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We analyze a supersymmetric system with four flat directions. We observe several interesting
properties, such as the coexistence of the discrete and continuous spectrum in the same range of energies.
We also solve numerically the classical counterpart of this system. A similar analysis is then done for an
alike, but nonsupersymmetric, system. The comparison of these classical and quantum results may serve
as a suggestion about classical manifestations of supersymmetry.
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I. INTRODUCTION

Great interest has been recently put on the supersym-
metric Yang-Mills quantum mechanics (SYMQM), which
results from a dimensional reduction of the supersymmet-
ric Yang-Mills field theories to a single point in space. The
use of simple numerical methods gives a good understand-
ing of the N � 2, D � 2, and D � 4 models [1–3]. The
ultimate goal of such an analysis is the D � 10, SU�N !
1� model, which is conjectured to be in relation with the
M-theory [4].

The system addressed here was used by de Wit, Lüscher,
and Nicolai in [5,6] as a simplified model of the super-
membrane Hamiltonian in an extensive discussion on
stability of supermembranes, structures present in the M-
theory. It is one of the simplest supersymmetric models
with flat directions. It thus contains several interesting
properties of SYMQM, such as the coincidence of the
discrete and continuous spectrum. The aim of this paper
is to analyze in detail this system with the method proposed
by Wosiek [1] and to compare it with an analogous, but
nonsupersymmetric, model. The latter was also already
described in the literature on both, classical and quantum
[7,8], levels. It has an interesting feature, all its eigenstates
are localized, even though the potential is zero on an
unbounded set.

The paper is composed as follows. We start by introduc-
ing the quantum systems: the nonsupersymmetric one and
the supersymmetric one, and we continue by presenting
their classical counterparts. The comparison in the quan-
tum regime is based on the analysis of numerical spectra,
therefore we proceed by describing the method used for
calculating spectra, and then give a detailed study of all
symmetries present in these systems in order to fully
understand the degeneracies which may appear. Con-
sequently, we discuss the results of this comparison.
Finally, we turn to the classical regime and analyze the
classical bosonic and supersymmetric trajectories.
Comparing them enables us to rediscover the differences
between quantum systems on the classical level.

II. DESCRIPTION OF THE SYSTEM

In this chapter we introduce the Hamiltonians of the
considered models; first the quantum, then the classical
one. In the following, the nonsupersymmetric system will
be called bosonic, because it contains only bosonic degrees
of freedom.

A. Quantum systems

The quantum bosonic Hamiltonian has the form

 Ĥ bosonic � p̂2
x � p̂

2
y � x̂

2ŷ2: (1)

The potential x2y2 has four flat directions. Usually, we
expect that systems with potentials equal to zero on an
unbounded set, have continuous spectrum. Nevertheless, in
our case, the spectrum turns out to be exclusively discrete
due to the quantum fluctuations in the transverse direc-
tions. Let us consider a particle moving in one of the
valleys, say x > 0. The transverse potential is the potential
of a harmonic oscillator with an equilibrium position at
y � 0 and frequency proportional to the distance from the
center !� jxj. The zero-mode energy of such fluctuations
increases linearly with jxj, when the particle is moving
deep into the valley. Therefore, the particle is exposed to an
effective potential barrier, which prevents it from escaping.
We will now recall [8] the solution of the stationary
Schrödinger equation in the Born-Oppenheimer approxi-
mation in order to explicitly show the above. The energy of
a quantum harmonic oscillator of frequency jxj is equal to

 Ex � jxj�ny �
1
2�:

The wave function can be written as a product of two
functions,

 ��x; y� � ��x��x;ny�y�;

where ��x� accounts for the onward motion, and �x;ny�y�
describes the transverse harmonic fluctuations,
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�
@2

@y2 � x
2y2

�
�x;ny�y� � 2jxj

�
ny �

1

2

�
�x;ny�y�:

Thus, �x;ny�y� is a well-known eigenfunction of quantum
harmonic oscillator,

 �x;ny�y� � �
����
�
p

2nyny!�
�1=2Hny�

��������
2jxj

p
y�e�y

2jxj:

��x� satisfies a stationary Schrödinger equation:

 

�
�
@2

@x2 � 2jxj
�
ny �

1

2

��
��x� � Enx;ny��x�:

We now proceed independently for x > 0 and x < 0. Let us
introduce a new variable z:

 z �
�
ny �

1

2

�
1=3
�
x�

E
2ny � 1

�
:

The equation for ��x� can be now rewritten in this variable
as

 ���z� � 2z��z� � 0:

This is the Airy equation. Its solutions are even and odd
Airy’s functions. In order to obtain a full solution we have
to match together solutions from x > 0 and x < 0 valleys.
This gives us the condition of energy quantization, which
turns out to be the equation for the zeros of Airy’s function

 Ai
�

�E

�2ny � 1�2=3

�
� 0:

This condition has a straightforward interpretation. The
spectrum is discrete, because the Airy’s functions are
analytic and therefore have countable many zeros on the
real axis. The few first approximate eigenenergies are
shown in Table II, together with some exact ones. The
compatibility is within 7%. The assumption, that the par-
ticle moves only in one of the valleys, breaks the space
symmetries of the system, so the approximated energies
will not have degeneracies.

The quantum supersymmetric Hamiltonian has the form

 Ĥ susy � p̂2
x � p̂

2
y � x̂

2ŷ2 � �x̂� iŷ�fy � �x̂� iŷ�f; (2)

where fy and f are the fermionic creation and annihilation
operators, respectively. The operator fyf does not com-
mute with the Hamiltonian (2), so the fermionic occupation
number is not a good quantum number and cannot be used
to label the eigenstates. This generates nonvanishing, non-
diagonal matrix elements in the fermionic occupation
number representation.

There exists one supersymmetry generator,

 Q̂ � Q̂y

�
1���
2
p ��p̂x � ip̂y�f� �p̂x � ip̂y�fy � x̂ ŷ�fy; f��;

(3)

such that

 Ĥ � fQ̂y; Q̂g;

and

 �Ĥ; Q̂� � 0:

Although the supersymmetry concerns particles—bosons
and fermions—it is sometimes useful to think about the
fermionic degree of freedom as an equivalent spin projec-
tion on the OZ axis. In this language the Hamiltonian and
the supersymmetry generator take the form

 Ĥ susy � p̂2
x � p̂

2
y � x̂

2ŷ2 � �xx̂� �yŷ;

 Q̂ � Q̂y �
1���
2
p �p̂x�x � p̂y�y � x̂ ŷ �z�:

The analytic analysis of the system (2) is difficult because
of the mentioned nondiagonal matrix elements in the fer-
mionic occupation number representation. We can never-
theless extract some useful information by analyzing a
simpler and more regular model. It will enable us to
demonstrate the effect of coexistence of the discrete and
continuous spectrum in the same range of energies. Let us
consider the Hamiltonian

 Ĥ model � p̂2
x � p̂2

y � x̂2ŷ2 � x̂�fy; f�: (4)

We will use now, as in the purely bosonic case, the Born-
Oppenheimer approximation. It has to be noted that,
although the model Hamiltonian (4) does not have the
space symmetries present in the original system (2), it
does not spoil its usefulness, because the approximation
breaks these symmetries anyway. Let us consider the mo-
tion in one of the valleys, say x > 0. The transverse poten-
tial is a potential of a quantum supersymmetric harmonic
oscillator of frequency !� jxj. The Hamiltonian of such
an oscillator is [9]

 Ĥ susy oscillator �
1

2
p̂2
y �

1

2
jxj2ŷ2 �

jxj
2
�fy; f�:

Its energies depend on one quantum number n and are
equal

 En � jxjn:

Similarly to the bosonic case, we write the wave function
as a product of two functions:

 ��x; y� � ��x��x;n�y�;

where ��x� accounts for the onward motion and �x;n�y�
fulfills the equation

 

�
�
@2

@y2 � x
2y2 � jxj�f; fy�

�
�x;n�y� � 2njxj�x;n�y�:

This gives us the equation on ��x�:
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�
�
@2

@x2 � 2njxj
�
�n�x� � E�n�x�: (5)

From the form of (5) we can conclude that the spectrum has
two coexisting parts: a continuous part for n � 0 and a
discrete one for n 	 1. The zero energy of the zero modes
enables the particle to penetrate the valley to any depth.
The same effect is present in the original system (2), so it
seems that (4) is a good candidate to model this feature.

A detailed study of spectra of both bosonic and super-
symmetric quantum models is described later on.

B. Classical systems

The classical bosonic Hamiltonian has the form

 Hboz � p2
x � p2

y � x2y2: (6)

We easily find the equations of motion
 

_x � 2px; _y � 2py;

_px � �2xy2; _py � �2yx2:
(7)

These equations imply that particles which move exactly
along the coordinate axes have a constant momentum
component along these axes. This, of course, corresponds
to a free motion in these directions. We will show later that
any other trajectory is bounded in the sense that it always
returns to the center of the potential. This property of the
x2y2 potential can be easily investigated using the so-called
hyperbolic billiard. The authors of the article [10] have
considered a classical, free, spinless particle moving as a
free particle in a bounded set,

 D � f�x; y�jx 	 0 ^ y 	 0 ^ y 
 1=xg;

which is an idealized version of the potential in (6). They
showed that such a particle cannot escape through the
valleys, it always turns back. They also proved that it is
possible to systematically find all closed orbits. Every orbit
can be unambiguously labeled by a set of symbols which
correspond to reflection from particular walls of the poten-
tial. Such a list of all orbits is particularly useful in the
semiclassical calculations by Feynman integrals.

The classical equations of motion of the supersymmetric
system can be obtained from the quantum Hamiltonian (2)
using the Ehrenfest’s equation for mean values:
 

_x � 2px; _y � 2py; _px � �2xy2 � 2Sx;

_py � �2yx2 � 2Sy; _Sx � �2ySz;

_Sy � �2xSz; _Sz � 2xSy � 2ySx:

(8)

Equations (8) can also be derived in a different way. As was
shown in the paper by Berezin [11], for the description of
classical dynamics of a nonrelativistic particle with spin 1

2
one needs an enriched phase space. This description uses
three, anticommuting, dynamical variables �k which be-
long to a Grassmann algebra G3 with three generators:

 �k�l � �l�k � 0; k; l � 1; 2; 3:

In particular, �2
k � 0. We can use relations between quan-

tum spin projection operators with their classical counter-
parts expressed in terms of �. We thus obtain a classical
form of the supersymmetric Hamiltonian:

 Hsusy � p2
x � p

2
y � x

2y2 � i�x�xlm � y�ylm��l�m:

The time dependence of the dynamical variables can be
derived from the Hamilton equations: dqdt �

@H
@p , dpdt � �

@H
@q ,

d�i
dt � iH @

 

@�i
, where q � x, y and p � px, py. The appear-

ance of the imaginary i in the classical equations is inher-
ently related to the nature of the Grassmann variables.
 

_x � 2px; _y � 2py; _px � �2xy2 � i�xlm�l�m;

_py � �2yx2 � i�ylm�l�m; _�1 � �2y�3;

_�2 � �2x�3; _�3 � 2x�2 � 2y�1:

(9)

It is useful to replace the Grassmann variables �k in these
equations by the spin projections Sk, which are the physical
observables:

 Sk � �
i
2
�klm�l�m; _Sk � �

i
2
�klm� _�l�m � �l _�m�:

We get rid of the time derivatives _�k using the equations of
motion (9). The equations for Sk close and we get the
already obtained set of Eqs. (8). In this language, the
Hamiltonian takes the form

 Hsusy � p2
x � p2

y � x2y2 � 2xSx � 2ySy: (10)

Furthermore, Eq. (10) can be rewritten in a form where the
spin precession is evident. To this end we define a vector
field, which is space dependent:
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FIG. 1. Vector field ~V about which the spin rotates.
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~V � �Vx; Vy; Vz� � �2x;�2y; 0�:

Then

 Hsusy � p2
x � p2

y � x2y2 � ~S � ~V;

which manifestly shows the precession effect. It is note-
worthy that such a field is tangent to the contour line of the
potential x2y2, see Fig. 1.

III. QUANTUM MECHANICS ON PC

A numerical analysis of quantum systems can be easily
carried out in an eigenbasis of occupation number opera-
tors, a so-called Fock basis [1]. The occupation number
operator can be written as aya, where ay and a are stan-
dard bosonic creation and annihilation operators, respec-
tively. They fulfill well-known commutation relations:

 �ap; aq� � �a
y
p; a

y
q � � 0; �ap; a

y
q � � �pq: (11)

p and q in (11) are indices which label the bosonic degrees
of freedom. Particularly, the nonsupersymmetric system
(1) has two bosonic degrees of freedom, labeled x and y.
Thus, a basis state is described by two integers

 jm; ni �
1�����������
n!m!
p �ayx �m�a

y
y �nj0i; m; n 	 0: (12)

Of course, in a numerical analysis it is impossible to use an
infinite basis, so a cutoff, Ncut, is needed, which limits the
number of basis states. There are many ways to introduce
such a cutoff. One of them, called a square cutoff, is to
limit independently the maximal number of occupation for
each of two degrees of freedom by

���������
Ncut

p
.

The momentum and position operators can be expressed
by creation and annihilation operators in the following
way:

 x �
1���
2
p �ax � a

y
x �; px �

1

i
���
2
p �ax � a

y
x �;

y �
1���
2
p �ay � a

y
y �; py �

1

i
���
2
p �ay � a

y
y �:

(13)

The action of the Hamiltonian, which is an operator
function of (13), is straightforward in the Fock basis. We
can easily calculate its matrix elements. The eigenenergies
of a quantum system belong to a set of eigenvalues of the
Hamiltonian matrix, and the eigenstates are the eigenvec-
tors of this matrix.

In the supersymmetric case we must introduce fermionic
creation and annihilation operators, f and fy, which fulfill
the anticommutation relations:

 ffp; fqg � ff
y
p; f

y
q g � 0; ffp; f

y
q g � �pq; (14)

where p and q are indices which describe the fermionic

degrees of freedom. In general, in order to ensure the
relations (14), one uses a construction by Jordan and
Wigner [12]. In a case of only one fermionic degree of
freedom it is not necessary. The fermionic occupation
number operator fyf, with two eigenvalues 0 i 1, permit
to label the basis states by a third quantum number:

 

jm; n; ki �
1�����������
n!m!
p �ayx �m�a

y
y �n�fy�kj0i;

m; n 	 0; k � 0; 1:
(15)

The above method allows also to verify the reliability of
numerical results. The rate of convergence of eigenener-
gies with an increasing Ncut is a simple criterion. For
example, we can assume that the convergence is reached
when a relative change of the energy between consecutive
Ncut is less than 1% of its absolute value. For the bosonic
ground state this happens for Ncut > 100. The excited
states have a worse convergence so all the following results
were obtained for Ncut � 400. The dependence of the
energy of the bosonic ground state on the cutoff is shown
in Fig. 2 with a solid line. This dependence provides us also
with an additional information on the character of the
quantum state. Particularly, as it will be described later, it
enables one to decide whether the state belongs to the
discrete spectrum or to the continuous one.

Another criterion of reliability is supplied by the spatial
probability distributions. One can assume that the conver-
gence is reached when for consecutive cutoffs, Ncut and
N0cut, the probability P�x� of finding the particle at the point
x fulfills the inequality,

 max
x2I

jPNcut
�x� � PN0cut

�x�j

PNcut
�x�

< �;

where I is an interval on which the distributions are calcu-
lated. Figure 3 shows a cross section along the OX axis of
such distribution for the bosonic ground state for different
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FIG. 2. The dependence of the ground state energy on the
cutoff for the bosonic system.

PIOTR KORCYL PHYSICAL REVIEW D 74, 115012 (2006)

115012-4



cutoffs. The convergence is reached for Ncut � 128. The
free parameters were chosen as I � ��5; 5� and � � 0:01.
Obviously these values are only exemplary and can be
tuned at will.

IV. SYMMETRIES OF THE SYSTEM

A. Bosonic case and the C4v group

The Hamiltonian of the quantum bosonic system (1) is
invariant with respect to a point group of symmetries,
which consists of a 4-fold principal axis of symmetry and
four reflection axes perpendicular to the principal axis, and
is called the C4v group. It has eight elements:

e identity,
�x reflection with respect to the x axis ,
�y reflection with respect to the y axis ,
�x�y reflection with respect to the x � y line ,
�x��y reflection with respect to the x � �y line ,
R�=2 � R rotation through the angle of � �

2 radians,
R� � R2 rotation through the angle of �� radians,
R3�=2 � R3 rotation through the angle of � 3�

2 radians

We call a conjugacy class a subset of all elements of a
group G that commute with all elements of G. The group
C4v has five conjugacy classes:

 id � feg; 2C4 � fR;R3g; C2 � fR2g;

2Sv � f�x; �yg; 2Sd � f�x�y; �x��yg:

It is known [13], that the number of irreducible represen-
tations of a group is equal to the number of classes of this
group. At the same time, the sum of squares of dimensions
of this representations must be equal to the order of the
group. All this implies that C4v must have four 1-

dimensional and one 2-dimensional irreducible represen-
tations. The defining representation is 2-dimensional and is
explicitly shown in (16). Each group has also a 1-
dimensional, trivial representation composed of ones.
 

e �
1 0

0 1

 !
; R �

0 1

�1 0

 !
;

R2 �
�1 0

0 �1

 !
; R3 �

0 �1

1 0

 !
;

�x �
�1 0

0 1

 !
; �y �

1 0

0 �1

 !
;

�x�y �
0 1

1 0

 !
; �x��y �

0 �1

�1 0

 !
:

(16)

In order to find the remaining three 1-dimensional repre-
sentations, one uses a couple of observations. First, every
representation of the identity element has to be equal 1.
Second, except the elements of the 2C4 class, all elements
squared give the identity element. Thus, their representa-
tions must be equal �1 or �1. Moreover, one can obtain
the elements of the C2 class by combining the elements of
the classes 2C4, 2Sv, and 2Sd (i.e. reflection with respect to
the OX axis and a reflection with respect to the OY axis
give a rotation through an angle of �). So the representa-
tions of the C2 class must be equal to �1. As the repre-
sentations of the 2C4 class are concerned, they can be equal
�1 or �1, because when squared they must give the
elements of the C2 class. In order that the multiplication
table remains unchanged the representations equal to �1
must appear in pairs. All these observations permit to
identify all 1-dimensional representations of the C4v group
(Table I). The eigenstates transform according to one of the
irreducible representation. We have four 1-dimensional
representations, A1, A2, B1, and B2, so we will have four
series of nondegenerate states. States transforming accord-
ing to the representation E will be doubly degenerate. A
state symmetric with respect to three reflections �x, �y,
and �x�y will transform according to the trivial represen-
tation A1. A state symmetric with respect to �x and �y
reflections but antisymmetric with respect to �x�y will
transform according to the B1 representations. Table II
contains first twelve states, their symmetries, and the rep-
resentation they belong to.
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FIG. 3. The dependence of the space distribution of the bo-
sonic ground state on the cutoff Ncut, for Ncut equal 16 (highest
curve), 36, 64, 128 (lowest curve).

TABLE I. Four 1-dimensional irreducible representations of
the C4v group.

e 2C4 C2 2Sv 2Sd

A1 1 1 1 1 1
A2 1 1 1 �1 �1
B1 1 �1 1 1 �1
B2 1 �1 1 �1 1
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B. Supersymmetric case

The quantum supersymmetric Hamiltonian remains un-
changed under action of transformations which form the
following group:

e identity ,
~�x x! �x, y! y,

f ! �fy, fy ! �f,
~�y x! x, y! �y,

f ! fy, fy ! f,
~R� x! �x, y! �y,

f ! �f, fy ! �fy,
~�x�y x! y, y! x,

f ! ify, fy ! �if,
~�x��y x! �y, y! �x,

f ! �ify, fy ! if,
~R�=2 x! �y, y! x,

f ! if, fy ! �ify,
~R3�=2 x! y, y! �x,

f ! �if, fy ! ify

The aim of this notation is to highlight the similarity of
the above group and theC4v group. In this spirit we call this
group the ~C4v group. We again find five conjugacy classes:

 id � feg; 2 ~C4 � f ~R�=2; ~R3�=2g; ~C2 � f ~R�g;

2~Sv � f ~�x; ~�yg; 2~Sd � f ~�x�y; ~�x��yg:

We can perform a similar analysis as in the bosonic case
and obtain four 1-dimensional and one 2-dimensional ir-
reducible representations [Table III and formula (17)]:

 e �
1 0
0 1

� �
; ~�x �

�1 0
0 1

� �
;

~�y �
1 0
0 �1

� �
; ~R� �

�1 0
0 �1

� �
;

~�x�y �
0 1
1 0

� �
; ~�x��y �

0 �1
�1 0

� �
;

~R�=2 �
0 �1
1 0

� �
; ~R3�=2 �

0 1
�1 0

� �
:

(17)

Since all elements of the ~C4v group commute with the
Hamiltonian, one can choose one of these symmetries in
order to define an additional quantum number. Let us
choose the following:

 ~� y: x! x; y! �y; f ! fy; fy ! f:

The action of ~�y on basis vectors is given by

 ~� yjnx; ny; nfi � ���
ny jnx; ny; 1� nfi:

One can define even and odd states with respect to ~�y:

 jnx; ny;
i �
1���
2
p �jnx; ny; 0i 
 ���ny jnx; ny; 1i:

In such a basis the Hamiltonian appears as a block diagonal
matrix with two sectors, and it is possible to diagonalize
each block independently. Although we have introduced a

TABLE II. First 12 eigenstates of the quantum bosonic system with a corresponding repre-
sentation of the symmetry group C4v. In the column entitled ‘‘Energy’’ the exact energies are
shown, whereas the ‘‘B-O’’ column contains values calculated in the Born-Oppenheimer
approximation. In the columns from 4 to 10 are shown the parity or a lack of a given symmetry
for each state.

State Energy B-O �x �y �x�y �x��y R R2 R3 Representation

1 1.1082 1.1737 � � � � � � � A1

2 2.3788 2.3381 � � 0 0 0 � 0 E
3 2.3788 2.4414 � � 0 0 0 � 0 E
4 3.0574 3.2711 � � � � � � � B1

5 3.5229 3.4319 � � � � � � � A1

6 4.1100 4.0878 � � 0 0 0 � 0 E
7 4.1100 4.2950 � � 0 0 0 � 0 E
8 4.8210 4.8307 � � � � � � � B1

9 5.0113 4.8635 � � � � � � � B2

10 5.1120 5.0783 � � � � � � � A1

11 5.6947 5.5206 � � 0 0 0 � 0 E
12 5.6947 5.8053 � � 0 0 0 � 0 E

TABLE III. Four 1-dimensional irreducible representations.

e 2~Sv ~C2 2 ~C4 2~Sd

A 1 1 1 1 1
B 1 �1 1 1 �1
C 1 1 1 �1 �1
D 1 �1 1 �1 1
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squared cutoff, the basis remains invariant with respect to
the symmetries from the ~C4v group. The spectrum of the
supersymmetric system (2) will have degeneracies due to
these symmetries for each cutoff. It turns out that all states
transform according to the 2-dimensional irreducible rep-
resentation, so they will all be doubly degenerate. Table IV
shows eight first energies for three different cutoffs.

C. Supersymmetry

Supersymmetry can manifest itself in a given quantum
system through the set of supersymmetry generators,
which form a well-defined algebra, or, on a more experi-
mental level, through a characteristic structure (degener-
acies) of the spectrum. In this paper we assume that the
existence of a single ground state with zero energy and
supersymmetric doublets of higher energies guarantees the
presence of supersymmetry. Indeed, in the case of system
(2) the generators Q and Qy do not fulfill all relations of a
supersymmetry algebra, namely Q2 � 0. Moreover, Q
does not conserve the bosonic occupation number, so the
introduction of the cutoff breaks the supersymmetry and
destroys its fingerprints on the spectrum. One expects its
restoration in the limit Ncut ! 1. However, there exists a
way of establishing the supersymmetry for each finite Ncut.
One can remark, that, since Q is Hermitian, the
Hamiltonian (2) is a product of generators Q specified
for an infinite cutoff, and then cut to the desired dimen-
sions. On the other hand, one can conceive the Hamiltonian
matrix as a product of matrices of already cut generatorsQ:

 �Hsusy� � �Qfinite Ncut
��Qfinite Ncut

�: (18)

Of course, the Hamiltonians (2) and (18) agree in the limit
of infinite cutoff. It turns out that the spectrum of (18) is
fully supersymmetric. A sample of results for three differ-
ent cutoffs are shown in Table V. One can observe a double
degeneracy due to the point symmetries of the system, as
well as a supersymmetric degeneracy. Moreover, one can
notice in Table V yet another way of supersymmetry break-
ing. For square cutoffs with Ncut=2 even, the spectrum
cannot contain a single ground state and Ncut=4� 1 super-

symmetric doublets. In such a situation the supersymmetry
is broken and the ground state disappears.

V. QUANTUM SYSTEMS

In this section we will compare the numerical spectra of
the bosonic and supersymmetric quantum system.

A part of the spectrum of the bosonic system (1) is
shown in Fig. 4. The dependence of twelve first eigenener-
gies on the cutoff is depicted. Numerical values are pre-
sented in Table II. Consequently, to the discussion of the
symmetries of the system, the spectrum contains four non-
degenerate series of states and one doubly degenerate. The
degeneracies due to the point symmetries are present for
each Ncut, because the cutoff does not spoil them. After the
paper [14], the dependence of the eigenenergy on the cutoff
enables one to decide whether the state belongs to the

TABLE IV. Eight first energies for three different cutoffs for
the supersymmetric case. The degeneracy due to the point
symmetries is exact for each cutoff.

Ncut � 72 Ncut � 128 Ncut � 200

1 0.2871 0.2469 0.1788
2 0.2871 0.2469 0.1788
3 1.2172 0.8573 0.7553
4 1.2172 0.8573 0.7553
5 2.2215 1.8932 1.5014
6 2.2215 1.8932 1.5014
7 3.1867 2.7090 2.4616
8 3.1867 2.7090 2.4616

TABLE V. Twelve first eigenvalues of the matrix [Hsusy] for
three different cutoffs. The degeneracies have two origins:
supersymmetry and point symmetries of the group ~C4v. For
cutoff, for which Ncut=2 is even, the supersymmetry is broken
and the spectrum does not have the zero energy ground state.

Ncut � 50 Ncut � 200 Ncut � 450

0.0000 0.0165 0.0000
0.0000 0.0165 0.0000

0.0165
0.0165

0.3371 0.3607 0.0862
0.3371 0.3607 0.0862
0.3371 0.3607 0.0862
0.3371 0.3607 0.0862
1.0163 0.8867 0.3760
1.0163 0.8867 0.3760
1.0163 0.8867 0.3760
1.0163 0.8867 0.3760
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FIG. 4. The dependence of the 12 first eigenenergies on the
cutoff for the bosonic case.
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discrete spectrum or to the continuous one. If the depen-
dence on Ncut is of the type 1

Ncut
or slower, then the corre-

sponding state is a nonlocalized state from the continuous
spectrum. Contrary, if the dependence is fast, for example,
exponential �e�Ncut , then the state is localized. Figure 5
shows the dependence of the bosonic ground state on the
cutoff and two fitted curves: an exponent f�Ncut� � a�
be�cNcut and an inverse square root g�Ncut� � a�
b=

���������
Ncut

p
. The first one fits much better which means that

the ground state is localized. It turns out that all other states
analyzed with this method belong also to the discrete
spectrum. This is also confirmed by an analysis of the
virial, which is a scalar product of vectors of momentum
and position w � ~p � ~x. In the classical regime, the mean
time derivative of a virial tends to zero on a bounded
trajectory and explodes on an unbounded one. On the

quantum level, the evaluation of the expectation value of
a corresponding operator in a given state can supply a
similar type of information. In the bosonic case, one is
left with the following expression:

 h _wbosonici � 2�hp̂2
xi � hp̂2

yi � 2hx̂2ŷ2i�: (19)

The results for ten first states are shown in Fig. 6 as a
function of cutoff. We notice that all values converge to
zero, which confirms that the bosonic states are localized.

On the other hand, the supersymmetric spectrum is
shown in Fig. 7. According to the symmetries of the
system, all states are doubly degenerate due to the point
symmetries from the ~C4v group. The supersymmetric de-
generacy can be found in the infinite cutoff limit. The fitted
cutoff dependence of the supersymmetric ground state is
shown in Fig. 8 and suggests that it is a nonlocalized state.
The analysis of higher states also confirms that they belong
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FIG. 5. The dependence of the bosonic ground state energy on
the cutoff with fitted curves: an exponential one and an inverse
square root.
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first bosonic states. The convergence for the ground state is the
fastest. The most distant from zero curve corresponds to the
tenth eigenstate.
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FIG. 7. The dependence of the 32 first states on the cutoff for
the supersymmetric case.

 

0.1

0.2

0.3

0.4

0.5

250 500 750 1000

E
ne

rg
y

Basis size

a + b ∗ exp( − c ∗ x )
a + b/ (x )

FIG. 8. The dependence of the supersymmetric ground state
energy on the cutoff with fitted curves: an exponential one and an
inverse square root.

PIOTR KORCYL PHYSICAL REVIEW D 74, 115012 (2006)

115012-8



to the continuous spectrum. Thus, it seems that the spec-
trum of the quantum supersymmetric system is composed
of purely nonlocalized states. But, the approximate solu-
tion of the supersymmetric model (4) indicates that among
them one might find localized states from the discrete
spectrum. And indeed we have found such states in the
numerical spectrum of the exact Hamiltonian (2). How-
ever, as their convergence is exponential we may expect
that they should cross states with slower cutoff depen-
dence. The rules of quantum mechanics claim that, when
a parameter in a Hamiltonian is changed, the states of the
same symmetry cannot cross. In our case, such a parameter
is our cutoff, and as was mentioned, all states transform
according to the 2-dimensional irreducible representation
of the ~C4v group. So these localized states must have an
interesting realization. One can see them in Fig. 7 as
deformations of the energy dependence on the cutoff.
More precisely, there exist states which on some interval
Ncut have a constant energy (i.e. the deformations for
energies around E � 5). If the energy of such a state
remained unchanged till some cutoff ~Ncut, then for Ncut >
~Ncut it starts decreasing as 1

Ncut
. However, from ~Ncut the

energy of the higher, neighboring state assumes this value
(here E � 5) and remains constant on some adjacent in-
terval. In this way localized states coexist with nonlocal-
ized ones in the same range of energy. These results can
again be confirmed by the virial analysis. We have to
evaluate the operator,

 h _wsusyi � 2hp̂2
xi � 2hp̂2

yi � 4hx̂2ŷ2i � h�xx̂i � h�yŷi:

(20)

In Fig. 9 the time derivative of virial for four supersym-
metric states is depicted as a function of the cutoff. For a
majority of them the obtained values are far from 0. These
states are nonlocalized. However, as was observed there

can exist also some localized states. Taking into account
their realization through many nonlocalized states, one
concludes that the states for which the quantum virial has
a value near 0 for a given cutoff, are just the states that form
the localized state.

To summarize, the main observation is that bosonic and
supersymmetric eigenstates have a different character. The
first ones are localized and thus belong to the discrete
spectrum, whereas the supersymmetric spectrum is com-
posed from both types of states. This disparity is essential
in the following discussion.

VI. CLASSICAL SYSTEMS

The differences in the behavior of classical bosonic and
supersymmetric trajectories are striking at the first glance.
Similarly, as in the quantum regime the bosonic states were
localized and the supersymmetric were nonlocalized, the
bosonic trajectories are bounded, and the supersymmetric
escape through the flat directions of the potential.

More precisely, the numerical solutions of bosonic equa-
tions of motions (7) show that all investigated trajectories
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some selected supersymmetric states (first, second, fifth, and
sixth).
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are bounded. They all come back to the center of the
potential. Similarly, as in the case of the hyperbolic billiard
potential, mentioned earlier, only particles that move along
the coordinate axes can escape through the valleys. In the
quantum regime, we used the virial theorem to decide
whether quantum states were localized or not. Now, we
would like to do the same using the classical virial theo-
rem. It implies that for a bounded motion (with finite
momentum and position) in a potential that vanishes as
1
r , one has

 0 �
dw
dt
� �U� 2 �K; (21)

where w is the virial, d
dt is the time derivative, �: stands for

the time averaging, U is the potential energy, and K is the
kinetic energy. In order to verify the character of the
classical trajectories, one needs to evaluate the quantity
(21) on a given trajectory. A representative bosonic trajec-
tory and the corresponding plot of the virial are shown in
Fig. 10. The mean time derivative of the virial remains near
zero, which indicates that the trajectory is bounded.
Moreover, using the algorithm proposed by Schmelcher

and Diakonos [15] we found some closed orbits, one of
which is shown in Fig. 11. Investigation of eigenvalues of
the Jacobian shows that this orbit is unstable. It is worth
noting that similar research was made by Dalhqvist and
Russberg [16], who found a stable island in the phase space
of the x2y2 potential, therefore showing that the latter is not
ergodic as was believed.

On the contrary, all supersymmetric trajectories escape
through the valleys of potential. However, there exist some
of them which for a large amount of time remain in the
center of potential. When the dependence of the number of
returns of some trajectory on its energy is investigated, one
finds sharp peaks suggesting that there exist trajectories
with a huge number of returns. Again, we found one
unstable closed orbit using the Schmelcher’s algorithm,
shown in Fig. 11. The virial theorem confirms the un-
bounded character of supersymmetric trajectories. The
evaluation of (21) for a given trajectory shows that the
value of the time derivative of the virial explodes as the
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particle escapes through the valley. Figure 12 depicts these
results.

The findings obtained in this part show that the behavior
of classical trajectories and quantum states is analogous.
For the bosonic system quantum states are localized and
classical trajectories are bounded. On the contrary, for the
supersymmetric case, the majority of states are nonlocal-
ized. The corresponding classical motion is a trajectory
which escapes through the valleys. The localized super-
symmetric quantum states are accompanied by closed
classical orbits. So, the differences observed between
quantum systems are also found on the classical level.
This pattern might indicate the existence of classical mani-
festation of supersymmetry.

VII. CONCLUSION

In this paper we investigated the properties of a system
proposed by de Wit, Lüscher, and Nicolai, in both quantum
and classical regimes. By comparing it with the bosonic
system we observed several interesting facts.

We started by introducing the quantum Hamiltonians of
the bosonic and supersymmetric systems with the potential
with four flat valleys. Using the Born-Oppenheimer ap-
proximation, we succeeded in solving both systems. We
concluded that a bosonic quantum particle moving in one
of the valleys is exposed to an effective potential barrier
which prevents it from escaping. Thus, all states are local-
ized. Contrary, the supersymmetric quantum particle can
enter at any depth into the valleys. The supersymmetric
spectrum consists of states from the continuous spectrum
and, coexisting with them, some localized states. Then, we
introduced the Hamiltonians of the classical counterparts
of these systems. For the supersymmetric system, we ob-
tained the equations of motion which describe a particle
with spin which precess around some vector field. The
interesting feature is that this field is tangent to the contour

lines of the potential. Next, we described the cutoff method
and some criteria for testing the reliability of numerical
results. The symmetries of considered systems, discussed
subsequently, fully explain all degeneracies of exact ener-
gies. The comparison of the bosonic and supersymmetric
spectra confirmed the hypothesis based on the approxi-
mated solutions on the character of quantum states. We
observed the noteworthy realization of the supersymmetric
localized states as deformations of the energy dependence
on the cutoff. We then turned our attention to the classical
regime. We described the behavior of trajectories of the
classical bosonic and supersymmetric systems. It turned
out that the character of the trajectories corresponds to the
character of quantum states. Bosonic trajectories are
bounded, whereas the supersymmetric ones escape through
the valleys of the potential which can be due to the spin
precession. The above results show that the differences
between quantum states are also present on the classical
level.

The supersymmetric potentials with flat directions ap-
pear also in some much more sophisticated physical prob-
lems, i.e. in systems connected with supersymmetric Yang-
Mills quantum mechanics (SYMQM). The investigated
system is one of the simplest models possessing many of
the properties of SYMQM. A deeper analysis can help to
understand, for example, the coexistence of the continuous
and discrete spectrum in these systems. Moreover, the
surprising effect of spin precession on the motion of a
classical, supersymmetric particle which enables it to es-
cape through the flat directions deserves further attention.
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