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We present evidence that Abrikosov-Nielsen-Olesen (ANO) strings pass through each other for very
high speeds of approach due to a double intercommutation. In near-perpendicular collisions numerical
simulations give threshold speeds bounded above by �0:98c for type I, and by �0:88c for deep type II
strings. The second intercommutation occurs because at ultrahigh collision speeds, the connecting
segments formed by the first intercommutation are nearly static and almost antiparallel, which gives
them time to interact and annihilate. A simple model explains the rough features of the threshold velocity
dependence with the incidence angle. For deep type II strings and large incidence angles a second effect
becomes dominant, the formation of a loop that catches up with the interpolating segments. The loop is
related to the observed vortex-antivortex reemergence in two dimensions. In this case the critical value for
double intercommutation can become much lower.
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Cosmic strings were intensely studied in the eighties as a
possible explanation of the small deviations from homo-
geneity that are necessary to seed structure formation in the
early Universe. Since then, this picture has been abandoned
in favor of the inflationary scenario, mainly because of
observations of the cosmic microwave background radia-
tion [1]. The recent revival of interest in cosmic strings is
largely motivated by fundamental theory. First, the forma-
tion of cosmic strings in the early Universe appears to be a
fairly generic prediction of grand unified theories of parti-
cle physics [2]. Second, some brane inflation models from
superstring theory predict the formation of cosmic (super)-
string networks as well [3–6]. It should be possible in the
near future, for example using B modes of the CMB
polarization [7], to detect the effects of cosmic strings
with a sensitivity one or two orders of magnitude higher
than at present, which makes strings an excellent probe of
physics at ultrahigh energies that are otherwise extremely
hard to probe (even the absence of strings can discriminate
between particle physics models).

An important property of cosmic strings is their behavior
when two string segments collide. In principle, there are
four possible outcomes (we refer the reader to [8] for
general background and references): they can (1) simply
pass through each other, (2) exchange ends and reconnect,
(3) form a Y-junction with a bridge between the original
strings, or (4) do neither and get tangled up, which happens
if the Y-junction is kinematically forbidden [9]. Outcomes
(3) and (4) apply to non-Abelian gauge theory strings,
where there is a topological obstruction that forbids the
first two outcomes, and also to �p; q� strings, which are

bound states of fundamental superstrings and D1-branes.
Another example of outcome (3) are the zipper bound
states that can be formed between multiply-winding
type I Abrikosov-Nielsen-Olesen (ANO) vortices when
they collide at low speeds and incidence angles, due to
their attractive interaction [10].

The second outcome is usually called intercommutation
(or reconnection) and is extremely important in cosmologi-
cal scenarios as it provides a mechanism for a string net-
work to lose energy and reach a scaling regime in which
the energy density in strings remains a constant fraction of
the dominant form of energy density in the Universe
(matter or radiation). Intercommutation leads to loops
and small scale structure that decay efficiently into parti-
cles and radiation. The question of the precise effect of
intercommutation on scaling (see for example [11–19]) has
taken center stage recently after the realization that for
cosmic superstrings the probability of intercommutation p
is very low (p� 10�3 to �10�1 depending on the type of
string [20]). While all previous studies agree that the net-
work will reach a scaling solution if p � 1, the situation is
less clear for lower intercommutation probabilities. Since
full field theory simulations of string networks on cosmo-
logical scales are computationally too demanding, numeri-
cal studies of such networks [21,22] typically use the
effective Nambu-Goto action [23], which treats strings as
infinitely thin objects. However, this action cannot be used
to describe what happens when two strings intersect and
therefore the intercommutation behavior needs to be
studied using the full field theory.

In this paper we focus on the intercommutation behavior
of ANO strings in the Abelian Higgs model—the relativ-
istic Landau-Ginzburg model—but our results should ap-
ply to other Abelian local (gauged) strings provided there
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are no topological obstructions. Since intercommutation is
a local effect we work in flat space-time. In units c � @ �
1, the Lagrangian is
 

L � �@� � ieA����@
� � ieA���y �

1

4
F��F��

�
�
4
�j�j2 � �2�2: (1)

After a rescaling of units this model can be characterized
by a single parameter, the ratio of the Higgs mass to the
gauge boson mass � :� �m�=mA�

2 � �=2e2. Following
[24,25], we place a superposition of two (boosted) ANO
strings on a three-dimensional lattice and evolve this con-
figuration in the Hamiltonian formalism using a leapfrog
algorithm. The initial configuration is characterized by
only two parameters [see Fig. 1(a)]: the center of mass
speed v of the strings when they are far apart and the angle
� between them.

The main conclusion from previous simulations (e.g.
[24]) of the interaction of ANO strings with unit winding
is that intercommutation takes place in all cases. This can
be understood by looking at the field configuration in
certain two-dimensional slices through the point, say
�x0; y0; z0�, in which the strings come to intersect [8]. In
the z � z0 plane (see Fig. 1), the string interaction looks
like the collision and annihilation of a vortex and an
antivortex, whereas in the y � y0 plane it looks like
vortex-vortex scattering at 90� [26]. Hence, large-scale
network simulations of ANO strings use the Nambu-Goto
approximation and assume that strings always exchange
ends when they collide. Here we argue that this picture has
to be modified for sufficiently high collision speeds. We
find evidence of a threshold speed vt above which strings
exchange ends twice and thus effectively pass through each
other. Note that this is a different effect than the threshold
speed suggested elsewhere for the first intercommutation
[25,27,28], of which we find no evidence. We will now first

describe some of the more technical aspects of our simu-
lations and then explain our results in some detail.

For each simulation, the lattice spacing a is determined
as follows. The vortex configuration [29,30] is � �
�X�r�ei� in cylindrical polar coordinates, with X�0� � 0
and X�1� � 1, such that �X0�0���1 gives a characteristic
scale for the (Higgs) core. For � � 1=8, 1, we always take
the lattice spacing to be a � �5	�v�X0�0���1, where
	�v� � 1=

��������������

1� v2
p

, while for � � 8, 32, we sometimes
have to settle for slightly less resolution (but a is never
larger than twice the size given above). The typical time
step size is �t � a=2, so the Courant condition (here �t 	
a=

���

3
p

) holds, and most simulations are performed on a
4004 grid. The initial string separation is taken to be �x �
2R=	�v�, where R is the radius of a stationary string/vortex
outside of which both the Higgs and the gauge fields are
within 5% of their vacuum values (this means that v is not
exactly what it would be at infinite separation, but the
difference is negligible). We use the same boundary con-
ditions as [24]: after each round the fields inside the box are
updated using the equations of motion, and the fields on the
boundaries are calculated assuming the strings move un-
perturbed and at constant speeds at the boundaries.

The results of our simulations are presented in Figs. 2
and 3. We investigate values of � � 1=8, 1, 8, 32 and � �
30�, 45�, 60�, 90�, 120�, 135�, 150� and center of mass
speeds up to v � 0:98 and find threshold speeds in most
cases. We suspect that if we could probe even higher initial
speeds, we would find a threshold speed in all cases. For
v < vt, the strings intercommute and then move away
from each other without interacting again. However, for
v > vt the interaction of the strings after intercommutation
is such that they exchange ends a second time. The exact
mechanism through which the strings reconnect the second
time depends on the value of � and �. In most cases
(always for � � 1=8 and � � 1), the process unfolds
roughly as in Fig. 4: the strings attract after the first
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FIG. 1 (color online). (a) Initial positions and orientations of
the strings in the center of mass frame. The strings lie in x �
const planes and approach each other with speed v. The arrows
indicate the orientations of the strings, which form an angle �.
(b) The configuration after one intercommutation. If v� c, the
kinks’ motion along the strings is negligible and the connecting
horizontal segments are practically antiparallel and immobile,
making a second interaction possible.

 

FIG. 2. Threshold speed as a function of incidence angle for
� � 1=8, 1. For each �, a dot gives the highest approach speed v
(in our simulations) for which strings only exchange ends once,
and a square gives the lowest speed for which strings reconnect
twice (so the threshold speed vt is in between). Dashed lines are
based on a simple theoretical model (see text; the plots shown
have 
t � 156�, 150� and wt � 0:18, 0.17 for � � 1=8, 1
respectively).
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intercommutation, come to intersect again in the center of
the box, and then intercommute a second time. Afterwards,
the strings move on as if they had simply passed through
each other, except that the parts of the strings that have
been involved in the interaction lag behind the rest of the
strings a little. For �
 1 (deep type II, e.g. � � 32) and
large initial angle � � 135�, the second exchange of ends
proceeds differently. In this case, a string loop is formed
(the three-dimensional manifestation of vortex-antivortex
reemergence, see also [24,26]) after the first intercommu-
tation. The loop starts at the intersection point and grows in
the y � y0 plane (see Fig. 1) to eventually catch up with the
two original strings. When this happens, the strings recon-
nect again through the loop and move on as if they have
passed through each other. For certain values of v < vt, we
also find loop formation but the loop does not grow large
enough to catch up with the strings. Note that our results
agree with the conventional picture of string interactions in
the sense that, initially, the strings always intercommute.

The existence of a threshold speed and its angle depen-
dence is easily explained in the Nambu-Goto approxima-
tion. Immediately after the first intercommutation each
string has two kinks separating the parts unaffected by
the interaction from the straight horizontal segments cre-
ated in between [see Fig. 1(b)]. These kinks have to move
at the speed of light, and their vertical motion along the
strings pulls the horizontal segments apart. But for high
collision speeds v� c, the kinks’ horizontal velocity is
almost luminal and so the vertical component negligible;
moreover the horizontal segments are almost antiparallel
(in the unphysical limit v � c, the kinks do not move up at
all and the segments are exactly antiparallel and lying on
top of each other; so we would expect the second recon-
nection with probability one).

More precisely, the angle between the horizontal seg-
ments is cos�
=2� � cos��=2�=�v	�v��

�����������������������������������

1��cos��=2�=�v	�v���2
p (antiparallel for


 � �) and they move apart with velocity w �
sin��=2�=	�v�, the vertical velocity of the kinks. If we
assume that strings intercommute a second time only for 

above a critical angle 
t and w below a critical speed wt,
we can get a surprisingly good fit to the data. First, for 
t �
150 and wt � 0:2 (or significantly higher wt � 0:43 for
� � 32 where the second exchange of ends occurs through
a loop for large �) we get a threshold speed of about the
right magnitude that does not depend strongly on �.
Second, when we do look at the � dependence, the model
nicely explains the minimum of vt somewhere around � �
90�. The heuristic picture is that if the attractive interaction
energy of the horizontal segments exceeds their kinetic
energy they will come together and annihilate again.
What the Nambu-Goto approximation misses is the inter-
action energy of the bridging segments.

In conclusion, we find that ANO strings effectively pass
through each other at high speeds of approach. The result is
consistent with a simple kinematic argument so we expect
it to apply to any other local (gauged) string as long as
there is no topological obstruction to intercommutation. In
particular we have preliminary evidence that multiple-
winding type I strings also pass through each other at these
high collision speeds. An interesting open question is
whether strings carrying zero modes or bound states will
also pass through each other at very high collision speeds.
In the particular case of semilocal strings and Skyrmions in
the Bogomol’nyi limit it has recently been found [31] that
at the location of the first intercommutation the strings
revert to ANO strings, so we expect the result to hold there
as well.

It is difficult at this point to make a reliable estimate of
whether double intercommutation has a significant effect
on the network’s evolution and scaling properties; this may
have to be determined in large numerical simulations.
Obviously vt is found to be high, so the probability of
two very fast moving segments colliding is extremely low.
On the other hand, nonintercommutation affects the high-

 

FIG. 4. Double intercommutation of strings with � � 1, � �
60� and v � 0:96. The strings effectively pass through each
other, with some distortion. We use a box size 35� 35� 36:4.
Within the shaded surfaces, the energy density is above�10% of
the peak energy density of a static ANO string/vortex. Fast
moving segments appear to be thicker. The strings first inter-
commute (T � 1:0, not shown) and separate (top image, T �
7:2). Next, they attract, come to intersect again (center, T � 9:0),
intercommute a second time, and move away from each other
(bottom, T � 10:8). We use length and time units which take
e � � � 1. Total energy is conserved to better than 0.7% up
until the last figure shown.

 

FIG. 3. Threshold speeds for type II strings. For very large �
and �, a different mechanism governs the second intercommu-
tation (interaction with an emerging string loop) and the thresh-
old speeds are considerably smaller than for lower �. However,
the results still agree well with our model. We simply need a
higher critical speed wt for � � 32. Fits use 
t � 142�, 142�

and wt � 0:28, 0.43 for � � 8, 32, respectively.
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est energy components of the network, and moreover these
fast string segments are expected to have higher collision
rates simply because they cross larger distances, so the
question is definitely worth a second look.
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