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We study one-loop quantum corrections of a compactified Abelian 5d gauge field theory. We use a cut-
off regularization procedure which respects the symmetries of the model, i.e. gauge invariance, exhibits
the expected powerlike divergences and therefore allows the derivation of power-law behavior of the
effective 4d gauge coupling in a coherent manner.
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I. INTRODUCTION

Since a decade, it has been realized that large and/or
universal extra-dimensions could be included in models
beyond the standard model (SM) without being in conflict
with experimental data [1–3]. The SM can then be thought
as a low-energy limit of a higher-dimensional theory. This
kind of scenario offers new insights to challenging prob-
lems, like gauge hierarchy problem [2,4], supersymmetry
breaking [5], electroweak symmetry breaking [6], dark
matter [7], etc.

Higher-dimensional gauge field theories are nonrenor-
malizable and by dimensional analysis, powerlike diver-
gences will appear in the loop integrations. A well-known
feature of these theories is the powerlike quantum correc-
tions of effective four-dimensional gauge couplings [8].
For the purpose of computing loop corrections, it is of
fundamental importance to respect the symmetries of the
theory. On the one hand, dimensional regularization [9] is
well known to preserve gauge invariance but hides power-
like divergences. Extensions to extra-dimensional theories
are given in [10]. On the other hand, a naive proper-time
cut-off regularization provides the expected powerlike di-
vergences but breaks gauge symmetry (see for example
[11]). Other approaches, preserving the symmetries of the
theory are possible, for example, Pauli-Villars regulariza-
tion (see [12] for an application to extra-dimensions).

In this paper we study a compactified five-dimensional
Abelian gauge theory with a cut-off regularization which
preserves gauge invariance and exhibits powerlike diver-
gences (details and applications to other subjects are given
in [13]). We present briefly the model in Sec. II and
introduce the regularization to study Ward-identities in
Sec. III. We then focus on the calculation of the vacuum
polarization function, Sec. IV, to deduce the power-law
behavior of the effective four-dimensional gauge coupling
with respect to the cut-off, Sec. V. We end with a discussion
on the results.

II. A BRIEF PRESENTATION OF THE MODEL

The action of quantum electrodynamics (QED) in 5
dimensions, or a generic 5d Abelian gauge theory, is

 S �
Z
d5x

�
�1

4F
MNFMN � ���i�MDM �me��

�
(1)

with the capital indicesM;N � �0; 1; 2; 3; 5� � ��; 5�. The
gamma matrices are �M � ���; i�5� and the five-
dimensional covariant derivative is defined by

 DM � �@� � i~eA�; @5 � i~eA5�:

The compactification on a circle S1 implies the following
Fourier decomposition of the fields:

 ��xM� �
1����������

2�R
p

X�1
n��1

 �n��x��einx
5=R (2)

 A��x
M� �

1����������
2�R
p

X�1
n��1

A�n�� �x��einx
5=R (3)

 A5�xM� �
1����������

2�R
p

X�1
n��1

A�n�5 �x
��einx

5=R: (4)

The four-dimensional fields  �n�, A�n�� , A�n�5 are the
Kaluza-Klein (KK) excitations (or modes) of the original
five-dimensional fields �, A� and A5 respectively. Other
compactifications are possible and indeed widely studied
in the literature, depending on the precise field content and
masses one wants to obtain in the four-dimensional theory.
In the following we shall consider S1, but the method can
be easily applied to other cases (if one introduces an addi-
tional Z2 symmetry, for example).

Performing the integration over the extra-coordinate x5

in Eq. (1) leads to the effective 4d action:
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Z
d4xLgauge�fixing: (5)

The effective four-dimensional gauge coupling and the
mass matrices of the fermions are respectively

 e �
~e����������

2�R
p and Mn � me � i�5n=R:

The 4d sub-Lagrangian with zero-mode bosons and n
fermions is invariant under the following 4d U�1� gauge
transformations:

 A�0�� ! A�0�� �
1

e
@���x

�� A�0�5 ! A�0�5

 �n� ! ei��x
�� �n�:

(6)

This sector is the relevant one for the purpose of this paper.
It will be shown that theU�1� gauge symmetry is preserved
in the regularization procedure. The gauge-fixing term of
this sector is taken to be the usual Stückelberg Lagrangian:

 L gauge�fixing � �
�
2
�@�A�0�� �2: (7)

We will limit our study to renormalization in the effective
four-dimensional theory obtained after compactification.
For a comparison of the one-loop renormalization of the
full extradimensional theory with the four-dimensional
effective one see [14].

III. REGULARIZATION AND WARD IDENTITIES

Since we want to generate explicitly the high-energy
dependence of the correlations functions at one-loop in
our extra-dimensional model, we have to choose a cut-off
regularization procedure that fulfills the necessity of pre-
serving the U�1� gauge symmetry. Such procedure has
been developed in detail in [13]. The strategy is to deduce

all the integrals encountered during the regularization pro-
cedure from only one single integral. More precisely,
starting from

 I��;�� �
Z ddk

i�2��d
1

��k2 � �m2�
(8)

we can deduce all the integrals of the general form (ob-
tained after partial traces on gamma matrices and intro-
duction of Feynman parameters):

 

Z ddk

i�2��d
ka

�k2 �m2�b
(9)

by derivations of (8) with respect to � and �.
The starting integral can be computed with the

Schwinger proper-time method (for example, see [11]),
and reads

 I�1; 1�div � �
1

4�2 ��
2 �m2 log�2� (10)

where � is the cut-off. The identification of the cut-off with
a physical mass scale and the running with respect to the
scale are discussed in detail in [15].

It is worthwhile to mention that a key-point for the
consistency of the method is to take a special care of the
dimension d, which has be taken equal to 4 (resp. 2) for
logarithmic (resp. quadratic) terms (for further details, see
[13]).

The vacuum polarization function of the 4d photon, A�0�� ,
is the infinite sum of vacuum polarization in which massive
Kaluza-Klein excitations run in the loop

 i����p���e2
X�1

n��1

Z d4k

�2��4
Tr
�
��

1

6k�mn
��

1

6k� 6p�mn

�
:

(11)

 

Neglecting for the moment the sum over the Kaluza-Klein
modes, Eq. (11) is then formally equivalent to the standard
4-dimensional QED for a fermion of mass mn. Thus, the
polarization tensor reads

 i����p� � �4e2
Z d4k

�2��4
N��

�k2 �m2
n���k� p�2 �m2

n�

(12)

with

 N�� � k��k� � p�� � k��k� � p�� � g��k�k� p�

� g��m2
n:

After the regularization procedure, the divergent part of
����p� is
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 ���
div�p� � �

e2

12�2 �p
2g�� � p�p�� ln

�
�2

m2
n

�
: (13)

As it should be, ���
div�p� is transverse (independently of the

value of the Kaluza-Klein number n in the loop).
Moreover, it behaves logarithmically, in total agreement
with what is expected for gauge theories.

A complementary test of our regularization procedure is
the fact that the Ward identity between the three-point
function ���p; p� and the nth ‘‘electron’’ self-energy
��p� is satisfied. This test can also be worked out in
standard 4d QED using our regularization procedure. In
our effective model, one has to check that the two above
quantities, depicted diagrammatically below (we consider
here the diagrams for the zero-mode photon A�0�� stemming
from the effective four-dimensional action we have de-
scribed in Sec. II), satisfy the following relation:

 ���p; p� � �
@
@p�

��p� (14)

where the contributions to ���p; p� can be decomposed

into two parts ��1�� �p; p� and ��2�� �p; p�, respectively, rep-
resented by

 

Likewise, the contributions ��1��p� and ��2��p� to the nth
mode electron self-energy are

 

Following our regularization procedure, it is straightfor-
ward to obtain
 

�i��1��p� �
i��ie�2

16�2 log�2

��
1

�
� 3

�
Mn �

1

�
p6
�

�i��2��p� �
i�ie2�

32�2 log�2�2Mn � p6 �

�ie��1�� �p; p� �
���ie�3

16�2�
�� log�2

�ie��2�� �p; p� �
���ie�3

32�2 �� log�2

(15)

where � is the parameter of the Stückelberg gauge fixing
term, Eq. (7). We see explicitly that (14) is satisfied, the
gauge-invariance of the sector with the zero-mode A�0�� is
preserved.

IV. VACUUM POLARIZATION

The aim of this section is to apply our regularization
procedure to the vacuum polarization function of A�0�� in the
effective theory obtained by compactifying on S1 the origi-
nal 5-dimensional QED Lagrangian. Taking into account
the sum over the Kaluza-Klein modes, one obtains

 ���
div�p� � �

X1
n��1

e2

12�2 �p
2g�� � p�p��

	 ln
�

�2

m2
e � n2=R2

�
: (16)

Our strategy is then to separate the standard 4-dimensional
part (n � 0) from the extra dimension contributions (n �

0). Then, we have

 ln
� Y1
n��1

�2

m2
e � n2=R2

�
� ln

�
�2

m2
e

�

� 2 ln
�Y1
n�1

�2

m2
e � n2=R2

�
:

(17)

Some approximations can be done in order to simplify the
calculation of the previous expression (for an alternative
analytical approach see the appendix of [16]):

(1) m2
e 
 1=R2 This can be justified by the fact that we

assume the first Kaluza-Klein resonance to be far
above the fundamental mass, which is the case in
phenomenological applications [3].

(2) nmax � �R� 1 In the spirit of a Wilsonian effec-
tive theory [17], � is the typical scale that enables to
select the relevant degrees of freedom present in the
theory : thus the sum over n is truncated at some
value nmax ’ �R. Moreover since we are interested
in the high-energy behavior of the theory, we will
make the assumption nmax � 1 in the following.
The limits of the truncation of KK sums have been
discussed by Ghilencea [18]. It has been shown that,
when one performs the infinite KK sums, higher
derivative operators of higher dimension are gener-
ated as one-loop counterterms describing a nonde-
coupling effect of the very massive KK states.
However, this effect appears only in six dimensions
or when one sums over 2 KK numbers, which is not
our case.

Using these two approximations, we can then rewrite the
second term of Eq. (17) as

 ln
�Ynmax

n�1

�2R2

n2

�
� ln

�
��2R2��R

��R�!2

�
� 2�R� ln�R (18)

where the Stirling formula has been used in the last step.
Finally, the total contribution for the divergent part of

the vacuum polarization function reads

POWER LAW IN A GAUGE-INVARIANT CUT-OFF . . . PHYSICAL REVIEW D 74, 121702(R) (2006)

RAPID COMMUNICATIONS

121702-3



 ���
div�p� � �

e2

12�2 �p
2g�� � p�p���4�R�: (19)

In agreement with the results obtained in the literature [8],
the divergence is linear in the cut-off. We see by the
preceding manipulations that the power-law is the result
of the sum of the individual logarithmic contributions.

V. RENORMALIZATION OF THE 4d EFFECTIVE
COUPLING CONSTANT

In an Abelian theory, due to Ward identities, the beta
function of the 4d effective coupling e can be calculated
directly:

 �e � �
e
2

�
@��

@�
(20)

where �� is the divergent part of scalar vacuum polariza-
tion function defined by

 �� �
1

3
g�����

div �
�e2

3�2 �R: (21)

We obtain

 �e �
e3

6�2 �R (22)

which gives the following asymptotic behavior of e���
with respect to the cut-off, between the scale � � R�1

and � � �:

 e��� �
�

e�R�1�2

1� e�R�1�2

3�2 ��R� 1�

�
1=2
: (23)

This expression shows the expected power-law running of
e, Fig. 1. It admits a Landau pole at �L � �1�

3�2

e�R�1�2
�R�1.

Equivalently, we can write

 ��1
e ��� � ��1

e �R�1� �
b

2�
X��R� 1� (24)

with �e �
e2

4� , b � 4=3 and X � 2. We found the same
result for ��1��� as in [8] but with the fundamental
difference that we do not need any final rescaling of the
cut-off.

VI. DISCUSSION AND CONCLUSIONS

Regularization dependence of quantum corrections in
higher-dimensional field theory has been extensively dis-
cussed. It is of fundamental importance for all phenome-
nological applications such as the study of divergences in a
given model (gauge couplings, yukawas etc). Indeed, at the
end of the regularization process, one would like to identify
the cut-off � with the mass scale M at which our effective
theory breaks down. However, the identification cannot be
done with the knowledge of the effective theory only. One
needs a matching with the theory taking place at M to fix
the coefficient of the powerlike quantum corrections. For
an example of this type of calculations see [19].

Without any UV completion of the higher-dimensional
model, one can fix the coefficient by an external require-
ment. In a sense, the choice of a given regularization
procedure (and the definition of the cut-off) is a feature
of the model. For example, the authors of [20], asked the
gauge couplings in the 4d effective theory to recover the
result of the noncompactified theory in the limit of large
radius. In the calculation of [8], the cut-off was redefined in
order to recover the asymptotic result of including KK
states at their thresholds, between � � n

R and � � n�1
R

and so on. As in all standard cut-off calculations, gauge
invariance was explicitly broken through the appearance of
a �g�� term with no compensating p�p� in the vacuum
polarization ���.

In our calculation, we included all states of KK number
j n j �R at once, assuming the decoupling of the heavy
states and without introducing any ad-hoc redefinition of
the cut-off. Moreover, we explicitly checked in Sec. III that
our calculation of loop integrals does not break gauge-
invariance. The main advantage of the method proposed
in this paper is the possibility to keep the physical insight
of the cut-off procedure together with symmetry
conservation.
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ΛR

1
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FIG. 1 (color online). Cut-off dependence of e in the model
discussed (upper curve) and in the standard 4d QED (lower
curve), as a function of �R. The radius is arbitrarily chosen at
�100 GeV��1. The Landau pole is at � � 300R�1.
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