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In the framework of various statistical models as well as of mechanisms for color confinement, disorder
parameters can be developed which are generally expressed as ratios of partition functions and whose
numerical determination is usually challenging. We develop an efficient method for their computation and
apply it to the study of dual superconductivity in 4D compact U�1� gauge theory.
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I. INTRODUCTION

Order-disorder transitions are common to a wide class of
models in statistical mechanics and quantum field theory,
the Ising model being a prototype [1,2]. In those models,
one phase is characterized by the condensation of dual
topological excitations which spontaneously breaks a
dual symmetry, and correlation functions of those excita-
tions can serve as disorder parameters for the transition: in
general they are nonlocal in terms of the original variables,
so that their numerical study can be challenging. The
difficulty becomes evident when the correlation functions
are expressed as ratios of partition functions.

Relevant examples are encountered when studying color
confinement in QCD: that is usually believed to be related
to the condensation of some topological excitations and
models can be constructed accordingly, which place the
confinement-deconfinement transition into the more gen-
eral scenario of order-disorder transitions. One appealing
model is based on dual superconductivity of the QCD
vacuum and relates confinement to the breaking of an
Abelian dual symmetry induced by the condensation of
magnetic monopoles [3–5]. The possibility to define dis-
order parameters in this scenario has been studied since a
long time [6–10]. One parameter has been developed by
the Pisa group and is the expectation value of an operator�
which creates a magnetic monopole; h�i has been shown
to be a good parameter for confinement in U�1� [10], in
pure Yang-Mills theories [11,12] and in full QCD [13,14];
similar parameters have been developed both in gauge
theories [15–18] and in statistical models [19–21]. The
operator � is expressible as the exponential of the integral
over a time slice, � � exp����S� (see later for details),
so that its expectation value can be rewritten (we consider a
pure gauge theory as an example) as

 h�i �

R
�DU�e���S��S�R
�DU�e��S

�

R
�DU�e��~SR
�DU�e��S

�
~Z
Z
; (1)

where the functional integration is over the gauge link
variables, S is the Euclidean action of the theory, and �
is the inverse gauge coupling. The difficulty involved in its

numerical computation stems from the poor overlap among
the two statistical distributions corresponding to the parti-
tion functions Z and ~Z: configurations which give signifi-
cant contributions to ~Z are instead extremely rare in the
original ensemble corresponding to Z, so that they are very
badly sampled in a Monte Carlo simulation. The problem
worsens rapidly when increasing the spatial volume, mak-
ing a determination of h�i hardly feasible. One way out is
to evaluate susceptibilities of h�i, like:

 � �
d
d�

lnh�i � hSiS � h~Si~S; (2)

from which the disorder parameter can eventually be re-
constructed as follows

 h�i � exp
�Z �

0
���0�d�0

�
: (3)

While that is enough to test h�i as a parameter for con-
finement, a direct determination could be useful in contexts
like the study of its correlation functions [10,22,23].

The problem of dealing with extremely rare configura-
tions can be approached using the idea of generalized
ensembles [24–26]. In that framework we propose a new
method for a direct computation of h�i, which is inspired
by analogous techniques used for the study of the ’t Hooft
loop [27]. We describe the method for the case of the 4D
compact U�1� gauge theory in the Wilson formulation, but
it is applicable to the study of disorder parameters in a wide
class of analogous problems.

II. THE METHOD

The partition function of the model is defined, in the
Wilson formulation, as follows

 Z��� �
Z
�d��e��S; (4)

 S �
X

~x;t;����

�1� cos����� ~x; t���; (5)

where the integration is over the link variables (phases in
U�1�) and ���� ~x; t� is the plaquette in the �� plane sitting
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at lattice site � ~x; t�. The model has a critical point at �c ’
1:01, which is believed to be weak first order and separates
a disordered phase (�< �c), with condensation of mag-
netic monopoles and confinement of electric charges, from
a Coulomb phase where magnetic charge condensation
disappears.

The magnetically charged operator �� ~y; t0�, whose ex-
pectation value detects dual superconductivity, creates a
monopole in ~y at time t0 by shifting the quantum gauge
fields by the classical vector potential of a monopole,
~b� ~x� ~y�, and can be written (see Ref. [10] for details) as

 �� ~y; t0� � exp
�
i
1

e

Z
d3x ~E� ~x; t0� ~b� ~x� ~y�

�
; (6)

with the electric field ~E� ~x; t0� being the momentum con-
jugate to the quantum vector potential. It can be discretized
on the lattice as follows:

 � � e
�
P
~x;i

�cos��0i� ~x;t0��bi� ~x� ~y���cos��0i� ~x;t0���

� e���S; (7)

where �0i are the phases of the temporal plaquettes, cor-
responding to the electric field in the (naive) continuum
limit. If we define the modified action
 

~S �
X

~x;t�t0;����

�1� cos������ �
X
~x;i

�1� cos��0i� ~x; t0�

� bi� ~x� ~y���

� S� �S (8)

which differs from S only on the time slice where the
monopole has been created, we can write

 h�� ~y; t�i � ~Z���=Z���; (9)

 

~Z��� �
Z
�d�� exp���~S�: (10)

Measuring h�� ~y; t�i in a Monte Carlo (MC) simulation is
very difficult [10]: � gets significant contributions only on
those configurations having very small statistical weight
(which are poorly sampled in a finite MC simulation). The
difficulty increases with the system size as the two distri-
butions corresponding to Z and ~Z shrink towards nonover-
lapping delta functions in the configuration space. Our
proposal is to determine the ratio in Eq. (9) by using
intermediate distribution functions having a reasonable
overlap with both statistical ensembles corresponding to
Z and ~Z: our method has many similarities with strategies
adopted in the computation of analogous order parameters
[28–31]. As a first step we rewrite the ratio as the product
of N distinct ratios:

 

~Z
Z
�

ZN
ZN�1

ZN�1

ZN�2
. . .
Z1

Z0
; (11)

where ZN � ~Z, Z0 � Z, and Zk is defined in terms of an
action Sk which is an interpolation between S and ~S:

 Zk �
Z
�d��e��Sk ; (12)

 Sk �
N � k
N

S�
k
N

~S: (13)

The idea is to compute each single ratio by a different
Monte Carlo simulation: the difficulty of dealing with N
simulations should be greatly compensated by the in-
creased overlap in the distributions corresponding to each
couple of partition functions, leading to a benefit which
increases exponentially with N. As a second step to further
improve the overlap, we compute each single ratio on the
right-hand side (r.h.s.) of Eq. (11) using an intermediate
distribution:

 

Zk�1

Zk
�
hexp����S=2N�ik�1=2

hexp���S=2N�ik�1=2
; (14)

where each expectation value is computed with the action

 Sk�1=2 � �1� �k� 1=2�=N�S� ��k� 1=2�=N�~S: (15)

Since both expectation values in Eq. (14) are computed
with the same MC simulation, we make use of a jackknife
analysis to get a reliable error on Zk�1=Zk. The final
uncertainty on ~Z=Z is then obtained by standard error
propagation since each single ratio on the r.h.s. of
Eq. (11) is obtained by an independent MC simulation.

Our technique of rewriting the ratio ~Z=Z as a product of
intermediate ratios resembles very closely the well-known
snake algorithm [30] as well as other algorithms inspired
by it, like that used for the computation of the helicity
modulus [31]. However it differs from previous algorithms
in the choice of the intermediate partition functions, which
in our case is not related to the details of the model, so that
it can be applied without modifications to a wider class of
problems in lattice field theory and statistical mechanics.

Regarding the choice of boundary conditions (b.c.), we
do it in a consistent equal way for all the partition functions
in Eq. (11). We make use of both periodic and free b.c. in
the spatial directions: while one could expect a substantial
difference in the presence of a magnetic charge, we will
show that, in the phase where h�i � 0, the two choices
lead to the same thermodynamical limit; that is expected
since in that phase the vacuum does not have a well-defined
magnetic charge and a monopole is completely screened.
As for the temporal direction, a consistent usual choice for
h�i [10] is that of periodic b.c. for Z and C	 b.c. for ~Z; in
particular C	 boundary conditions, which corresponds to
performing a charge conjugation transformation on gauge
fields when crossing the time boundary, are taken so as to
annihilate the monopole after one loop around the periodic
time direction, avoiding in this way that it propagates an
indefinite number of times. However we do not keep that
choice, since it would lead to intermediate actions with
inconsistent mixed b.c.; instead we adopt either free or
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periodic b.c. for both Z and ~Z also in the time direction,
showing again that the choice is inessential when h�i � 0.

III. NUMERICAL RESULTS

As a first test we compare the naive computation of h�i,
i.e. performed with a single MC simulation using the
Wilson action S, with our method for N � 1: we use a 44

lattice with free b.c. at � � 0:8 and 107 measurements for
both cases, obtaining h�i � 1:14�18� with the naive com-
putation and h�i � 0:868�3� with our method. Apart from
the strongly reduced error, much is learned by looking at
the distributions of the observables exp����S�S and
exp�
��S=2��S�~S�=2 (the subscript indicates the action
used for sampling) used in the computation (see
Eq. (14)). In Fig. 1 we plot, for each fixed observable O,
the distribution of the logarithm of O times the observable
itself (we choose the logarithm for graphical convenience)
as a function of logO, so that the integral of each curve
gives the expectation value of the relative observable. As it
is clear, for hexp����S�iS most of the contribution comes
from a region which is badly sampled: on larger lattices the
problem worsens rapidly and a naive determination of h�i
is unfeasible. The improvement obtained with our method
is apparent already for N � 1.

In Fig. 2 we show a determination of h�i for several
values of N on a lattice 164 with free b.c. at � � 0:8: for
each determination a comparable whole statistics of N �
Nmeas � 3:2� 105 measurements has been used, so that
the error on h�i is an indication of the efficiency as a
function of N; in Fig. 3 we report the intermediate ratios
Zk�1=Zk (see Eq. (11)) used for each measurement. While
the intermediate ratios are strongly dependent on N, h�i is
not, thus confirming the absence of uncontrolled system-
atic errors. The statistical error rapidly changes for small

values ofN, but then stabilizes, indicating that a value N �
O�10� saturates the improvement.

As an application of our method we analyze some
relevant features of the disorder parameter, starting with
a study of its thermodynamical limit in the confined phase.
In Fig. 4 we show h�i determined with both free and
periodic b.c. at � � 0:5 as a function of the lattice size
L. A fit according to h�i � A� B=L gives A � 0:945�6�
and B � 0:31�6� with free b.c. (~�2 � 0:5) and A �
0:940�6� and B � 0:2�6� with periodic b.c. ( ~�2 � 0:8). In
both cases h�i has a well-defined thermodynamical limit,
which does not depend (within numerical errors) on the b.c.
chosen: that is expected in the phase where magnetic
charge is completely screened. We stress that, contrary to
what may happen with other parameters [31], we do not
expect exactly h�i � 1 in the confined phase: indeed any
nonzero value of the disorder parameter ensures the break-

 

-8 -4 0 4 8 12 16 20
log(O)

0

0.5

1

1.5

O
 P

(l
og

(O
))

 

O = exp(- β ∆S)
O = exp( β ∆S/2)
O = exp(- β ∆S/2)

FIG. 1. For each observable O involved in the computation on
the 44 lattice at � � 0:8, we plot O times the distribution of
logO as a function of logO: the integral under each curve gives
hOi.
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FIG. 2. Determination of h�i on a lattice 164 with free b.c. at
� � 0:8 as a function of N.
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FIG. 3. Intermediate ratios Zk�1=Zk used for the determina-
tions reported in Fig. 2.
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ing of the magnetic symmetry, hence dual
superconductivity.

A further confirmation of screening comes from the
study of cluster property in the correlation functions. In
Table I we report the values measured for various temporal
and spatial correlators of � using periodic b.c., together
with their second and fourth powers. In this way we
compare, for instance, the value of h�i2 (first row, second
column) with that of the two point function h ���i at large
distances (first column, second row), or h�i4 with the four
point function, and so on: the compared quantities should
approach each other (exponentially in the extension of the
higher order correlator) if cluster property is obeyed. This
is nicely verified, within errors, from the data reported in
the table.

Results are quite different in the deconfined phase. In
Fig. 5 we show h�i as a function of L at � � 1:1: the
determinations with free and periodic b.c. differ from each
other, both going to zero exponentially with the lattice size

L. This is the correct expected behavior in the phase with
magnetic charge superselection [10,32].

Finally we consider the critical behavior of the disorder
parameter close to the phase transition, where h�i ’ �� (�
is the reduced temperature). That translates in the follow-
ing finite size scaling (f.s.s.) behavior

 h�i � L���=��	���c � ��L
1=��; (16)

where 	 is a scaling function. To test this ansatz we have
determined h�i close to the phase transition on several
different lattice sizes. Fixing the known value of �c �
1:011 and � � 1=d � 0:25 as appropriate for a weak first
order transition, we obtain a reasonable scaling with ��
2:3: the quality of our f.s.s. analysis is shown in Fig. 6.

IV. CONCLUSIONS

We have proposed a new technique for the computation
of disorder parameters and applied it to the study of the

TABLE I. Determination at � � 0:8 on a 164 lattice of h�i, of
its spatial and temporal 2-point function (second and third row),
and of its mixed 4-point function (last row), with t � 8 and ~z �
�0; 0; 8�. The measured correlator is reported in the first column,
indicated generically with O, while in the second and third
column (indicated with O2 and O4) we report, respectively,
the second and fourth power of the correlator, which are used
to test cluster property on the higher order correlators reported in
lower rows. Within errors all measurements are compatible with
the hypothesis that the correlators are already in their asymptotic
regime governed by cluster property.

O O2 O4

h��~0; 0�i 0.439(12) 0.193(11) 0.037(4)
h ���~0; t���~0; 0�i 0.182(7) 0.033(3)
h ���~z; 0���~0; 0�i 0.183(12) 0.033(4)
h ���~z; 0� ���~0; t���~z; t���~0; 0�i 0.037(6)
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FIG. 5. h�i at � � 1:1 as a function of the lattice size L
determined with both free and periodic b.c.
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FIG. 6. F.s.s. analysis of h�i around the phase transition.
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FIG. 4. h�i at � � 0:5 as a function of the lattice size L
determined with both free and periodic b.c.
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parameter for dual superconductivity in 4D compact U�1�
gauge theory. Our method is inspired by methods used for
the study of the ’t Hooft loop [30].

We have determined some relevant features of h�i both
in the confined and in the Coulomb phase. A careful
analysis of its critical properties could help in clarifying
the nature of the phase transition at zero as well as at finite
temperature [33,34]: to that aim also a direct comparison
with analogous order parameters developed for U�1�
[18,31] will be particularly useful.

Our method can be placed in the more general frame-
work of techniques based on the idea of generalized en-
sembles [24–26]: in that respect, it has the advantage to
provide a recipe which can be easily applied, with none or
few modifications, to a wide class of problems. Among
others we will consider in the future the study of order-
disorder transitions in statistical models and dual super-
conductivity in non-Abelian gauge theories. Another bene-

fit of our proposal is that it leaves room for considerable
further improvement: for instance it could be possible to
choose a more general nonlinear interpolation between the
two actions S and ~S, differently from what has been done in
Eq. (13), so as to concentrate the numerical effort on those
intermediate ensembles where the statistical distribution is
changing more rapidly.
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