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The problem of mass generation is addressed by a Gaussian variational method for the minimal left-
right symmetric model of electroweak interactions. Without any scalar bidoublet, the Gaussian effective
potential is shown to have a minimum for a broken symmetry vacuum with a finite expectation value for
both the scalar Higgs doublets. The symmetry is broken by the fermionic coupling that destabilizes the
symmetric vacuum, yielding a self-consistent fermionic mass. In this framework a light Higgs is only
compatible with the existence of a new high energy mass scale below 2 TeV.
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I. INTRODUCTION

It has been recently suggested [1–3] that mass genera-
tion and the breaking of left-right symmetry can be de-
scribed by a minimal left-right symmetric model with only
two scalar doublets and no bidoublets. Several left-right
symmetric extensions of the standard model have been
developed by many authors [4–7] and are based on the
gauge group SU�2�L � SU�2�R �U�1�B�L. They have the
remarkable merit of predicting the same low-energy phe-
nomenology of the standard model [8], thus explaining the
lack of symmetry of the electroweak interactions.
However, most of those models also contain a scalar
Higgs bidoublet and require the existence of ten physical
Higgs particles at least. A minimal model with only two
scalar doublets �L, �R transforming as (2, 1, 1) and (1, 2,
1), respectively, would require the existence of just two
physical Higgs particles and would be an appealing alter-
native provided that a stable vacuum with a non zero
expectation value vL � h�Li can be found. It has been
pointed out [3,6] that without any bidoublet the effective
potential has a minimum for h�Ri � vR � 0 and h�Li �
vL � 0 and the model would be useless as vL � vFermi

gives the scale of all the known particle masses. In fact the
insertion of a scalar bidoublet was the simplest way of
shifting the minimum of the effective potential towards a
small but finite vL value. In spite of that, the minimal
model has gained some success and its prediction of a
new intermediate physical mass scale vR has been already
explored [9] showing that the new physics could appear at
the TeV scale in the new electron-positron colliders.

In this paper we give a self-consistent solution to the
open problem [3] of a physical vacuum for the minimal
model: we show that the inclusion of quantum fluctuations
yields a stable vacuum with vL � 0 even without any
bidoublet, thus motivating and enforcing previous work
on the model [2,9]. The problem is addressed by a varia-
tional method, as we show that in the minimal model the
minimum of the Gaussian Effective Potential [10–19] is
shifted towards a small finite vL value by the coupling to

fermions. The variational character of the calculation is
important as it ensures that the vL � 0 vacuum is not stable
even without any scalar bidoublet. Thus the coupling to
fermions is no longer a mere way to generate the Dirac
masses, but it becomes the source of symmetry breaking
for the field �L yielding a self-consistent mass for the
heavy top quark.

The paper is organized as follows: in Sec. II an effective
low-energy Lagrangian is recovered from the full left-right
symmetric model; the vacuum stability of the effective
model is studied in Sec. III by a variational method for
the effective potential; in Sec. IV the effective potential is
discussed together with its predictions for the mass spectra.

II. EFFECTIVE LOW-ENERGY MODEL

The problem of a viable physical vacuum for the mini-
mal model has been recently addressed by invoking the
existence of a larger approximate global symmetry in
addition to the discrete parity symmetry [1]. The physical
Higgs particle would emerge as the pseudo-Goldstone
boson associated with the breaking of the global symmetry.
In that scenario the fermionic one-loop contributions to the
effective potential become relevant for determining the
minimum of the effective potential and the mass scale
vL. It emerges that the zero-point fermionic energy desta-
bilizes the vL � 0 vacuum in competition with the bosonic
terms. The approximate global symmetry has the further
merit of being accidentally respected by any quadratically
divergent contribution to the Higgs potential [20], thus we
expect that the global symmetry should survive in the low-
energy effective Lagrangian of the Higgs sector up to small
symmetry breaking terms. Then we take the Higgs poten-
tial to be
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where � is a small parameter which breaks the global
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SU�4� symmetry. At variance with soft symmetry breaking
models [21] where the left-right symmetry is broken by
insertion of different masses for left and right fields, our
Higgs potential is assumed to be fully symmetric. Thus the
present model provides a truly spontaneous symmetry
breaking mechanism.

In unitarity gauge the doublets may be taken as �L;R �
�0; �L;R� where the scalar real components �L;R describe
two physical neutral bosons. For �> 0 and M2

B < 0 the
potential has a minimum for �L � 0 and �2

R � v2
R �

�6M2
B=�. We may set �R � vR � hR and write the new

potential for the field hR as LH � LL �LR �Lint
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Assuming that �� �, the heavy Higgs field hR is
decoupled and we can regard Eq. (2) as the effective
low-energy Lagrangian for the field �L. A natural cut-off
� � vR comes from the requirement that the physical
vacuum is stable around the broken symmetry point �L �
0, �R � vR. The full effective Lagrangian for the field �L
is easily recovered by adding the kinetic terms and the
coupling to fermions and gauge bosons. Provided that the
vacuum expectation value h�Li � vL does not vanish, the
model gives rise to the standard phenomenology with the
gauge bosons acquiring masses at two different scales: a
small mass scale vL for the standard model light bosons
W	L , Z, and a larger mass scale vR for the heavy gauge
bosons W	R , Z0. The details of the symmetry breaking are
dicussed in Ref. [1] where the standard model Lagrangian
is recovered up to O�v2

L=v
2
R� corrections. Moreover, with-

out any Higgs bidoublet, the charged bosons W	L and W	R
are shown to be exactly decoupled. The heavy bosons are
decoupled any way in the low-energy domain where they
hardly play any role if vR � vL.

Here our main concern is the shift of the vacuum expec-
tation value of �L from the �L � 0 minimum of the
potential LL in Eq. (2). Thus we neglect the weak coupling
to the gauge bosons and insert the coupling to Dirac
fermion fields  i [1,2,22]

 L f �
X
i

qi � i i�L�R (5)

where the index i runs over the different kinds of quarks
and leptons. Since all the fermions but the top quark  t
may be neglected for their small coupling constants, in the
Euclidean formalism the full effective Lagrangian reads
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where M2 � �v2
R > 0 and � � qtvR.

A simple dimensional argument would suggest that the
coupling constants qi scale like the inverse of some large
energy �. Moreover, according to Eq. (6), the term �vL is
the mass of the top quarkmt which is not too much smaller
than vL. Thus the adimensional coupling � is of order
unity and � turns out to be only slightly above vR. One may
wonder in that case whether the effective operator in
Eq. (5) makes sense for the top quark. The problem has
been addressed in Ref. [2] where it is shown that up to a
renormalization of couplings no serious change occurs in
mass spectra. Of course, in order to address this point
further, some extra hypothesis would be required on the
origin of the dimension-five operator [1,2,22] in Eq. (5).

At tree level the effective Lagrangian Eq. (6) predicts a
vanishing vacuum expectation value vL for the field �L.
However, in the next section we show that quantum fluc-
tuations make the vL � 0 vacuum unstable towards a
phenomenologically acceptable finite value.

III. THE GAUSSIAN EFFECTIVE POTENTIAL

It has been recently shown [23,24] that in three dimen-
sions the scalar theory can be studied by the Gaussian
Effective Potential (GEP) [10–19,25] yielding a very
good interpolation of the experimental correlation lengths
of superconductors. As those lengths are the inverse of the
masses, we believe that the GEP method could give a
reliable estimate of masses in four dimensions as well.
The variational nature of this approximation makes it a
more powerful tool than any perturbative approach, such as
the one-loop effective potential (1LEP); in fact, it has been
shown (see, for instance [13,14,25]) that the GEP contains
features which can not be obtained by calculations based
on a finite order of loops, and it results well-defined even
when the 1LEP becomes a complex (and so unphysical)
quantity. Moreover the variational character of the GEP
makes it reliable even in the strong coupling limit where
the 1LEP makes no sense. In fact the effective Lagrangian
Eq. (6) contains a Higgs self-interaction parameter �which
is known to be of order unity or larger ([26]), and any
perturbative prediction on the vacuum stability would not
be conclusive.

The GEP for the Lagrangian (6) has been studied by
several authors [27,28] and it is well known to be un-
bounded: the fermions encourage spontaneous symmetry
breaking, and in four dimensions they destabilize the scalar
theory in the limit of an infinite cut-off �! 1. However
the effective theory has a natural cut-off � � vR and the
inclusion of the fermionic couplings just gives rise to a
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spontaneous symmetry breaking for the field �L which
acquires a small finite expectation value vL 
 vR.

As usual for the GEP method [19,29] we take �L �
’� hL where ’ is a constant shift and hL is the Higgs
field. The Gaussian Lagrangian is taken as

 L GEP �
1

2
�@�hL�2 �

1

2
�2h2
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� t�@6 �m� t (7)

where � and m are variational parameters for the masses.
The GEP follows [27]
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where the integrals In�x� are defined according to
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These diverging integrals are supposed to be regularized by
the cut-off p <�, and their exact evaluation is trivial.

The minimum of V�’� is found by solving the system of
coupled equations @V=@� � @V=@m � @V=@’ � 0,
which reads
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According to Eq. (12) the fermionic contribution to the
effective potential is just the first order perturbative term
evaluated at the self-consistent mass m � �’.

We can show that for a broad range of the parameters the
coupled equations have a broken symmetry solution for
’ � vL � 0, thus yielding a finite mass for the fermion
m � �vL. That can be easily seen by fixing vL, vR, � and
m at reasonable phenomenological values and by solving
the coupled Eqs. (11) and (13) in order to get the free
parameters �,�. Since we want to recover the correct weak
interaction phenomenology, the expectation value of �L
must be set equal to the Fermi value vL � vFermi �
247 GeV. Moreover the Top quark mass is known to be
mt � 181 GeV and then the coupling must be � �
mt=vL � 0:733. By use of Eq. (11) we can write
Eq. (13) as

 � �
3

v2
Fermi

��2 � 4�2I0�mt�� (14)

and this already provides a lower bound on the Higgs mass
� as for x
 �, I0�x� � �2=�16�2� and the existence of a
solution � > 0 requires that �> ����=�2�� � 0:12�.
Thus the new high energy mass scale vR � � cannot be
larger than 10 times the Higgs mass �. A comparison with
the standard [19] GEP relation �S � 3�2=v2

Fermi shows
that the parameter � is smaller in this minimal model,
thus allowing for perturbative treatments up to a bit larger
Higgs mass. However, as it can be seen from Fig. 1, the
coupling costant � comes out to be of order of unity even
for Higgs mass values � quite close to the experimental
lower bound; this circumstance makes clear our choice of
using the GEP variational method: the problem we are
dealing with is a non perturbative one and an analysis
based on perturbation theory is not reliable.
Equation (11) reads

 � �
1

v2
R

�
�2 �

1

2
��v2

Fermi � I0����
�

(15)

The existence of a broken symmetry minimum in the
potential LH Eq. (1) requires that �> 0, and since � �
3�2=v2

Fermi � const, according to Eq. (14), we find an
upper bound for the Higgs mass. At any fixed high energy
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FIG. 1. The free parameters � (solid line) and � (dashed line)
evaluated by Eqs. (14) and (15) as functions of the Higgs mass �
at the scale vR � 1500 GeV (vR=vL � 6). Since �
 �, the
parameter � has been rescaled by a factor 100. For comparison
the standard [19] GEP �S is also reported (dotted line). The
constraint �; � > 0 is only satisfied for 170<�< 253 GeV for
this choice of vR.
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scale vR � �, the dependence on � of the parameters �, �
is obtained by Eqs. (14) and (15). We notice that, apart
from a very narrow range at the lower bound of �, the
parameter � is always small and �
 � as it was required
in order to decouple the heavier Higgs field hR.

IV. DISCUSSION

The existence of a broken symmetry vacuum with vL �

0 is a variational result: as the exact vacuum must have a
smaller energy, we can conclude that the vL � 0 vacuum
cannot be stable. Thus the choice of a variational method
gives us more confidence on its prediction of a broken
symmetry vacuum. Moreover the GEP gives rise to some
bounds for the Higgs boson mass according to Eqs. (14)
and (15). The general behavior is shown in Fig. 1 for vR �
1500 GeV (vR=vL � 6) where the constraint �; � > 0 is
only satisfied for 170<�< 253 GeV.

The allowed range for the Higgs mass � is reported in
Fig. 2 for several choices of the high energy scale vR.
Assuming a rather light Higgs mass � � 200 GeV, then
the model is only consistent with an high energy scale
vR  1:7 TeV. If for instance we take vR � 1:5 TeV,
then the coupled linear Eqs. (14) and (15) have the solution
� � 0:554 and � � �M2=v2

R� � 8:6 � 10�3. In this sce-
nario the search for new physics at the TeV scale could
reveal the existence of the heavy Higgs field hR and the
new heavy gauge bosons W	R and Z0, whose masses [1]
would be larger by a factor vR=vL � 6 compared to their

light partners. However, according to Fig. 2, a larger Higgs
mass would be compatible with a larger high energy scale,
and a quite heavy Higgs at the TeV scale would require a
large vR � 10 TeV which in turn would push any chance
to reveal the new physics towards higher energies. The
effective potential Eq. (8) is reported in Fig. 3 for average
Higgs masses at different high energy scales vR. For each
value of the shift ’ the GEP is evaluated by inserting in
Eq. (8) the self-consistent masses �,mwhich solve the gap
equations Eqs. (11) and (12). The minimum point ’ � vL
does not change as it is fixed at the phenomenological
value vFermi � 247 GeV by solution of the equations
Eqs. (14) and (15) for the parameters �, �. Of course the
curvature does change as the Higgs mass � does.

This simple variational study shows that the minimal
left-right symmetric model, with only two Higgs doublets
and no bidoublets could give a satisfactory description of
the known phenomenology provided that quantum fluctua-
tions are included. The model predicts the existence of a
high energy mass scale vR which is not larger than 10 times
the Higgs mass. At the new energy scale the three right
handed partners of the weak bosons should come out in
experiments together with the second heavier higgs boson
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FIG. 2. The allowed range for the Higgs mass � (vertical bars)
are reported for several choices of the ratio vR=vL between high
energy and low-energy mass scales (vL is fixed at the Fermi
value vFermi � 247 GeV).
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FIG. 3. The Gaussian effective potential according to Eq. (8)
for several choices of the Higgs mass and the high energy scale
vR. From the top: � � 140 GeV, vR � 1000 GeV (solid line);
� � 200 GeV, vR � 1500 GeV (dashed line); � � 260 GeV,
vR � 2000 GeV (dotted line); � � 320 GeV, vR � 2500 GeV
(dot-dash). For each value of the shift ’ the GEP is evaluated by
inserting in Eq. (8) the self-consistent masses �, m which solve
the gap equations Eqs. (11) and (12). The minimum point ’ �
vL does not change as it is fixed at the phenomenological value
vFermi � 247 GeV.
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hR. The model does not require the existence of other
particles, and its predictions on masses could be tested in
the new electron-positron colliders.

In summary we have shown that inclusion of the fermi-
onic coupling is enough for destabilizing the vL � 0 vac-
uum of the minimal left-right symmetric model, thus
yielding a small finite low-energy scale vL 
 vR.

The genuine variational nature of the GEP method en-
sures that the instability of the vL � 0 vacuum is not a

mere artifact introduced by the approximation, but a prop-
erty of the model; furthermore the method allows for
reliable predictions even in the strong coupling (heavy
Higgs) regime, where any perturbative treatment (e.g.
1LEP) would not be valid. Thus even without any bidoub-
let, the minimal model is shown to be a viable framework
for explaining the breaking of left-right symmetry in elec-
troweak interactions.
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