side of a square of equivalent area, as

the sky position error [5,7,10]. Information about the el-
lipse’s shape, crucial input to coordinating GW observa-
tions with telescopes, is not included in such a measure. By
examining both 2a and 2b, this information is restored.
Figure 7 shows the major axis of the error ellipse 2a for
both the original code, with no precession, and the code
including precession effects. Figure 8 shows the same for
the minor axis 2b. (Note that these figures cannot tell us
which major axis is associated with which minor axis; that
information is lost in the construction of the histograms.)

Compared to the code which does include precession
physics, the peak of the major axis distribution is reduced
by about an order of magnitude; the median of this distri-
bution is reduced by about a factor of 2. For the minor axis,
both the peak and median are reduced by about a factor of
2. The minor axis distribution also shows a long tail of very
small errors. In those cases, the position would be very well
constrained in one direction.

Finally, we examine how well distance to the binary is
determined. Figure 9 compares �DL=DL both with and
without precession physics taken into account. For this
case, the distance error improves by a factor �2–3.

Table IV shows the median extrinsic errors for binaries
of different mass. For comparison purposes, we include
results that neglect spin precession. Binaries with the
best determined parameters at this redshift have total
mass several� 105M� & Mtot & several� 106M�—
smaller binaries are not determined quite so well due to
the weakness of their signal, while larger ones are not
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FIG. 7. Distribution of the major axis of the sky position error
ellipse, 2a, for 104 binaries with m1 � 106M� and m2 � 3�
105M� at z � 1. The dashed line is the precession-free calcu-
lation; the solid line includes precession. Sky position, as an
extrinsic parameter, is improved somewhat indirectly by preces-
sion; therefore, the improvement is less than for the masses.
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FIG. 8. Distribution of the minor axis of the sky position error
ellipse, 2b, for 104 binaries with m1 � 106M� and m2 � 3�
105M� at z � 1. The dashed line is the precession-free calcu-
lation; the solid line includes precession.
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FIG. 9. Distribution of errors in the luminosity distance for 104

binaries with m1 � 106M� and m2 � 3� 105M� at z � 1. The
dashed line is the precession-free calculation; the solid line
includes precession.
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TABLE V. Median errors in extrinsic quantities for 104 binaries of various masses at z � 3.

m1�M�� m2�M��
2a (arcmin)

(no precession)
2a (arcmin)
(precession)

2b (arcmin)
(no precession)

2b (arcmin)
(precession)

�DL=DL

(no precession)
�DL=DL

(precession)

105 105 228 47.5 98.7 25.9 0.0339 0.006 60
3� 105 105 205 54.1 90.9 28.0 0.0308 0.007 75
3� 105 3� 105 190 88.4 86.5 48.7 0.0290 0.0129
106 105 205 73.7 108 28.6 0.0337 0.0112
106 3� 105 199 72.5 97.9 41.7 0.0310 0.0107
106 106 265 102 134 55.5 0.0444 0.0143
3� 106 3� 105 266 75.4 141 33.4 0.0442 0.0112
3� 106 106 404 87.5 208 48.6 0.0714 0.0127
3� 106 3� 106 777 156 366 81.7 0.125 0.0267
107 106 1040 142 489 74.8 0.166 0.0229
107 3� 106 2050 232 908 123 0.309 0.0854
107 107 6200 2130 2660 630 0.903 4.81

TABLE IV. Median errors in extrinsic quantities for 104 binaries of various masses at z � 1, including comparisons with the ‘‘no
precession’’ case. Note that the given major axis and minor axis are the medians for each data set and do not correspond to the same
binary. However, they still represent an average sky position error ellipse in the following sense:

����������
�ab
p

, calculated using the median
values of 2a and 2b, differs in most cases by less than 10% from the median value of

������������
��N

p
calculated from the covariance matrix and

(4.13).

m1�M�� m2�M��
2a (arcmin)

(no precession)
2a (arcmin)
(precession)

2b (arcmin)
(no precession)

2b (arcmin)
(precession)

�DL=DL

(no precession)
�DL=DL

(precession)

105 105 70.9 15.5 30.9 8.30 0.0104 0.002 12
3� 105 105 60.8 9.98 26.5 5.42 0.009 05 0.001 38
3� 105 3� 105 52.9 13.8 23.1 7.36 0.007 90 0.001 95
106 105 55.8 17.7 26.3 6.73 0.008 56 0.002 69
106 3� 105 49.7 19.2 23.7 11.2 0.007 70 0.002 89
106 106 50.7 24.4 23.9 13.3 0.007 74 0.003 47
3� 106 3� 105 51.8 18.4 26.8 7.42 0.008 42 0.002 78
3� 106 106 62.8 18.6 32.4 10.8 0.0103 0.002 81
3� 106 3� 106 87.8 27.4 46.7 15.4 0.0159 0.003 98
107 106 98.8 23.3 52.7 11.4 0.0177 0.003 42
107 3� 106 187 27.8 88.8 15.2 0.0301 0.004 00
107 107 396 63.0 179 31.3 0.0606 0.0246

TABLE VI. Median errors in extrinsic quantities for 104 binaries of various masses at z � 5. Again, the results for the highest
masses are essentially meaningless—the parameters are completely undetermined.

m1�M�� m2�M��
2a (arcmin)

(no precession)
2a (arcmin)
(precession)

2b (arcmin)
(no precession)

2b (arcmin)
(precession)

�DL=DL

(no precession)
�DL=DL

(precession)

105 105 383 100 168 53.5 0.0573 0.0142
3� 105 105 359 136 167 78.0 0.0548 0.0203
3� 105 3� 105 343 171 170 96.1 0.0549 0.0252
106 105 372 133 192 53.9 0.0608 0.0202
106 3� 105 434 133 222 76.2 0.0704 0.0198
106 106 624 199 325 112 0.113 0.0289
3� 106 3� 105 624 162 334 78.5 0.114 0.0237
3� 106 106 1230 196 587 108 0.201 0.0282
3� 106 3� 106 2430 405 1100 205 0.379 0.123
107 106 4300 468 1910 262 0.653 0.159
107 3� 106 9360 1690 4010 638 1.37 2.52
107 107 70 700 2:58� 106 29 600 263 000 10.1 9010
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determined so well because they radiate fewer cycles in
band. We also see again that unequal mass binaries give
better results than equal mass binaries due to the impact of
mass ratio on precession effects. Overall, we find that the
major axis of the error ellipse is on the order of 10 arcmi-
nutes for low mass and several tens of arcminutes for
higher mass, while the minor axis is a factor of 2 smaller.
This represents an improvement by a factor �2–6 over the
‘‘no precession’’ case. The distance errors are on the order
of 0.1%–0.4% for most masses, a factor of �2–7
improvement.

Tables V and VI show the same results for higher red-
shift. We see the same trends as at z � 1, but with some
degradation in numerical value. The sky position errors
reach a degree or more in the major axis and several tens of
arcminutes up to a degree or two in the minor axis. The
distance errors are on the order of 1 to several percent for
most masses. At the highest masses, we again see that these
parameters are essentially undetermined and that preces-
sion makes things worse by requiring extra parameters to
be fit.

V. SUMMARY AND CONCLUSIONS

The general relativistic precession of black holes in
binary systems can have a strong influence on the binary’s
dynamics [29,50] and thus upon the GWs that it generates.
It has been known for some time that it will be necessary to
take these dynamics into account in order to detect these
black holes in noisy detector data [19–25]; clearly, taking
these dynamics into account will be just as (if not more)
important for the complementary problem of determining
the parameters which characterize a detected system.
Vecchio [26] first demonstrated that, by taking into account
precession physics, quite a few near degeneracies among
binary source parameters can be broken, making our esti-
mates for how accurately they can be determined more
optimistic. This analysis largely confirms and extends
Vecchio’s pioneering work. By taking the equations of
motion to higher order to include spin-spin couplings,
and by surveying measurement accuracy as a function of
mass ratio, we have found that the improvement noted by
Vecchio holds rather broadly. The degeneracy breaking due
to precession physics is a rather robust phenomenon.

Two conclusions from this work are particularly impor-
tant with regard to the astrophysical reach of future LISA
measurements. The first is that modeling spin-precession
physics makes it possible to determine the magnitudes of
the spins of the black holes which constitute the binary. If
the spins are rapid, they can be measured quite accurately
(as good as 0.1% accuracy for high spin, low redshift
systems) due to the strong modulation imposed on the
signal by their interaction. Coupled with the fact that the
black hole masses can likewise be measured with good
precision, this suggests that LISAwill be a valuable tool for
tracking the evolution of both mass and spin over cosmic

time. Such observations could provide a direct window into
the growth of cosmological structures. Measuring spin may
also make it possible to indirectly test the black hole area
theorem [62]. The requirement that black hole area can
only grow implies a consistency relation between the initial
and final masses and spins. By measuring the initial masses
and spins through the inspiral, and the mass and spin of the
merged remnant hole through the ringdown waves [38,39],
we can check this consistency relation in a manner analo-
gous to the mass loss test proposed in [63]. We intend to
investigate whether this test is feasible in future work.

Second, we confirm Vecchio’s result that precession
breaks degeneracies between the angles which determine
a binary’s orientation and its position on the sky, improving
the accuracy with which sky position can be fixed using
GWs alone. At low redshift (z� 1), we find that sources
can be localized to within an ellipse whose major axis is
typically �10� a few� 10 arcminutes across and whose
minor axis is typically a factor �2 smaller. This is small
enough that searching the GW pixel for an electromagnetic
counterpart to the merger event should not be too arduous a
task [35]. For mergers at higher redshift, the waves weaken
and the source is not so well localized. The field which
would need to be searched for sources at z� 3–5 is typi-
cally about a degree to a few degrees across in the long axis
and tens of arcminutes to a degree or two in the short
direction—a rather more difficult challenge, but not hope-
less. We intend to more thoroughly investigate the nature
of localization with spin precession, including how the
pixel evolves with observation time up to final merger, in
future work.

As mentioned in the Introduction, our analysis makes
many assumptions and approximations which are likely to
affect our results; a goal of future work will be to lift these
approximations. One major concern is the Gaussian ap-
proximation we have taken to the likelihood function. As
already discussed, this approximation is known to be good
when the SNR is ‘‘large’’ [8,28]; however, it is not apparent
what large really means, particularly given that we are
fitting for 15 parameters. Lifting this simplifying approxi-
mation can be done by simply computing the likelihood
function (3.9) directly and examining how well parameters
are thereby determined. In the context of GW measure-
ments, Markov Chain–Monte Carlo techniques have been
investigated and found to be very useful [64–66]; the
application of these techniques to LISA measurement
problems is now being rather actively investigated
[67–69].

Because we have used the Gaussian approximation
(among other simplifications taken in this analysis), we
cannot claim that this analysis gives a definitive statement
about the accuracy with which LISA could measure binary
black hole source parameters. However, it is certainly
indicative of the accuracy which we expect LISA to
achieve. In particular, we are confident that the trends we
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have seen as parameters are varied (e.g., masses, redshift,
spin magnitude) are robust. Most importantly, it is very
clear that the influence of spin-induced precession upon the
measured waveform allows parameters to be measured to
greater accuracy than before.
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[54] É. É. Flanagan and S. A. Hughes, New J. Phys. 7, 204

(2005).
[55] S. L. Larson, W. A. Hiscock, and R. W. Hellings, Phys.

Rev. D 62, 062001 (2000).
[56] The sensitivity curve generator can be found online at

http://www.srl.caltech.edu/~shane/sensitivity/.
[57] A. J. Farmer and E. S. Phinney, Mon. Not. R. Astron. Soc.

346, 1197 (2003).
[58] G. Nelemans, L. R. Yungelson, and S. F. Portegies Zwart,

Astron. Astrophys. 375, 890 (2001).

[59] N. J. Cornish, gr-qc/0304020.
[60] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes in C (Cambridge University
Press, Cambridge, 1992).

[61] D. W. Hogg, astro-ph/9905116.
[62] S. W. Hawking, Phys. Rev. Lett. 26, 1344 (1971).
[63] S. A. Hughes and K. Menou, Astrophys. J. 623, 689

(2005).
[64] N. Christensen and R. Meyer, Phys. Rev. D 64, 022001

(2001).
[65] N. Christensen, R. J. Dupuis, G. Woan, and R. Meyer,

Phys. Rev. D 70, 022001 (2004).
[66] R. Umstätter, R. Meyer, R. J. Dupuis, J. Veitch, G. Woan,

and N. Christensen, Classical Quantum Gravity 21, S1655
(2004).

[67] N. J. Cornish and J. Crowder, Phys. Rev. D 72, 043005
(2005).

[68] N. J. Cornish and E. K. Porter, Classical Quantum Gravity
23, S761 (2006).

[69] N. J. Cornish and E. K. Porter, gr-qc/0605135.

RYAN N. LANG AND SCOTT A. HUGHES PHYSICAL REVIEW D 74, 122001 (2006)

122001-22


