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A recent HyperCP observation of three events in the decay �� ! p���� is suggestive of a new
particle with mass 214.3 MeV. In order to confront models that contain a light Higgs boson with this
observation, it is necessary to know the Higgs production rate in hyperon decay. The contribution to this
rate from penguinlike two-quark operators has been considered before and found to be too large. We point
out that there are additional four-quark contributions to this rate that could be comparable in size to the
two-quark contributions, and that could bring the total rate to the observed level in some models. To this
effect we implement the low-energy theorems that dictate the couplings of light Higgs bosons to hyperons
at leading order in chiral perturbation theory. We consider the cases of scalar and pseudoscalar Higgs
bosons in the standard model and in its two-Higgs-doublet extensions to illustrate the challenges posed by
existing experimental constraints and suggest possible avenues for models to satisfy them.
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I. INTRODUCTION

Three events for the decay mode �� ! p���� with a
dimuon invariant mass of 214:3� 0:5 MeV have been
recently observed by the HyperCP Collaboration [1]. It is
possible to account for these events within the standard
model (SM) when long-distance contributions are properly
included [2]. However, the probability of having all three
events at the same dimuon mass in the SM is less than 1%.
This suggests a new-particle interpretation for the events,
for which the branching ratio is �3:1�2:4

�1:9 � 1:5� � 10�8 [1].
This possibility has been explored to some extent in the

literature, where it has been shown that kaon decays place
severe constraints on the couplings of the hypothetical new
particle [3–5]. In particular, it was found that the flavor-
changing coupling of the new state, X, to �ds has to be of a
pseudoscalar or axial-vector nature to explain why the state
has not been seen in K ! �����. At least one model
containing a particle with these properties has appeared in
the literature [6].

All these previous analyses of X considered only the
effects of two-quark operators for �dsX. However, it is well
known in the case of light Higgs production in kaon decay
that there are also four-quark operators that can contribute
at the same level as the two-quark ones [7–10]. These four-
quark contributions are most conveniently described in
chiral perturbation theory (�PT) which implements low-
energy theorems governing the couplings of light (pseu-

do)scalars to hadrons. In this paper we generalize existing
studies appropriate for kaon decay to the case of hyperon
decay. This allows us to discuss the production of light
(pseudo)scalars in hyperon decay consistently, including
the effects of both the two- and four-quark operators with
the aid of �PT. We consider the cases of scalar and
pseudoscalar Higgs bosons in the SM and in the two-
Higgs-doublet model (2HDM), expressing our results in
a form that can be easily applied to more complicated
Higgs models.

This paper is organized as follows. We begin by collect-
ing in Sec. II the existing constraints on light Higgs bosons
from kaon, B-meson, and hyperon decays if we interpret
the HyperCP events as being mediated by a light Higgs
boson. In Secs. III and IV we compute the production rates
in both kaon and hyperon decays for a light scalar and
pseudoscalar Higgs boson, respectively. Finally, in Sec. V
we summarize our results and state our conclusions.

II. SUMMARY OF EXISTING CONSTRAINTS

In Ref. [3] we parametrized the possible couplings of the
new particle, X, to �ds and ��� assuming that it had definite
parity. Whereas this is a reasonable assumption for the
diagonal couplings of X to fermions, it is not for its
flavor-changing neutral couplings (FCNCs). Two-quark
FCNCs are predominantly induced by Higgs-penguin dia-
grams, which result in left- and right-handed couplings,
implying that the scalar and pseudoscalar ones are present
simultaneously. For this reason, we revisit the existing
constraints for X being a scalar particle, H , or a pseudo-
scalar particle, A, assuming them to have two-fermion
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FCNCs described by
 

LH sd �
gH
v
�ms

�d�1� �5�s�md
�d�1� �5�s	H � H:c:;

(1a)

LAsd �
igA
v
�ms

�d�1� �5�s�md
�d�1� �5�s	A� H:c:;

(1b)

where the g’s are coupling constants, mq is a quark mass,

and v � 2�1=4G�1=2
F � 246 GeV. In addition, the diagonal

couplings to charged leptons are assumed to have definite
parity and be proportional to the lepton mass,

 LH ‘ �
g‘m‘

v
�‘‘H ; LA‘ �

ig‘m‘

v
�‘�5‘A: (2)

For a (pseudo)scalar of mass 214.3 MeV, it is then
natural to assume that the decay X ! ���� will domi-
nate over the other kinematically allowed modes: X !
e�e�, � ��, ��. We will restrict ourselves to this case,
assuming that B�X ! ����� 
 1. This is true, for ex-
ample, for a light SM Higgs boson where g‘ � 1, or for
light pseudoscalars in the 2HDM types I and II, where
g‘ � cot� and � tan�, respectively. In all these cases,
X ! e�e� are suppressed at least by �me=m��

2 
 10�5.
To be consistent with the HyperCP observation, X must

be short lived and decay inside the detector. This is com-
patible with the estimate for the total width �A 

10�7 MeV [5] of a pseudoscalar particle, A. It was shown
in Ref. [3] that the muon anomalous magnetic moment
imposes the constraint

 jg‘j & 1:2: (3)

A coupling satisfying this constraint implies a width

 �A & 3:7� 10�7 MeV; (4)

consistent with the observation. In contrast, the corre-
sponding constraint for a scalar particle is jg‘j & 0:98,
leading to a longer lifetime,

 �H & 6:9� 10�9 MeV: (5)

The estimated lifetime for the HyperCP particle is there-
fore consistent with that of a pseudoscalar or scalar that
decays predominantly into muons.

In addition to the two-quark contributions to the ampli-
tudes for K ! �H �A� and �� ! pH �A� induced by
the interactions in Eq. (1), we will also include contribu-
tions arising from the usual SM four-quark j�Sj � 1 op-
erators, along with flavor-conserving couplings of H �A�.
We will adopt the chiral-Lagrangian approach to evaluate
the hadron-level interactions.

Later on we will discuss specific models and consider
the bounds appropriate for them, including all the relevant
two- and four-quark contributions. It is useful to start with
one example to illustrate the ingredients needed to con-

struct a model that can satisfy all the existing constraints.
For this purpose, we consider a pseudoscalar A with two-
quark couplings as in Eq. (1b) supplemented with simple
parametrizations for the four-quark amplitudes for both
kaon and hyperon decays. For B-meson decay, we assume
that the two-quark contribution completely dominates.

A. K ! �A

Introducing the dimensionless quantityM4K for the four-
quark contribution, we express the amplitude for K� !
��A and its branching ratio, respectively, as

 iM�K� ! ��A� � gA
m2
K �m

2
�

v
�M4K

m2
K

v
;

B�K� ! ��A� � 4:43� 108jgA � 1:08M4Kj
2:

(6)

This mode is constrained by its nonobservation in the BNL
E865 [11] or FNAL HyperCP [12] measurements ofK� !
������. It is also constrained by its nonobservation in
the isospin-related mode KS ! �0���� by CERN NA48
[13]. Of these three experiments, E865 had the best statis-
tics, collecting 430 events in K� ! ������. A new
particle A of mass 214.3 MeV would have contributed
only in their first dimuon-mass bin, where 0:21 GeV<
m�� < 0:224 GeV and approximately 30 events were ob-
served. To obtain a conservative bound, we assume that all
the events in the first bin are statistically Gaussian and can
be attributed to the new particle (either a scalar or a
pseudoscalar). Further assuming uniform acceptance, we
obtain at 95% C.L.

 B �K� ! ��X� & 8:7� 10�9: (7)

The NA48 Collaboration collected 6 events for KS !
�0���� [13], and none of them have the 214.3 MeV
invariant mass required if they originate from the new
particle A. Using the KS flux and the acceptance at low
m�� in Ref. [13], we estimate a single event sensitivity of
�5:3�0:6

�0:4� � 10�10. With no events observed and Poisson
statistics, this translates into the 95%-C.L. bound

 B �KS ! �0X� & 1:8� 10�9: (8)

We employ these bounds when we discuss specific models,
but for now we use the E865 result in Eq. (7), combined
with Eq. (6), to find

 jgA � 1:08M4Kj & 4:4� 10�9: (9)

B. �� ! pA

In this case, we need two new dimensionless quantities
A4 and B4 to parametrize the effect of the four-quark
operators, writing the amplitude as

 M ��� ! pA� � i �p�ApA � BpA�5��
�; (10a)

where
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 ApA � gA
m� �mN

v
� A4

f�
v
;

BpA � gA�D� F�
m� �mN

v
m2
K

m2
K �m

2
A

� B4
f�
v
;

(10b)

the parameters D and F coming from a chiral Lagrangian
to be discussed in a later section and f� � 92:4 MeV
being the pion-decay constant. The resulting branching
ratio is
 

B��� ! pA� � 1:91� 106jgA � 0:36A4j
2

� 4:84� 104jgA � 0:14B4j
2 (11)

with the choice D� F � 0:25. Combining the statistical
and systematic errors of the HyperCP measurement [1] in
quadrature, we require

 B ��� ! pA� � �3:1�2:8
�2:4� � 10�8; (12)

and therefore

 jgA � 0:36A4j � �1:3� 0:6� � 10�7; (13)

where we have used the larger of the errors in Eq. (12) and
ignored the contribution from the P-wave term in Eq. (11),
assuming that B4 & A4. This assumption is satisfied by all
the models we discuss, but when checking a specific
model, we do so without neglecting B4.

A comparison of Eqs. (9) and (13) shows why it is not
possible to have a (pseudo)scalar with penguinlike flavor-
changing neutral couplings, as in Eq. (1), as an explanation
for the HyperCP result given the constraints from kaon
decay. It also shows how this is no longer true if there are
four-quark contributions to the amplitudes that are compa-
rable to the penguin amplitudes. In particular, if we assume
that in a given model gA, M4K, and A4 have comparable
magnitudes, we see that in order to satisfy both Eqs. (9) and
(13) we need a cancellation between the two- and four-
quark contributions to the kaon amplitude that reduces
them by a factor of about 20. As we will show in later
sections, this is possible in many models. For this cancel-
lation to work, however, gA and M4K must also have
similar phases. As we will see, this is a requirement that
is much harder to satisfy. In the simple models we consider
in this paper, the phase of gA is much larger than the phase
of M4K so that the cancellation does not happen for the
imaginary part.

C. b! sX

Finally, we consider the constraints on the new particle
from its nonobservation in B-meson decay. In this case, the
four-quark contributions are negligible, and we can neglect
ms compared to mb. The Lagrangian for b! sX can then
be expressed as

 LXbs �
g0mb

v
�s�1� �5�bX � H:c:; (14)

where g0 � g0
H
�ig0A� for X �H �A�. This leads to the

partial decay rate

 ��b! sX� ’ jg0j2
m3
b

8�v2 : (15)

Using for illustration mb � 4:3 GeV and the B� lifetime
[14] results in

 B �b! sX� � 1:3� 108jg0j2: (16)

One could obtain a similar number for b! dX.
The latest experimental average B�b! s����� �

�4:27�1:23
�1:22� � 10�6 [14] covers the full kinematic range

form��. To constrain g0, it is better to limit the comparison
to the measured rate at the lowest measuredm�� invariant-
mass bin. BABAR quotes in Table 2 of Ref. [15]

 B �b! s‘�‘��m‘�‘�2�0:2 GeV;1:0 GeV	

� �0:08� 0:36�0:07
�0:04� � 10�6: (17)

This is an average for electrons and muons, but no notice-
able difference between them was found. Belle quotes on
Table 4 of Ref. [16] the corresponding number

 B �b! s‘�‘��m‘�‘�2�0:2 GeV;1:0 GeV	

� �11:3� 4:8�4:6
�2:7� � 10�7: (18)

To be conservative, we constrain the Higgs coupling by
requiring that the induced rate be below the 95%-C.L.
upper range of the measured b! s‘�‘� rate in the lowest
measured m�� bin. Thus, combining errors in quadrature
for the more restrictive BABAR result gives

 B �b! s‘�‘��m‘�‘�<1 GeV & 8:0� 10�7 �BABAR�

(19)

and, correspondingly,

 jg0j & 7:8� 10�8: (20)

The exclusive B! �K;K?����� modes have been mea-
sured, but the resulting constraints are not better than
Eq. (20). This constraint, Eq. (20), is difficult to satisfy
in models where gA and g0 are related by top-quark
Cabibbo-Kobayashi-Maskawa (CKM) angles, as happens
in the simple models we consider here.

III. SCALAR HIGGS BOSON

In this section we discuss in detail the case of a light
Higgs boson in the standard model and in the two-Higgs-
doublet model. We will use known low-energy theorems to
implement the four-quark contributions to kaon and hy-
peron amplitudes.
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A. Two-quark j�Sj � 1 interactions

The effective Lagrangian for the sdH coupling, where
H is either the standard-model Higgs boson H0 or the
lightest scalar Higgs boson h0 in the 2HDM, has been
much discussed in the literature [7,8,17–19] and can be
written as LH sd in Eq. (1a), where

 gH �
GF

4
���
2
p
�2

X
q�u;c;t

m2
qV
�
qdVqsF�q�; (21)

with Vkl being the elements of the CKM matrix and F�q�
depending on the model. In the SM, for a Higgs mass much
smaller than the W mass,

 F�q� � 3=4; (22)

whereas in the 2HDM the expression for F�q� is much
lengthier [18,19].

Using CKM and mass parameters from Ref. [20], we
find in the SM

 gH � ��1:3� 0:6i� � 10�6; (23)

to be compared with Eqs. (9) and (13) above. Employing
the expression for F�q� derived in Ref. [19], we obtain a
similar number in the 2HDM type II, for instance,

 gH � �5:0� 1:9i� � 10�7 (24)

for the parameters

 tan� ’ 2:57; sin��� �� ’ 0:149;

mH� � 250 GeV;
(25)

where tan� is the ratio of vacuum expectation values of the
two Higgs doublets, � the mixing angle in the neutral-
Higgs-boson mass matrix, and mH� the mass of the
charged Higgs bosons.1 We note that the � and � values
above satisfy the constraint sin2��� ��< 0:06 from
CERN LEP [21]. We see right away that gH can be in
the right ball park to explain the HyperCP observation,
Eq. (13), but conflicts with the kaon bound, Eq. (9).

To evaluate the hadronic amplitudes from this two-quark
contribution, we employ chiral perturbation theory. Using
the operator matching of Ref. [3], we write the lowest-
order chiral realization of LH sd as
 

LH � bDh �BfhH ; Bgi � bFh �B�hH ; B	i � b0hhH ih �BBi

� 1
2f

2B0hhH i � H:c:; (26)

where h� � �i  Tr�� � �� in flavor-SU(3) space, f � f� �
92:4 MeV, and

 hH � �2gH ��
yhM�y � �Mh��

H

v
; (27)

with h being a 3� 3 matrix having elements hkl � 	k2	3l

which selects out s! d transitions, M �
diag�m̂; m̂; ms� � diag�m2

�;m
2
�; 2m

2
K �m

2
��=�2B0� the

quark-mass matrix in the isospin-symmetric limit mu �
md � m̂, and the baryon and meson fields represented by
the usual 3� 3 matrices B and � � �� � ei’=f,
respectively.

To derive amplitudes, we also need the chiral
Lagrangian for the strong interactions of the hadrons
[22,23]. At leading order in the derivative and ms expan-
sions, it can be written as
 

Ls � h �Bi���@�B� �V�; B	�i �m0h �BBi

�Dh �B���5fA�; Bgi � Fh �B���5�A�; B	i

� bDh �BfM�; Bgi � bFh �B�M�; B	i � b0hM�ih �BBi

� 1
4f

2h@��y@��i � 1
2f

2B0hM�i; (28)

where V� � 1
2 ��@

��y � �y@���, m0 is the baryon mass
in the chiral limit, A� � i

2 ��@
��y � �y@���, and M� �

�yM�y � �My�, with further details being given in
Ref. [3].

From LH and Ls, we derive the leading-order diagrams
shown in Fig. 1 for �� ! pH , yielding the amplitude
 

M2q��
� ! pH � � gH

m��mN

v
m2
K

m2
K �m

2
�

�p��

� gH �D� F�
m��mN

v
m2
K �m

2
�

m2
K �m

2
H

� �p�5��; (29)

where the two terms correspond to the two diagrams,
respectively, m�;N are isospin-symmetric masses, and we
have used the relations m� �mN � 2�bD � bF��ms � m̂�,
m2
K � B0�m̂�ms�, and m2

� � 2B0m̂ derived from Ls.
Numerically, we will allow D and F to have the ranges
0:6 � D � 0:8 and 0:4 � F � 0:5 [23], leading to

 0:1 � D� F � 0:4; (30)

which is their combination occurring in our amplitudes.
It follows that the contribution of LH sd to the branching

ratio of �� ! pH formH � 214:3 MeV and the middle
value D� F � 0:25 is in the SM

 

Σ + p

(a)

Σ +

K̄ 0

p

(b)

FIG. 1. Diagrams contributing to �� ! pH arising from
LH sd at leading order in �PT. The square vertices come from
LH in Eq. (26), and the solid vertex from Ls in Eq. (28).

1We have also set 
 � m2
H�=m

2
W in F�q�, where 
 is defined in

Ref. [19].
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 B2q��
� ! pH � � �40� 1� � 10�7; (31)

where we have ignored the imaginary (CP-violating) part
of the amplitude, and the two numbers correspond to the
contributions from the scalar and pseudoscalar flavor-
changing couplings, respectively. Evidently, the scalar
contribution is much larger than what HyperCP saw, but
the pseudoscalar contribution is within the range. This,
however, is only part of the story, as there are in addition
four-quark contributions to be discussed in the next
subsection.

Also from LH , we derive the leading-order diagram for
K ! �H , which is that in Fig. 1(a) with �� (p) replaced
by K (�) and arises from the scalar coupling in LH sd. The
resulting amplitude is

 

M2q�K
� ! ��H � � �

���
2
p

M2q�K
0 ! �0H �

�
�gHm2

K

v
;

(32)

and so M2q�KL ! �0H � � �ReM2q�K� ! ��H �.
Dropping again the imaginary parts of the amplitudes,
we obtain in the SM the branching ratios

 B2q�K
� ! ��H � � 9:3� 10�4;

B2q�KL ! �0H � � 3:9� 10�3:
(33)

These numbers would easily be incompatible with that in
Eq. (7) and the 95%-C.L. bound2

 B �KL ! �0�����< 4:9� 10�10; (34)

but, as in the �� case, there are four-quark contributions
that have to be considered as well.

The situation is similar in the 2HDM. Adopting the real
part of the coupling in Eq. (24), for example, we find

 B2q��
� ! pH � � �56� 1� � 10�8;

B2q�K� ! ��H � � 1:3� 10�4;

B2q�KL ! �0H � � 5:4� 10�4:

(35)

B. Four-quark j�Sj � 1 interactions

The hadronic interactions of a light Higgs boson due to
four-quark j�Sj � 1 operators are best accounted for in the
chiral-Lagrangian approach. The dominant contribution is
generated by the j�Ij � 1

2 component of the effective
Hamiltonian transforming as �8L; 1R�. The corresponding
Lagrangian at leading order is given by [23,25]

 

Lw � hDh �Bf�yh�; Bgi � hFh �B��yh�; B	i

� �8f2hh@��@��yi � 2~�8f2B0hh�M��yi

� H:c:; (36)

where hD;F can be extracted from hyperon nonleptonic
decays, �8 � �7:8� 10�8 from K ! ��, the sign fol-
lowing from various predictions [7–9,26], and ~�8 is un-
known as it does not contribute to any process with only
kaons and pions.

The four-quark j�Sj � 1 interactions of a light Higgs
boson H arise from its tree-level couplings to quarks and
W� bosons, as well as from its coupling to gluons induced
by a triangle diagram with heavy quarks in the loop. To
obtain the relevant chiral Lagrangians, one starts with Ls;w

above and follows the prescription given in Refs. [7–9,19].
The results are
 

LH
s �

�
1

4
c1f

2h@��y@��i �
1

2
c2f

2B0hM�i

�
1

2
f2B0hM̂� �M�i

�
H

v
� k1m0h �BBi

H

v

� k2�bDh �BfM̂�; Bgi � bFh �B�M̂�; B	i

� b0hM̂�ih �BBi�
H

v
; (37)

 

LH
w � ��8c3f2hh@��@��yi � 2~�8c4f2B0hh�M��yi

� 2~�8f2B0hh��M̂� �M���yi	
H

v

� k3�hDh �Bf�yh�; Bgi � hFh �B��yh�; B	i�
H

v
� H:c:; (38)

where
 

c1 � 2kG; c2 � 3kG � 1; c3 � 4kG � 2kW;

c4 � 5kG � 2kW � 1; k1 � kG; k2 � 1;

k3 � 3kG � 2kW; M̂� � �yM̂�y � �M̂y�;

(39)

with

 kG �
2�2ku � kd�

27
; M̂ � diag�kum̂; kdm̂; kdms�;

(40)

the expression for kG corresponding to 3 heavy and 3 light
quarks. The parameters ku;d, kW , and kG come from the
couplings of H to light quarks, W�, and the gluons,
respectively, and depend on the model of the Higgs sector.
Thus

 ku � kd � kW � 1 in the SM; (41)
2We have inferred this number from Ref. [24] which reported

B�KL ! �0�����< 3:8� 10�10 at 90% C.L.
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 ku� kd�
cos�
sin�

; kW � sin����� in the 2HDM I;

(42)

 ku �
cos�
sin�

; kd � �
sin�
cos�

;

kW � sin��� �� in the 2HDM II:

(43)

The parameters c1;2;3;4 for the meson terms have already
been obtained in the literature [7–9,19,27], whereas the
new ones k1;2;3 follow from how the baryon parameters
depend on masses: m0 
�, bD;F;0 
 1, �� 
�mq, and
hD;F 
�3=m2

W , where � is a QCD mass scale. Note that
we work in that basis in which the mass terms in the
Lagrangians are not diagonal and must therefore include
the corresponding tadpole diagrams in our calculation.

For �� ! pH , we derive from L�H �s;w the diagrams
shown in Fig. 2, finding
 

M4q��
� ! pH � � �kd � 3kG � 2kW�

hD � hF
v

�p��

� 4�kG � kW��D� F�~�8

�
m� �mN

v
m2
K �m

2
�

m2
K �m

2
H

�p�5��;

(44)

where the first term comes from the upper three diagrams,
which are at leading order, and the second term results
from the lower two diagrams, which are at next-to-leading
order. Now, the combination hD–hF also occurs in the
amplitude for �� ! p�0, which we write as

 M ��� ! p�0� � i �p�Ap�0 � Bp�0�5��
�; (45)

where from Ls;w

 Ap�0 �
�hD � hF

2f
;

Bp�0 � �D� F�
hD � hF

2f
m� �mN

m� �mN
:

(46)

Since from experiment [28]

 Ap�0 � �3:25� 10�7; Bp�0 � 26:67� 10�7; (47)

up to an overall sign, in our numerical evaluation of the
four-quark contributions to �� ! pH we will explore
different hD–hF values accordingly.

We can also derive from L�H �s;w the corresponding
leading-order diagrams for K ! �H , which are the upper
three in Fig. 2 with �� (p) replaced by K (�) and yield
 

M4q�K
� ! ��H � �

�8

v
�2�kW � kG��m

2
K �m

2
� �m

2
H
�

� �kd � ku�m
2
�	

�
~�8

v
4�kG � kW�m2

K; (48)

 

M4q�K
0!�0H � �

�8���
2
p
v

�
2�kG� kW��m

2
K�m

2
��m

2
H
�

� �ku� kd�
m2
�m

2
K

m2
K�m

2
�

�

�
~�8���
2
p
v

�
4�kW � kG�m2

K

� �kd� ku�
m2
�m2

K

m2
K�m

2
�

�
: (49)

Since ~�8 is unknown, in evaluating its effect on K� !
��H we will allow it to vary from �10 to 10 times �8.
Naively we would expect �8 and ~�8 to be of the same order.

C. Total contributions

The total amplitude for K� ! ��H comes from the
sum of the contributions in Eqs. (32) and (48). If the
CP-violating terms in the amplitudes are ignored, it is
possible for the two-quark and four-quark contributions
to cancel. We show this possibility in Fig. 3, where we
plot the resulting branching ratio in the SM as a function of
the ratio r8  ~�8=�8 for mH � 214:3 MeV. We find that
B�K� ! ��H � � 0 when r8 ’ �5:1 and that, as the
figure indicates, for only a very narrow range of r8 around
this value does the branching ratio ever fall below the
upper limit in Eq. (7). In Fig. 3, we also plot the corre-

 

Σ + p Σ +
Σ +

p Σ +
p p

Σ + p
K̄0

Σ + p
K̄0

K̄0

FIG. 2. Diagrams contributing to �� ! pH arising from the four-quark operators. The square vertices come from L�H �w in
Eqs. (36) and (38), whereas the dots are from L�H �s in Eqs. (28) and (37).
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sponding branching ratio of the isospin-related mode
KL ! �0H .

For �� ! pH , the total amplitude results from adding
the contributions in Eqs. (29) and (44). Including only the
real part of amplitudes again, and using r8 ’ �5:1 deter-
mined above, we plot in Fig. 4 the branching ratio in the
SM as a function of D� F for the range in Eq. (30). This
figure shows that the curve resulting from the P-wave fit
using Eqs. (46) and (47) satisfies the HyperCP constraints
for certain D� F values.

In Figs. 5 and 6, we display the corresponding branching
ratios in the 2HDM II obtained using the parameters in
Eqs. (24) and (25). In contrast to the SM case, here
B�K� ! ��H � � 0 when r8 ’ 6:7, but the vanishing
of the KL rate occurs at a different r8 value due to
M4q�KL ! �0H � and �ReM4q�K� ! ��H � being
unequal with ku � kd in Eq. (43).3 As a consequence, the
two kaon constraints cannot be satisfied simultaneously.
Furthermore, the �� ! pH curve that falls within the
HyperCP limits is the one resulting from the S-wave fit
using Eqs. (46) and (47).

To summarize this section, a light Higgs boson in the
SM can be made compatible with the empirical bounds for
�� ! pH , while satisfying the constraints from K !
�H , if the real part of the two-quark (penguin) contribu-
tion to the respective amplitudes is combined with the four-
quark contribution. Moreover, in the 2HDM such a particle
can satisfy all these constraints if its diagonal couplings to
the up- and down-type quarks are the same. For this to
happen in either model, it is necessary for the two ampli-
tudes to cancel precisely, and we have shown that this is
possible for certain values of the hadronic constants ~�8,
hD � hF, and D� F. Although ~�8 is not known, unlike

 

0.15 0.2 0.25 0.3 0.35 0.4
D F

10− 5

10− 6

10− 7

10− 8

10− 9

p

FIG. 4 (color online). Contribution of the real part of the total
amplitude for �� ! pH to its branching ratio in the SM as a
function of D� F for mH � 214:3 MeV and r8 ’ �5:1. The
solid (dotted) curve corresponds to hD � hF extracted from the
P-wave (S-wave) fit to the �� ! p�0 data using Eqs. (46) and
(47). The dashed lines correspond to the upper and lower bounds
in the HyperCP result.

 

0.15 0.2 0.25 0.3 0.35 0.4
D F

10− 5

10− 6

10− 7

10− 8

10− 9

p

FIG. 6 (color online). Contribution of the real part of the total
amplitude for �� ! pH to its branching ratio in the 2HDM as
a function of D� F for mH � 214:3 MeV and the parameters
in Eq. (25). The solid (dotted) curve corresponds to hD � hF
extracted from the P-wave (S-wave) fit to the �� ! p�0 data
using Eqs. (46) and (47). The dashed lines correspond to the
upper and lower bounds from the HyperCP result.

 

2 4 6 8 10
r8

10− 3

10− 5

10− 7

10− 9

K

FIG. 5 (color online). Contributions of real parts of total
amplitudes for K� ! ��H (solid curve) and KL ! �0H
(dashed curve) in the 2HDM II to their branching ratios as
functions of r8 � ~�8=�8 for mH � 214:3 MeV and the parame-
ters in Eq. (25). The horizontal lines indicate the upper bounds in
Eqs. (7) and (34).

 

-8 -6 -4 -2 0
r8

10 -3

10 -5

10 -7

10 -9

(K
→

π
)

FIG. 3 (color online). Contributions of real parts of total
amplitudes for K� ! ��H (solid curve) and KL ! �0H
(dashed curve) in the SM to their branching ratios as functions
of r8 � ~�8=�8 for mH � 214:3 MeV. The horizontal lines are
the corresponding upper bounds in Eqs. (7) and (34).

3We note that, although ~�8 is not known from experiment,
there are model calculations [8,26] of it yielding j~�8=�8j 
 0:2.
This would make the kaon rates greatly exceed their bounds, as
can be seen from Figs. 3 and 5.
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hD � hF and D� F which are extractable from hyperon
nonleptonic and semileptonic decays [23], it has a definite
value in the SM and cannot be fine-tuned. We note that in
all the �� ! pH cases discussed above the �p�5�� term
in the amplitude is small compared to the �p�� term and
that, therefore, the ~�8 contributions are important only in
the kaon cases. We also note that flipping the signs of Ap�0

and Bp�0 in Eq. (47), whose overall sign is not fixed by
experiment, would prevent the cancellation in the hyperon
case from occurring and thus result in rates much above the
bounds.

It turns out that the imaginary part of the penguin
amplitude is sufficient to eliminate these scalar particles
as candidates for the HyperCP events, as it cannot be
canceled by the four-quark amplitudes [29], having a size
of

 jImgH j 
 5:8� 10�7; (50)

much larger than allowed by Eq. (9) with ImM4K � 0. The
scaling of the penguin amplitude to the B-meson system is
also incompatible with the b! sX bound. In the SM

 g0
H
�

3GF

16
���
2
p
�2

X
q�u;c;t

m2
qV
�
qsVqb 
�1:7� 10�4; (51)

which is much larger than allowed by Eq. (20). In the
2HDM, the relative size is also too large:
jg0

H
=gH j 
 jVtb=Vtdj.

4

Both of these problems are associated with a structure in
which the Higgs-penguin amplitude is dominated by dia-
grams with up-type quarks and W bosons in the loops. It
may be possible to remedy these problems in models with
additional contributions to the penguin, for example, from
supersymmetric (SUSY) partners. If the penguin can be
sufficiently suppressed, Eqs. (44) and (48) suggest that
models in which kW 
 kG could satisfy the kaon bounds
while being able to account for the HyperCP result.

IV. PSEUDOSCALAR HIGGS BOSON

We now consider the possibility that the new particle is a
light CP-odd pseudoscalar, A, in the two-Higgs-doublet
model. Specifically, we do so in types I and II of the model.

A. Two-quark j�Sj � 1 interactions

The two-quark flavor-changing couplings of A in the
2HDM are induced at one loop and have been evaluated in
Refs. [31,32]. The effective Lagrangian is the same in

types I and II of the model and can be written as LAsd
in Eq. (1b), where

 gA �
GF

16
���
2
p
�2

X
q�u;c;t

m2
qV�qdVqs

�
A1�q�
tan�

�
A2�q�

tan3�

�
; (52)

with A1;2�q� being functions of mq, mW , and mH� , whose
expressions can be found in Ref. [31]. The leading-order
chiral realization of LAsd is then
 

LA � bDh �BfhA; Bgi � bFh �B�hA; B	i � b0hhAih �BBi

� 1
2f

2B0hhAi � H:c:; (53)

where

 hA � �2igA��yhM�y � �Mh��
A

v
: (54)

The leading-order diagrams for K ! �A and �� !
pA arising from LA, plus Ls, are similar to those in the
case of standard-model Higgs bosons, displayed in Fig. 1.
The resulting amplitudes are
 

M2q�K� ! ��A� � �
���
2
p

M2q�K0 ! �0A�

� igA
m2
K �m

2
�

v
; (55)

 

M2q��
� ! pA� � igA

m� �mN

v
�p�� � igA�D� F�

�
m� �mN

v
m2
K

m2
K �m

2
A

�p�5��:

(56)

B. Four-quark j�Sj � 1 interactions

The diagonal couplings of A to light quarks in the
2HDM are described by [32]

 LAqq � � �q ~M�5q
iA
v
� � �qL

~MqR
iA
v
� H:c:; (57)

where

 q � �u d s�T; ~M � diag�lum̂; ldm̂; ldms�; (58)

with

 lu � �ld � � cot� in the 2HDM I; (59)

 lu � � cot�; ld � � tan� in the 2HDM II:

(60)

Since the Lagrangian for the quark masses is Lq �

� �qLMqR � H:c:, the effect of LqqA on interactions de-
scribed by Ls;w can be taken into account using Ls;w and
substituting M with ~MiA=v [10]. The resulting
Lagrangians are

4One could arrive at a similar conclusion about H in the
2HDM II by analyzing the decay �! �0H , whose amplitude
depends on the four-quark parameters kd � ku [27]. Thus, from
the 90%-C.L. bound B��! �0H �< 5� 10�6 [30], one ex-
tracts jkd � kuj< 0:45 for mH � 214:3 MeV, which is incom-
patible with the limit derived from Eq. (43) plus the LEP
constraint sin2��� ��< 0:06 [21], namely jkd � kuj �
j2 cos��� ��= sin�2��j> 1:9.
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LA
s �

�
bDh �Bf ~M�; Bgi � bFh �B� ~M�; B	i � b0h ~M�ih �BBi

�
1

2
f2B0h ~M�i

�
iA
v
; (61)

 LA
w � 2~�8f

2B0hh� ~M��
yi
iA
v
� H:c:; (62)

where

 

~M � � �y ~M�y � � ~My�: (63)

In addition, if the SU(3) singlet �1 is included in L�A�s;w by
replacing � with � exp�i

��������
2=3

p
�1=f�, the coupling of A to

two gluons via the axial anomaly gives rise to [10]

 

L�1A � �
1

2

�
m2
�1
�

2

3
m2
K �

1

3
m2
�

�

�

�
�1 �

fA���
6
p
v
�2lu � ld�

�
2
; (64)

which modifies the �1-A mixing generated by LA
s .

From L�A�s;w , we derive the leading-order diagrams
shown in Fig. 7 for K ! �A, where

 � � �8 cos�� �1 sin�; �0 � �8 sin�� �1 cos�:

(65)

The resulting amplitudes are

 

M4q�K� !��A� �
i�8�lu� ld�m2

�

2v
� i�8��2m2

K�m
2
�� 3m2

A�c��
���
8
p
�m2

K�m
2
��s�	

�
�4ldm

2
K��3ld� lu�m

2
�	c��

���
2
p
�2ldm

2
K� lum

2
���ld� 2lu� ~m

2
0	s�

6�m2
��m2

A�v
� i�8��2m2

K�m
2
�� 3m2

A�s�

�
���
8
p
�m2

K�m
2
��c�	

�4ldm
2
K��3ld� lu�m

2
�	s��

���
2
p
�2ldm

2
K� lum

2
���ld� 2lu� ~m

2
0	c�

6�m2
�0 �m

2
A�v

; (66a)

M4q�K0!�0A� �
i�8�lu� ld��2m

2
K�m

2
��m

2
A�m

2
����

8
p
�m2

A�m
2
��v

� i�8��2m2
K�m

2
�� 3m2

A�c��
���
8
p
�m2

K�m
2
��s�	

�
�4ldm

2
K��3ld� lu�m

2
�	c��

���
2
p
�2ldm

2
K� lum

2
���ld� 2lu� ~m

2
0	s�

6
���
2
p
�m2

A�m
2
��v

� i�8��2m2
K�m

2
�� 3m2

A�s��
���
8
p
�m2

K�m
2
��c�	

�
�4ldm2

K��3ld� lu�m
2
�	s��

���
2
p
�2ldm2

K� lum
2
���ld� 2lu� ~m2

0	c�
6
���
2
p
�m2

A�m
2
�0 �v

; (66b)

where

 c� � cos�; s� � sin�; ~m2
0 � m2

�1
� 2

3m
2
K �

1
3m

2
�: (67)

The ~�8 contributions to this amplitude cancel completely, as already noted in Ref. [10]. Numerically, ~m2
0 ’ 819 MeV from

fitting to the �0 mass after diagonalizing the �8;1 masses derived from the Lagrangians in Eqs. (28) and (64), and
consequently � ’ �19:7�.

The leading-order four-quark contributions to �� ! pA arise from the diagrams in Fig. 8 and can be expressed as

 

K π K
K 0

π

K
K

π 0, η, η
π K

π 0, η, η
π

FIG. 7. Diagrams contributing to K ! �A arising from the
four-quark operators. The dots come from L�A�s in Eqs. (28) and
(61), whereas the square vertices are from L�A�w in Eqs. (36) and
(62).

 

Σ + p

π 0, η, η

Σ +
Σ +

p

π 0, η, η

Σ +
p p

π 0, η, η

FIG. 8. Diagrams contributing to �� ! pA arising from the
four-quark operators. The square vertices come from Lw in
Eq. (36), whereas the dots are from the Lagrangians in
Eqs. (28), (61), and (64).
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 M 4q��
� ! pA� � i �p�ApA � BpA�5��

�; (68)
where

 ApA �
fAp�0�ld � lu�m2

�

2�m2
A �m

2
��v

�
fAp�0f�4ldm2

K � �3ld � lu�m
2
�	c2

� �
���
2
p
�2ldm2

K � lum
2
� � �ld � 2lu� ~m2

0	c�s�g

2�m2
� �m

2
A�v

�
fAp�0f�4ldm

2
K � �3ld � lu�m

2
�	s

2
� �

���
2
p
�2ldm

2
K � lum

2
� � �ld � 2lu� ~m

2
0	c�s�g

2�m2
�0 �m

2
A�v

; (69)

 BpA �
fBp�0�ld � lu�m

2
�

2�m2
A �m

2
��v

�
fBp�0f�4ldm

2
K � �3ld � lu�m

2
�	c

2
� �

���
2
p
�2ldm

2
K � lum

2
� � �ld � 2lu� ~m

2
0	c�s�g

2�m2
� �m

2
A�v

�
fBp�0f�4ldm2

K � �ld � lu�m
2
�	s2

� �
���
2
p
�2ldm2

K � lum
2
� � �ld � 2lu� ~m2

0	c�s�g

2�m2
�0 �m

2
A�v

; (70)

where Ap�0 and Bp�0 are given in Eq. (46). We note that
contributions with �8 or ~�8 appear only at next-to-leading
order.

C. Total contributions

The total amplitudes for K ! �A result from adding
the contributions in Eqs. (55) and (66). If the CP-violating
terms in the amplitudes are ignored, it is possible for the
two-quark and four-quark contributions to cancel. We
show this possibility in Fig. 9, where we plot the resulting
branching ratios as functions of the charged-Higgs-boson
mass for mA � 214:3 MeV and different tan� values in
the 2 versions of the 2HDM. The total amplitude for �� !
pA is the sum of the contributions in Eqs. (56) and (68). If
the experimental values of Ap�0 and Bp�0 in Eq. (47), as
well as the middle value D� F � 0:25, are used in the
total amplitude, the resulting branching ratios in the 2HDM
are displayed in Fig. 10.

We have found that only one of the kaon bounds can be
satisfied if the HyperCP result is assumed to be mediated
by A in the 2HDM. However, for certain tan� and mH�

values near the ones indicated in Figs. 9 and 10, all the
kaon and hyperon constraints can be nearly satisfied si-
multaneously. Part of the difficulty in satisfying all of the
constraints lies with the vanishing of the K� and KS rates
occurring at different mH� values, which is due to

M4q�KS ! �0H � and �ReM4q�K
� ! ��H � being

unequal with lu � ld in Eqs. (59) and (60). We note that
the situation is not much different if the signs of Ap�0 and
Bp�0 in Eq. (47) are both flipped.

To summarize this section, we have found that it is
possible for the real part of the penguin amplitude to cancel
against the four-quark amplitude to approximately satisfy
the kaon bounds while explaining the HyperCP observa-
tion with a 2HDM pseudoscalar. Unlike the scalar case,
there is no free hadronic parameter at leading order in �PT
in this case. The cancellation must happen as a function of
the short-distance parameters that determine the size of the
amplitudes.

A feature shared by scalars and pseudoscalars in the
2HDM is that the imaginary part of the penguin amplitude
is incompatible with the kaon bounds in Eq. (9) and has no
counterpart that could cancel it in the four-quark ampli-
tude. A related problem is that the scaling of the penguin
amplitude to the B system is also incompatible with
observation.

In view of these flaws, it is tempting to search for a
model in which the penguin amplitudes are completely
suppressed, and the 2HDM II seems to allow us to do
that. In the 2HDM II the penguin amplitudes are propor-
tional to lu, whereas the four-quark amplitudes receive
contributions from both lu and ld in Eq. (60). Thus the
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FIG. 9 (color online). Contributions of real parts of total amplitudes for K� ! ��A (solid curve) and KS ! �0A (dashed curve)
in the 2HDM to their branching ratios as functions of charged-Higgs-boson mass for mA � 214:3 MeV and tan� � 4�0:9� in
type I(II) of the model. The horizontal lines indicate the upper bounds in Eqs. (7) and (8).
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model in the large- tan� limit has lu ! 0. Unfortunately, in
this limit ld induces four-quark amplitudes resulting in

 

B��� ! pA�
B�K� ! ��X�

! 0:025; (71)

which is inconsistent with Eqs. (9) and (13). In the 2HDM
I, which has lu and ld given in Eq. (59), the four-quark
amplitudes alone yield

 

B4q��
� ! pA�

B4q�K� ! ��X�
� 0:53 (72)

for all values of tan�, which is consistent with Eqs. (9) and
(13). However, in this case it is the penguin amplitude that
eliminates the pseudoscalar as a possible HyperCP
candidate.

These results suggest the ingredients of a model that can
satisfy all constraints. It is necessary for the penguin
amplitudes to be dominated by additional particles, such
as SUSY partners, in such a way that gA is not propor-
tional to top-quark CKM angles. We have sketched a
scenario where this happens in Ref. [33].

V. SUMMARY AND CONCLUSIONS

We have summarized the existing constraints on the
production of a light Higgs boson in kaon and B-meson
decays, as well as the implication of attributing the
HyperCP events to the production of a light Higgs boson
in hyperon decay.

Production rates for such a particle in kaon and hyperon
decays receive contributions from two- and four-quark
operators that can be comparable in some cases. We have
investigated the interplay of both production mechanisms
with the aid of leading-order chiral perturbation theory. To
this effect, we have implemented the low-energy theorems
governing the couplings of light (pseudo)scalars to hadrons
at leading order in baryon �PT, generalizing existing
studies for kaon decay.

We first discussed the case of a scalar Higgs boson. We
found that the leading-order amplitudes in both kaon and
hyperon decays depend on an unknown low-energy con-
stant ~�8, as well as known constants from the hyperon
sector. This constant is connected to a weak-mass term in
the chiral Lagrangian that can be rotated away for pro-
cesses that involve only pseudo-Goldstone bosons and is,
therefore, unknown. We applied our results to the process
�� ! pX relevant to the HyperCP observation of �� !
p����. We showed that the two-quark contributions in
the SM and its 2HDM extensions are too large to explain
the HyperCP observation. However, we also showed that
there can be cancellations between theCP-conserving two-
and four-quark contributions to this process that lead to a
rate comparable in size to the HyperCP observation for
both the SM and the 2HDM. Such cancellations occur for a
certain range of known constants from the hyperon sector,
the effect of ~�8 being small. In both cases, however, the
two-quark penguin contribution has an imaginary
(CP-violating) part that is too large to be compatible
with the HyperCP result. In the SM and in the 2HDM,
the four-quark contributions have a CP-violating part that
is much smaller than that of the penguin amplitude and
hence these models are ruled out as explanations for the
HyperCP observation. More general models with addi-
tional CP-violating phases may be able to address this
issue. In addition, in these models the scaling of the two-
quark operator to the B system is incompatible with the
nonobservation of a light scalar in B decay.

We then discussed the case of a pseudoscalar Higgs
boson in the 2HDM. In this case we computed the
leading-order amplitudes in �PT and included, as well,
certain higher-order terms mediated by the �0 state. The
resulting amplitudes for both kaon and hyperon decays do
not depend on any unknown hadronic parameters. In par-
ticular, they do not depend on ~�8, as observed in Ref. [10].
We then applied our results to the �� ! pA process.
Once again we found that the real part of the amplitude
can be consistent with the HyperCP observation for a
certain range of parameters in the 2HDM ( tan� and
mH�), but that the imaginary part of the penguin amplitude
is too large. The scaling of the two-quark operator to the B
system also produces a B! XsA rate that is too large.
Both of these problems can be solved in more general
models that modify the phase and scaling with CKM
angles of the two-quark operator.

In conclusion, we have shown that it is possible to inter-
pret the HyperCP observation as evidence for a light Higgs
boson, although it is not easy to arrange this in a model.
Typical Higgs-penguin operators have three problems:

(a) if they have the right size to fit the HyperCP obser-
vation, they induce K ! �X at rates larger than the
existing bounds;

(b) if they are dominated by loop diagrams involving
up-type quarks andW bosons, they have a CP phase
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FIG. 10 (color online). Contribution of the real part of the total
amplitude for �� ! pA to its branching ratio in the 2HDM I
(solid curve) and II (dotted curve) as a function of charged-
Higgs-boson mass for mA � 214:3 MeV and tan� � 4�0:9� in
type I(II). The dashed lines indicate the bounds from the
HyperCP result.
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that is too large;
(c) if they are dominated by loop diagrams involving

up-type quarks and W bosons, their scaling to the B
system is incompatible with the nonobservation of
B! XsX.

We have found in this paper that (a) can be solved in some
cases by the addition of the effects of four-quark operators.
We have suggested that more general models may be
constructed to solve (b) and (c). To show that this is pos-
sible, we have constructed a specific example in Ref. [33].

Disregarding existing bounds from kaon and B-meson
decays, we have shown that many light Higgs bosons have
couplings of the right size to explain the HyperCP obser-
vation. We think this is sufficiently intriguing to warrant a

revisiting of the kaon and B-decay results. In particular, the
B factories are still operational and could reanalyze the
very lowm�� invariant-mass region in their measurements
of B! Xs�

��� modes. The NA48 experiment might
also be able to revisit the kaon modes.

ACKNOWLEDGMENTS

The work of X. G. H. was supported in part by NSC and
NCTS. The work of G. V. was supported in part by DOE
under Contract No. DE-FG02-01ER41155. We thank
Laurence Littenberg and Rainer Wanke for useful discus-
sions on the kaon bounds and Soeren Prell for useful
discussions on the B bounds.

[1] H. Park et al. (HyperCP Collaboration), Phys. Rev. Lett.
94, 021801 (2005).

[2] X. G. He, J. Tandean, and G. Valencia, Phys. Rev. D 72,
074003 (2005).

[3] X. G. He, J. Tandean, and G. Valencia, Phys. Lett. B 631,
100 (2005).

[4] N. G. Deshpande, G. Eilam, and J. Jiang, Phys. Lett. B
632, 212 (2006).

[5] C. Q. Geng and Y. K. Hsiao, Phys. Lett. B 632, 215 (2006).
[6] D. S. Gorbunov and V. A. Rubakov, Phys. Rev. D 64,

054008 (2001); 73, 035002 (2006); S. V. Demidov and
D. S. Gorbunov, hep-ph/0610066.

[7] R. S. Chivukula and A. V. Manohar, Phys. Lett. B 207, 86
(1988); 217, 568(E) (1989).

[8] H. Leutwyler and M. A. Shifman, Nucl. Phys. B343, 369
(1990).

[9] See, for example, J. F. Gunion, H. E. Haber, G. L. Kane,
and S. Dawson, Report No. SCIPP-89/13, and references
therein.

[10] B. Grzadkowski and J. Pawelczyk, Phys. Lett. B 300, 387
(1993).

[11] H. Ma et al. (E865 Collaboration), Phys. Rev. Lett. 84,
2580 (2000).

[12] H. K. Park et al. (HyperCP Collaboration), Phys. Rev.
Lett. 88, 111801 (2002).

[13] J. R. Batley et al. (NA48/1 Collaboration), Phys. Lett. B
599, 197 (2004).

[14] E. Barberio et al. (Heavy Flavor Averaging Group), hep-
ex/0603003.

[15] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.
93, 081802 (2004).

[16] M. Iwasaki et al. (Belle Collaboration), Phys. Rev. D 72,
092005 (2005).

[17] R. S. Willey and H. L. Yu, Phys. Rev. D 26, 3086 (1982);
B. Grzadkowski and P. Krawczyk, Z. Phys. C 18, 43
(1983); A. Dedes, Mod. Phys. Lett. A 18, 2627 (2003),

and references therein.
[18] R. M. Barnett, G. Senjanovic, and D. Wyler, Phys. Rev. D

30, 1529 (1984); C. Q. Geng and J. N. Ng, ibid. 39, 3330
(1989); M. E. Lautenbacher, Nucl. Phys. B347, 120
(1990).

[19] S. Dawson, Nucl. Phys. B339, 19 (1990).
[20] J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1

(2005). Updated results used in this paper are from http://
ckmfitter.in2p3.fr/, ‘‘Results as of FPCP 2006, Vancouver,
Canada.’’

[21] G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C
40, 317 (2005).

[22] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142
(1984).

[23] J. Bijnens, H. Sonoda, and M. B. Wise, Nucl. Phys. B261,
185 (1985); E. Jenkins and A. V. Manohar, in Effective
Field Theories of the Standard Model, edited by U.-G.
Meissner (World Scientific, Singapore, 1992).

[24] A. Alavi-Harati et al. (KTEV Collaboration), Phys. Rev.
Lett. 84, 5279 (2000).

[25] See, for example, J. F. Donoghue, E. Golowich, and B. R.
Holstein, Dynamics of the Standard Model (Cambridge
University Press, Cambridge, 1992).

[26] J. Bijnens and J. Prades, J. High Energy Phys. 01 (1999)
023.

[27] J. Prades and A. Pich, Phys. Lett. B 245, 117 (1990); A.
Pich, J. Prades, and P. Yepes, Nucl. Phys. B388, 31 (1992).

[28] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1
(2006).

[29] H. Y. Cheng and H. L. Yu, Phys. Rev. D 40, 2980 (1989).
[30] R. I. Dzhelyadin et al., Phys. Lett. 105B, 239 (1981).
[31] J. M. Frere, J. A. M. Vermaseren, and M. B. Gavela, Phys.

Lett. 103B, 129 (1981).
[32] L. J. Hall and M. B. Wise, Nucl. Phys. B187, 397 (1981).
[33] X. G. He, J. Tandean, and G. Valencia, hep-ph/0610362.

XIAO-GANG HE, JUSAK TANDEAN, AND G. VALENCIA PHYSICAL REVIEW D 74, 115015 (2006)

115015-12


