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We discuss formation of an S-wave bound state in finite volume on the basis of Lüscher’s phase-shift
formula. It is found that although a bound-state pole condition is fulfilled only in the infinite-volume limit,
its modification by the finite-size corrections is exponentially suppressed by the spatial extent L in a finite
box L3. We also confirm that the appearance of the S-wave bound state is accompanied by an abrupt sign
change of the S-wave scattering length even in finite volume through numerical simulations. This
distinctive behavior may help us to distinguish the loosely bound state from the lowest energy level of
the scattering state in finite-volume simulations.
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I. INTRODUCTION

In the past few years, several new hadronic resonances
have been discovered in various experiments [1]. However,
some of the states have unusual properties, which are not
well understood from the viewpoint of the conventional
quark-antiquark or three-quark states. It is a great chal-
lenge for lattice QCD to answer the question, whether
those states are really exotic hadron states.

We are especially interested in some candidates of had-
ronic molecular state: the ��1405� resonance as an �KN
bound state, the f0�980� and a0�980� resonances as S-wave
bound states of K �K, the X�3872� resonance as a weakly
bound state of D �D�, the Ds0�2317� and Ds1�2460� reso-
nances as D���K bound states and so on [2]. Such states lie
near and below their respective thresholds so that one can
view them as ‘‘loosely bound states’’ of two hadrons like a
deuteron.

In the infinite volume, the loosely (near-threshold)
bound state is well defined since there is no continuum
state below threshold. However, in a finite box on the
lattice, all states have discrete energies. Even worse, the
lowest energy level of the elastic scattering state appears
below threshold in the case if an interaction is attractive
between two particles [3,4]. Therefore, there is an ambi-
guity to distinguish between the loosely bound state and
the lowest scattering state in finite volume in this sense.

Signatures of bound-state formation in finite volume are
of main interest in this paper. We may begin with a naive
question: what is the legitimate definition of the loosely
bound state in the quantum mechanics? In the scattering
theory [5], poles of the S-matrix or the scattering amplitude
correspond to bound states. It is also known that the
appearance of the S-wave bound state is accompanied by

an abrupt sign change of the S-wave scattering length [5].
It is interpreted that formation of one bound-state raises the
phase shift at threshold by �. This particular feature is
generalized as Levinson’s theorem [5]. Thus, it is interest-
ing to consider how the formation condition of bound
states is implemented in Lüscher’s finite-size method,
which is proposed as a general method for computing
low-energy scattering phases of two particles in finite
volume [3,4].

In this paper, we discuss bound-state formation on the
basis of the phase-shift formula in this method and then
present our proposal for numerical simulations to distin-
guish the loosely bound state from the lowest scattering
state in finite volume. To exhibit the validity and efficiency
of our proposal, we perform numerical studies of the
positronium spectroscopy in compact scalar QED model.
In the Higgs phase of U�1� gauge dynamics, the photon is
massive and then massive photons give rise to the short-
ranged interparticle force between an electron and a posi-
tron exponentially damped. In this model, we can control
positronium formation in variation with the strength of the
interparticle force and then explore distinctive signatures
of the bound-state formation in finite volume.

The organization of our paper is as follows. In Sec. II,
we first give a brief review of Lüscher’s finite-size method
[3,4] and discuss bound-state formation on the basis of the
phase-shift formula in this method. Sec. III gives details of
our utilized model, compact scalar QED, and its
Monte Carlo simulations. Secs. IV and V are devoted to
discuss our numerical results in the 1S0 and 3S1 channels of
electron-positron system, respectively. Finally, in Sec. VI,
we summarize the present work and give our concluding
remark. In addition, there are two appendices. In Ap-
pendices A, the sensitivity of mass spectra to choice of
spatial boundary condition is discussed. We also demon-
strate a specific volume dependence of the spectral ampli-
tude for either the bound state or the lowest scattering state
in Appendix B.
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II. METHODOLOGY

A. Lüscher’s finite-size method for scattering phase
shift

Let us briefly review Lüscher’s finite-size method [3,4].
So far, several hadron scattering lengths, e.g. �-�, �-K,
�-N, K-N, N-N and J= -hadron, have been successfully
calculated by using this method [6–21].

The total energy of two-particle states in the center-of-
mass frame is given by

 EAB�p� �
�������������������
m2
A � p

2
q

�
�������������������
m2
B � p

2
q

; (1)

where p is the relative momentum of two particles. In a
finite box L3 on the lattice, all momenta are quantized and
can be labeled by an integer n as �pn, which represents the
�n� 1�-th lowest momentum. Therefore, all two-particle
states have only discrete energies.

We introduce the scaled momentum as q � L �pn=2�
with the spatial extent L for periodic boundary condition.
Although the value of q2 takes an integer value in the
noninteracting case, q2 is no longer the integer due to the
presence of the two-particle interaction. This particular
feature can be observed through an energy-shift relative
to the energy of the noninteracting two particles,

 �E � EAB� �pn� � EAB�pn�; (2)

where the energy of noninteracting two-particle states
EAB�pn� can be evaluated with the quantized momentum
pn in the free case as pn � 2�

���
n
p
=L with an integer n.

It has been shown by Lüscher that this energy shift in a
finite box with a spatial size L can be translated into the
S-wave phase shift �0 through the relation [3,4]:

 tan�0� �pn� �
�3=2

�����
q2

p
Z00�1; q

2�
at q � L �pn=2�; (3)

where the function Z00�s; q
2� is an analytic continuation

of the generalized zeta function, Z00�s; q
2� �

1�����
4�
p

P
n2Z3�n2 � q2��s, from the region s > 3=2 to s � 1.

The S-wave scattering length is defined through a0 �

limp!0 tan�0�p�=p.
If the S-wave scattering length a0 is sufficiently smaller

than the spatial size L, one can make a Taylor expansion of
the phase-shift formula (3) around q2 � 0, and then obtain
the asymptotic solution of Eq. (3). Under the condition
p2 � m2

A and m2
B, the solution is given by

 �Eq2�0 	 �
2�a0

�L3

�
1� c1

a0

L
� c2

�
a0

L

�
2
�
�O�L�6�;

(4)

which corresponds to the energy shift of the lowest (n � 0)
scattering state. The coefficients are c1 � �2:837 297 and
c2 � 6:375 183 [3,4]. The reduced mass of two particles �
is given by � � mA 
mB=�mA �mB�. An important mes-

sage is received from Eq. (4). The lowest energy level of
the elastic scattering state appears below threshold on the
lattice if an interaction is weakly attractive (a0 > 0) be-
tween two particles. This point makes it difficult to distin-
guish between near-threshold bound states and scattering
states on the lattice.

Here, it is worth noting that the large L expansion
formula (4) up to O�L�4� gives no real solution of a0 for
the case �E<� �

2jc1j�L2 [21], while Eq. (4) with an ex-

pansion up to O�L�4� and that up to O�L�5� always
possesses a real and negative solution of a0 for �E> 0.
A lower bound �E � � �

2jc1j�L2 may be crucial to identify

the observed state below threshold as the lowest energy
level of the elastic scattering state.

For the second lowest (n � 1) scattering state, we also
obtain a different asymptotic solution of Eq. (3), which is
given by a Taylor expansion of the phase-shift formula (3)
around q2 � 1 as

 �Eq2�1 	 �
6 tan�0� �p1�

�L2 �1� c01 tan�0� �p1�

� c02tan2�0� �p1� �O�L�6�; (5)

where c01 � �0:061 367 and c02 � �0:354 156. Although
the sign of tan�0 is not uniquely related to the sign of the
energy shift, the resulting energy shift �E becomes posi-
tive (negative) for the weak repulsive (attractive) interac-
tion case (j�0j & 3�=5). Subsequently, one can derive the
asymptotic solutions for the higher energy levels of the
scattering state around q2 � � � 2 where � � n2 for in-
teger 3-dim vectors n 2 Z3. For those asymptotic solu-
tions, the corresponding relative momentum �pn, which we
will hereafter abbreviate as p, should vanish as 1=L with
increasing L.

B. Bound-state formation in Lüscher’s formula

In quantum scattering theory, the formation condition of
bound states is implemented as a pole in the S-matrix or
scattering amplitude. Therefore, an important question
naturally arises as to how bound-state formation is studied
through Lüscher’s phase-shift formula (3).

Intuitively, the pole condition of the S-matrix: S �

e2i�0�p� � cot�0�p��i
cot�0�p��i

is expressed as

 cot�0�p� � i; (6)

which is satisfied at p2 � ��2 where positive real �
represents the binding momentum. In fact, as we will
discuss in the following, such a condition is fulfilled only
in the infinite volume. However the finite-volume correc-
tions on this pole condition are exponentially suppressed
by the size of spatial extent L.

For negative q2, an exponentially convergent expression
of the zeta function Z00�s; q2� has been derived in
Ref. [22]. For s � 1, it is given by
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 Z 00�1; q
2� � ��3=2

����������
�q2

q
�

X
n2Z3

0 �
1=2

2
������
n2
p e�2�

�����������
�q2n2
p

;

(7)

where
P0

n2Z3 means the summation without n � �0; 0; 0�.
We now insert Eq. (7) into Eq. (3) and then obtain the
following formula, which is mathematically equivalent to
Eq. (3) for negative q2:

 cot�0�p� � i�
1

2�i

X
n2Z3

0 1���������������
�q2n2

p e�2�
�����������
�q2n2
p

: (8)

The second term in the right-hand side of Eq. (8) vanishes
in the limit of q2 ! �1. It clearly indicates that negative
infinite q2 is responsible for the bound-state formation.
Therefore, in this limit, the relative-momentum squared
p2 approaches ��2, which must be nonzero. Meanwhile,
the negative infinite q2 turns out to be the infinite-volume
limit. This representation shows that although the pole
condition is fulfilled in the infinite volume, its modification
in finite volume is described by correction terms, which
are exponentially suppressed by the size of spatial extent
L / q.

Although it was pointed out how the bound-state pole
condition could be implemented in his phase-shift formula
in the original paper [4], another type of large L expansion
formula around q2 � �1 has been explicitly derived in
Ref. [23].

 �Eq2��1 � �
�2

2�

�
1�

12

�L
1

1� 2��p cot�0�
0
e��L

�O�e�
��
2
p
�L� �O��2=�2�

�
; (9)

where �p cot�0�
0 � d

dp2 �p cot�0�jp2���2 . An

L-independent term � �2

2� corresponds to the binding en-
ergy in the infinite-volume limit. We can learn from Eq. (9)
that ‘‘loosely bound states’’ are supposed to receive larger
finite-volume corrections than those of ‘‘tightly bound
states’’ since the expansion parameter is scaled by the
binding momentum �. Furthermore, it can be expected
that the bound state of two or more particles has a kine-
matical nature similar to a single particle if the spatial size
L is much larger than the size of its compositeness, which
may be characterized by the inverse of the binding
momentum.

C. Novel view from Levinson’s theorem

At last, a crucial question arises: once the S-wave bound
states are formed, what is the fate of the lowest S-wave
scattering state? The answer to this question might provide
a hint to resolve our main issue of how to distinguish
between ‘‘loosely bound states’’ and scattering states. A
naive expectation from Levinson’s theorem in quantum
mechanics is that the energy-shift relative to a threshold

turns out to be opposite in comparison to the case where
there is no bound state. Levinson’s theorem relates the
elastic scattering phase shift �l for the l-th partial wave
at zero relative momentum to the total number of bound
states (Nl) in a beautiful relation [24]:

 �l�0� � Nl�: (10)

Therefore, if an S-wave bound state is formed in a given
channel, the S-wave scattering phase shift should always
be positive at low energies. This positiveness of the scat-
tering phase shift is consistent with a consequence of the
attractive interaction. Conversely, the S-wave scattering
length may become negative (a0 < 0) as schematically
depicted in Fig. 1. Consequently, according to Eq. (4)
[25], possible negativeness of the scattering length gives
rise to a positive energy-shift of the lowest scattering-state
relative to the threshold energy. In other words, the lowest
(n � 0) scattering state is pulled up into the region above
threshold. Therefore, the spectra of the scattering states
quite resembles the one in the case of the repulsive inter-
action. If it were true, we can observe a significant differ-
ence in spectra above the threshold between the two
systems: one has at least one bound state (bound system)
and the other has no bound state (unbound system).

III. SETUP OF NUMERICAL SIMULATIONS

A. Compact scalar QED

To explore signatures of bound-state formation on the
lattice, we consider a bound state (positronium) between an
electron and a positron in the compact QED with scalar
matter:

 

1.0

0.5

0.0

-0.5

δ 0
 (p

)/
π

p

repulsive: a0<0

one bound state: a0<0

no bound state: a0>0

FIG. 1 (color online). A schematic figure for the scattering
phase shift as a function of the relative momentum of two-
particle.
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 SSQED�U;�;� � SAH�U;� �
X
sites

��xDW�Ux;y�y;

(11)

which is the compact U�1� gauge theory coupled to both
scalar matter (Higgs) fields � and fermion (electron) fields
�. The action of ‘‘U�1� gauge� Higgs’’ part is described
by the compact U�1�-Higgs model:

 SAH�U;� � �
X
plaq

�1�<fUx;��g

� h
X
link

<f��xUx;��x��g; (12)

where � � 1=e2 and the constraint j�xj � 1 is imposed.
In tree level, the vacuum expectation value of the Higgs
field and the photon mass are interpreted as h�higgsi �

a�1
���
h
p

and Mph � a
�1

���������
h=�

p
respectively [26]. In the

Higgs phase, the Coulomb potential should be screened
by the massive photon fields:

 V�r� ’
e2

4�
e�Mphr

r
: (13)

The phase structure of the U�1�-Higgs model has been
well studied on the lattice. Figure 2 shows a schematic
phase diagram of the compact U�1�-Higgs model. There
are three phases: the confinement phase, the Coulomb
phase and the Higgs phase. The open symbols and filled
symbols represent the second-order phase transition points
(E: the end point f�; hg � f0:8485�8�; 0:5260�9�g [27] and
S: the 4-dim XY model phase transition) and the first-order
phase transition points (T: the triple point f�; hg �
f1; 0:36g and C: the pure compact U�1� phase transition

�c ’ 1:01), respectively. Lines ET and TC represent the
first-order line. A dotted line TS corresponds to the
Coulomb-Higgs transition, of which the order is somewhat
controversial in the literature because of large finite-size
effects.

B. Monte Carlo simulation

In this numerical study, we treat the fermion fields in the
quenched approximation. Therefore, for update of gauge
links and Higgs fields, we simply adopt the Metropolis
algorithm. First, the acceptance is adjusted to about 30%.
Then we use 16 hits at each link and Higgs field update.

Our purpose is to study the S-wave bound state and
scattering states through Lüscher’s finite-size method,
which is only applied to the short-ranged interaction
case. Thus, we fix � � 2:0 and h � 0:6 in Eq. (12) to
simulate the Higgs phase of U�1� gauge dynamics, where
massive photons give rise to the short-ranged interparticle
force between an electron and a positron. We generateU�1�
gauge configurations with a parameter set, ��; h� �
�2:0; 0:6�, on L3 � 32 lattices with several spatial sizes,
L � 12, 16, 20, 24, 28, and 32. Statistics for each volume
calculation are summarized in Table I.

Once the parameters of the compact U�1�-Higgs action,
��; h�, are fixed, the strength of an interparticle force
between electrons should be frozen on given gauge con-
figurations. However, if we consider the fictitious
Q-charged electron, the interparticle force can be con-
trolled by this charge Q since the interparticle force is
proportional to �charge Q�2. Within the quenched approxi-
mation, this trick of the Q-charged electron is easily im-
plemented by replacing U�1� link fields as

 Ux;� ! UQ
x;� � �Q

i�1Ux;� (14)

into the Wilson-Dirac matrix:
 

DW�U
Qx;y � �x;y � �

X
�

��1� ���U
Q
x;��x��;y

� �1� ���U
Qy
x��;��x��;y; (15)

where � is the hopping parameter.

 

FIG. 2 (color online). Schematic phase diagram of the com-
pact U�1�-Higgs model in the fixed modulus case. A star mark
represents our simulation point as ��; h� � �2:0; 0:6�.

TABLE I. Simulation statistics.

Spatial size (L) 12 16 20 24 28 32

# of conf. 960 1920 1280 720 720 480

TABLE II. Two parameter sets �Q;�� for electron fields and
resulting rest masses of a single electron in lattice units.

Charge Q � ML!1
e

3 0.1639 0.479 036(75)
4 0.2222 0.503 96(59)
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For the matrix inversion, we use the BiCGStab algo-
rithm [28] and adopt the convergence condition jrj<
10�15 for the residues. We calculate the electron propaga-
tors h0j��x� ���y�j0i � D�1

W �U
Qx;y with both periodic and

antiperiodic boundary conditions in the temporal direction.
Then, we adopt the averaged propagator over the boundary
conditions. This procedure provides an electron propagator
with 2T-periodicity [29,30].

C. Spectrum of single electron

To evaluate a threshold energy of the electron-positron
(e�e�) system, it is necessary to calculate the electron
mass nonperturbatively by the following two-point corre-
lator,

 Ge�t; pn� �
1

L6

X
x;y

TrfP�h0j��x; t� ���y; 0�j0ieipn
�x�y�g;

(16)

where P� �
1��4

2 and pn � 2�
L n with n 2 Z3 for the

periodic boundary condition in spatial directions. Here,

we have set the lattice spacing to unity (a � 1). This
electron two-point correlator is gauge-variant, so gauge
fixing is required. We fix to the Landau gauge. However, it
is well known that the pure compact U�1� gauge theory in
the Coulomb phase leads to a serious problem of the
Gribov ambiguity in the gauge-fixing procedure. We adopt
the modified iterative Landau gauge fixing, which is pro-
posed in Ref. [31], to avoid the Gribov copy effect on
gauge-variant electron correlators as much as possible.
Here, we remark that the Gribov ambiguity is not observed
to be severe in the Higgs phase of compact scalar QED,
where our simulations are performed, as is also true in the
confined phase [31].

1. Volume dependence of electron rest mass

According to our previous pilot study [32], numerical
simulations are performed with two parameter sets for
fermion (electron) fields, �Q;�� � �3; 0:1639� and (4,
0.2222), which are adjusted to yield almost the same
electron masses Me 	 0:5 for both charges. First, we cal-
culate the electron mass at rest (p0 � �0; 0; 0�). The elec-

 

10 15 20 25 30 35
L

0.478

0.479

0.48

0.481

0.482

M
e

Q=3

10 15 20 25 30 35
L

0.495

0.5

0.505

0.51

0.515

M
e

Q=4

FIG. 3. Measured electron masses as a function of spatial size L in lattice units. The left (right) panel is for three-charged (four-
charged) electron at � � 0:1639 (0.2222). The horizontal solid line in each panel represent the value ofMe in the infinite-volume limit,
which is obtained from the weighted average of five data, with its 1	 deviation (dashed lines).

TABLE III. Fitted masses of single electrons (Q � 3, 4) with zero momentum and nonzero
lowest momentum (p1 � 2�=L) at six different lattice volumes L3 � 32.

Spatial size Q � 3 Q � 4
L Me Ee�p1� Me Ee�p1�

12 0.480 91(53) 0.673 64(85) 0.5050(38) 0.6941(55)
16 0.479 16(21) 0.602 48(34) 0.5031(14) 0.6235(18)
20 0.478 89(18) 0.562 55(26) 0.5057(12) 0.5861(13)
24 0.479 16(18) 0.539 53(26) 0.5029(12) 0.5610(13)
28 0.478 92(15) 0.524 85(24) 0.5041(14) 0.5483(14)
32 0.479 12(15) 0.515 06(27) 0.5036(14) 0.5388(16)
1 0.479 036(75) . . . 0.503 96(59) . . .
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tron mass is obtained by a single exponential fit, which
takes into account the 2T-periodicity in our simulations, to
the two-point correlator of a single electron (16). In Fig. 3,
we show the volume dependence of the electron mass for
three-charged (the left panel) and four-charged (the right
panel) electron fields. In both cases ofQ � 3 and 4, there is
no appreciable finite-size effect on the electron mass if the
spatial lattice size L is larger than 16. We take a weighted
average of the five masses in the range 16 � L � 32 to
evaluate values in the infinite-volume limit, which are
hereafter used in estimating a threshold energy of two-
electron states. In Fig. 3, solid horizontal lines represent
the average values taken as the infinite-volume limit, to-
gether with their 1 standard deviation (dashed lines). A
summary of the infinite-volume values is given in Table II.

2. Dispersion relation

Next, we examine the dispersion relation of the single
electron in our simulations in order to study the effects of
the finite lattice spacing. We calculate the electron corre-
lation (16) with nonzero lowest momentum, p1 �

2�
L �

�1; 0; 0�, to measure the energy level of the nonzero mo-
mentum single electron. All measured values are tabulated
in Table III. In Fig. 4, we compare our measured energies
Ee�p1� at several spatial lattices with a couple of theoreti-
cal curves, which are evaluated from two types of the
dispersion relation with the measured rest mass: the
continuum-type dispersion relation

 Econ
e �pn� �

�������������������
M2
e � p2

n

q
(17)

and the lattice dispersion relation for free Wilson fermions
[33]

 Elatt
e �pn� � cosh�1

�
1�
�1�

���������������
1� p̂2

n

p
�W�2 � p̂2

n

2�2�
���������������
1� p̂2

n

p
�W�

�
;

(18)

where W � eMe � 1, pn � 2�
L �nx; ny; nz�, and p̂2

n �P
ksin2�2�L nk. The solid curves obtained from the lattice

dispersion relation are clearly closer to the measured en-
ergies in both Q � 3 and Q � 4 cases. The finite lattice
spacing effects on the single electron spectra are not neg-
ligible even at the lowest momentum. Recall that the
relative momentum of two particles is a key ingredient
when we determine the scattering phase shift from Eq. (3).
In this sense, the lattice dispersion relation is preferable so
as to reduce the systematic error stemming from the lattice
spacing artifact in determination of the relative momentum
of two-particle states. Through out this paper, we use the
lattice dispersion relation (18) in the analysis of the scat-
tering phase shift through Lüscher’s formula (3).

D. Diagonalization method

We are especially interested in the 1S0 and 3S1 states of
the e�e� system, where the electron-positron bound state
(positronium) could be formed even in the Higgs phase.
1S0 and 3S1 positronium are described by the bilinear
pseudoscalar operator ��x�5�x and vector operator
��x���x respectively. Therefore, we may construct the

four-point functions of electron-positron states based on
the above operators. We are interested in not only the
lowest level of two-particle spectra, but also the 2nd and
3rd lowest levels. In order to extract a few low-lying energy
levels of two-particle system, we utilize the diagonaliza-
tion method proposed by Lüscher and Wolff [34]. We
consider three types of operators for this purpose:

 

10 15 20 25 30 35 40
L

0.5

0.55

0.6
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E
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p 1)
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2
+p1

2
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Wilson fermion disp.

Q=3
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FIG. 4 (color online). The electron energy at the nonzero lowest momentum (p1 � 2�=L) as a function of the spatial size L in lattice
units. The left (right) panel for the Q � 3 (Q � 4) case. Full circles represent the measured values. The solid (dashed) curves are
theoretical curves evaluated from the lattice (continuum-type) dispersion relation with the measured rest mass.
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�P�t� �
1

L3

X
x

���x; t����x; t�; (19)

 

�W�t� �
1

L6

X
x;y

���y; t����x; t�; (20)

 �M�t� �
1

L6

X
x;y

���y; t����x; t�eip1
�x�y�; (21)

where p1 �
2�
L �1; 0; 0� and � � �5 (��) for the 1S0 (3S1)

e�e� state. The first operator corresponds to a simple
local-type operator where only the total momentum of
two particles is fixed to be zero, but both the electron and
the positron can carry nonzero relative momentum under
the total momentum conservation. The second operator
projects both the electron and the positron onto zero mo-
mentum, while the relative momentum of the e�e� system
is constrained to the nonzero lowest momentum (p1 �

jp1j �
2�
L ) in the third operator. Therefore, we can expect

that each type of operators has better overlap to a specific
two-particle state: n � 0 and n � 1 scattering states have
strong overlap with �W and �M respectively, while the
bound state has the better overlap with �P than �W and
�M.

We construct the 3� 3 matrix correlator from above
three operators

 Gij�t� � h0j�i�t��
y
j �0�j0i (22)

and then employ a diagonalization of a transfer matrix
M�t; t0�, which is defined by

 M�t; t0� � G�t0�
�1=2G�t�G�t0�

�1=2; (23)

where t0 is a reference time-slice. If only three states are

propagating in the region t > t0, the energies of three two-
particle states E
 (E2 >E1 >E0) are given by the eigen-
values of M�t; t0�:

 �
�t; t0� � e��t�t0�E
 �
 � 0; 1; 2�; (24)

where E
 is independent of t0. An assumption that three
low-lying states become effectively dominant for an ap-
propriately large time-slice t0, can be determined by check-
ing the sensitivity of E
 with respect to variation of the
reference time-slice t0.

In this study, the random noise method is employed to
calculate �p source operators in Eq. (22) with the number
of noises taken to be one. Technical details of this method
are described in Ref. [11,12]. We note that all contributions
from disconnected diagrams in Eq. (22) are simply ignored
in our numerical calculations.

IV. NUMERICAL RESULTS IN THE 1S0 CHANNEL

In this section, we focus on numerical results in the 1S0
channel of the e�e� system. Results obtained in the 3S1
channel will be separately discussed in the next section.

A. Ground state of 1S0

Let us begin with the ground state in the 1S0 channel. It
is not necessary to employ the diagonalization method for
the spectroscopy of the ground state. We first show the
effective mass plot for two diagonal components of the 3�
3 matrix correlator. Figures 5 show the effective mass of
the PP correlator and the WW correlator in simulations at
spatial extent L � 28 for Q � 3 (left panel) and Q � 4
(right panel). At a glance, there are apparent operator
dependencies. A very clear plateau appears for the WW
correlator in the Q � 3 case, while the same quality shows
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FIG. 5 (color online). The effective masses in the 1S0 channel on the lattice with L � 28 as a function of the time-slice t in lattice
units. The left (right) panel is for Q � 3 (Q � 4) electron fields. Full circles (full squares) symbols are obtained from the PP (WW)
correlator.
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up for the PP correlator in the Q � 4 case. This drastic
change in operator dependence strongly suggests a signa-
ture of bound-state formation in the Q � 4 case, since the
WW correlator is expected to have a large overlap with the
lowest (n � 0) scattering state rather than the bound state.
In addition, the energy of the 1S0 ground state is close to
the threshold energy (2Me ’ 0:958) in the case of Q � 3,
while there is a large energy gap between the ground-state
energy and the threshold energy (2Me ’ 1:008) in the case
of Q � 4. Therefore, we may naively conclude that the
ground state in Q � 4 is the 1S0 positronium state.

To make a firm conclusion on this point, we next show
the volume dependence of the ground-state energy in
Fig. 6. In the left panel (Q � 3), we plot ground-state
energies measured at each L together with the threshold
energy as horizontal lines, which are estimated by 2Me and
its 1 standard deviation. An upward tendency of the L
dependence toward the threshold energy is clearly ob-
served as spatial size L increases. We also include a lower
bound for the asymptotic solution of the scattering state.
All data points are located well above this lower bound.
From those observations, we can conclude that the ob-
served ground state in the Q � 3 is definitely the lowest
(n � 0) scattering state.

On the other hand, in the right panel (Q � 4), all data
points are located far below the threshold energy and also
the lower bound for the asymptotic solution of the scatter-
ing state. Indeed, data are well fitted by the form:

 E�L� � A�
B
L

exp���L�; (25)

which is inspired by the asymptotic solution of the bound
state, Eq. (9). Finding A � 2Me directly indicates that the
energy gap from the threshold remains finite in the infinite-
volume limit. We perform two types of fitting procedure
with this form. First, a full three-parameter fit is employed.
Second, we take into account a relation between two
parameters A and � according to Eq. (9). The parameter
A is the value of ground-state energy in the infinite volume,
while � corresponds to the binding momentum related to
the pole location of the S-matrix as p2 � ��2�<0�.
Therefore, an explicit constraint between two parameters

A and � can be imposed through the relation � �������������������������
M2
e � A

2=4
p

referred to the measured electron mass Me.
Then a two-parameters fit is carried out. All fitting results
are tabulated in Table IV. Either procedure provides rea-
sonable fits with about �2=d:o:f:� 1. The resulting values
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FIG. 6 (color online). Energies of ground states in the 1S0 channel of the e�e� system as a function of spatial lattice size L. In the
left panel (Q � 3), full circles are measured energies at each lattice size. Horizontal lines represent the threshold energy 2Me and its 1
standard deviation (dashed lines). The dashed curve shows the lower boundary for the convergence of the large L expansion formula
around q2 � 0 as Eq. (4). In the right (Q � 4) panel, full circles are measured energies at each lattice size, and the solid (dashed) curve
is the fitting result by using a form E � A� B exp���L�=L, which is inspired by the large L expansion formula at infinite negative q2

as Eq. (9), with (without) a constraint between two parameters (A and �).

TABLE IV. Fitting results for the 1S0 ground state of Q � 4 electron fields using a fitting form
of Eq. (25). In the table, ‘‘Fit 1’’ and ‘‘Fit 2’’ stand for the fully three-parameters fit and the two-
parameters fit with a constraint between A and �.

A B � �2=d:o:f:

Fit 1 0.763 95(26) �0:78�30� 0.068(28) 0.87
Fit 2 0.763 50(11) �3:92�89� Constrained as

������������������������
M2
e � A

2=4
p

1.58
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of A in both fits are approximately consistent with each
other, while some differences show up in other parameters.

We here stress that the obtained value of A is signifi-
cantly far from the threshold value 2Me ’ 1:008 and there-
fore the energy gap �E � A� 2Me clearly remains finite
in the infinite-volume limit. A bound state of an electron
and positron is certainly formed in simulations with
charge-four electrons.

B. Excited state of 1S0

In the previous subsection, we confirm that the simula-
tions with three-charge electrons provide the purely elastic
scattering system without bound states (unbound system),
while four-charge electrons give rise to at least one bound
state as the ground state in the 1S0 channel of the e�e�

system (bound system). We now can explore the difference
of spectra between the unbound system (Q � 3) and the
bound system (Q � 4).

We calculate the eigenvalues �
�t; t0� of the transfer
matrix M�t; t0� for t0 � 7 at all L except for L � 32 where

t0 � 9 is chosen. First we show the effective mass plots for
all three eigenvalues �
�t; t0 � 7� in simulations at L � 28
in Fig. 7. The diagonalization method with our chosen
three operators successfully separates the first excited state
and the second excited state from the ground state.

In the left panel (Q � 3), the lowest and the second
lowest states show very clear plateaus started from t ’ 5,
which is earlier than our reference time-slice t0. The
ground state and the first excited state correspond to the
lowest (n � 0) scattering state and the second lowest (n �
1) scattering state. Those two-particle energies E0

ee and E1
ee

are close to twice the single electron energies, 2Ee�p0� �
2Me and 2Ee�p1�, respectively. Needless to say, the energy
of the lowest state in the diagonalization method is con-
sistent with the energy obtained by the WW correlator. By
detail analysis of the spectral amplitude (see, Table V and
Appendix B), we confirm that the WW correlator and the
MM correlator are dominant in �0 and �1 respectively as
expected. Although the effective mass of the third eigen-
value �2 gradually approaches some plateau around t 	
20, statistical errors becomes large in the plateau region. �2
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FIG. 7 (color online). The effective mass plots for each eigenvalue �
�t; t0� of the transfer matrix defined in Eq. (23) at a reference
time-slice t0 � 7 on the lattice with L � 28. Full circles, squares, and diamonds represent the ground state (
 � 0), the first excited
state (
 � 1) and the second excited state (
 � 2). The left (right) panel is for Q � 3 (Q � 4).

TABLE V. Summary of the normalized spectral weights �A
�i in the 1S0 channel on the lattice with L � 28. A definition of the
normalized spectral weights is described in Appendix B.

Ground state 1st excited state 2nd excited state
Charge Q Operator i 
 � 0 
 � 1 
 � 2

3 P 0.021 66(72) 0.1324(96) 0.846(10)
W 0.997 35(37) 0.001 77(11) 0.000 88(31)
M 0.001 155(48) 0.9907(11) 0.0081(11)

4 P 0.9597(83) 0.0064(21) 0.0339(81)
W 0.01567(69) 0.9841(14) 0.00018(78)
M 0.0521(15) 0.0023(17) 0.9456(24)
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is dominated by the PP correlator, which can overlap with
any relative-momentum scattering state, so that the con-
tamination from higher relative-momentum (n � 3) scat-
tering states is inevitable in the earlier time-slice.

For the bound system (Q � 4), all three eigenvalues
show clear plateaus started from t 	 t0 � 7 in the effective
mass plot. Again, the energy of the lowest state in the
diagonalization method agrees well with the one obtained
from the PP correlator. The obtained eigenvectors also
indicate that the PP correlator is dominant in the �0

eigenvalue, while the second and third eigenvalues are
mostly composed of the WW correlator and the MM
correlator, respectively. As we mentioned, the PP correla-
tor possibly has overlap with any relative-momentum scat-
tering states. However, here, the PP correlator has
dominant overlap with the bound state as shown in
Table V. This is because the spectral weight of two-particle
states relative to the single-particle state, such as a bound
state, could be suppressed in the PP correlator by an
inverse factor of the volume, 1=L3 [35].

Finally, a summary table of low-lying spectra in the 1S0
channel in simulations at L � 28 is given in Table VI.

C. Distinctive signatures of bound-state formation

1. Sign of energy shift

Suppose that Lüscher’s finite-size method reflects all of
the essential nature of the scattering theory in the quantum
mechanics; formation of the S-wave bound state is accom-
panied by an abrupt sign change of the scattering length.
Thus, we can expect that the second lowest energy state,
which corresponds to the lowest (n � 0) scattering state,
should be located near and above the threshold energy
(2Me) if a bound state is formed. This is quite in contrast
with the case if there is no bound state: the second lowest
energy state, which should be the n � 1 scattering state, is
located near below (above) the energy level of noninter-
acting two-particle system with nonzero lowest momentum
as 2Ee�p1� in the attractive (repulsive) channel.

Here we show our observed L-dependence of the energy
level of the second lowest state in Fig. 8. The data plotted
appear in Table VII. In the left panel (Q � 3), measured
energy levels are very close to the n � 1 threshold energy,
which is given by twice the single electron energy at non-
zero lowest momentum p1. As the spatial size L increases,

TABLE VI. Summary of low-lying spectra in the 1S0 channel on the lattice with L � 28.

Charge Q Eigenstate 
 Energy E
 Kinds of state

3 Ground state (
 � 0) E0
ee � 0:95672�31� n � 0 scattering state

1st excited state (
 � 1) E1
ee � 1:04062�41� n � 1 scattering state

4 Ground state (
 � 0) Mbs � 0:76370�17� Bound state
1st excited state (
 � 1) E0

ee � 1:0119�26� n � 0 scattering state
2nd excited state (
 � 2) E1

ee � 1:1044�53� n � 1 scattering state
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FIG. 8 (color online). Energies of the first excited state in the 1S0 channel of the e�e� system as a function of spatial lattice size L.
The left (right) panel is for Q � 3 (Q � 4). The horizontal line represents the threshold energy determined by 2Me. Full circles are
measured energies for the first excited state. Solid curves with full squares shows twice of the single electron energy with nonzero
smallest momentum p1 � 2�=L.
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the energy levels approach this n � 1 threshold energy
from below. This is consistent with a behavior of the n �
1 scattering state predicted by Eq. (5) for the weakly
attractive interaction without bound states. Therefore,
one can identify the second lowest energy state as the n �
1 scattering state for Q � 3.

In the right panel (Q � 4), an expected feature comes
out. The horizontal line represents the n � 0 threshold
energy estimated by twice the electron rest mass. Clearly,
the energy levels of the second lowest state approach this
n � 0 threshold energy from above. The energy shift from
the threshold vanishes as the spatial size L increases.
Therefore, the second lowest energy state must be the n �
0 scattering state. It is worth emphasizing that the sign of
�E � E0

ee � 2Me is opposite in the case of Q � 3 where
there is no bound state. Of course, this sign is directly
related to the sign of the S-wave scattering length. Thus,
our numerical simulations show that formation of the
S-wave bound state is really accompanied by an abrupt
sign change of the scattering length.

Furthermore, in Fig. 9, the volume dependence of the
energy level of the third lowest state in the Q � 4 case
shows the ‘‘repulsive’’ feature as the n � 1 scattering state

even in the attractive channel. This is attributed to the
consequence of Levinson’s theorem, which allows the
case, tan�0 < 0, for the attractive interaction.

What is surprising here is that one of the most important
features, namely, Levinson’s theorem, in the quantum scat-
tering theory is inherited in Lüscher’s finite-size formula.
Meanwhile, we realize what is a proper signature of bound-
state formation in finite volume on the lattice. Even in a
single simulation at fixed L, we can distinguish the near-
threshold bound state from the lowest (n � 0) scattering
state through determination of whether the second lowest
state appears just above the threshold or near the n � 1
energy level of noninteracting two-particle states.

2. Bound-state pole condition

As we discussed in Sec. II B, the formation condition of
the S-wave bound state, cot�0�p� � i, is definitely imple-
mented in Lüscher’s phase-shift formula (3) at negative
infinite q2, which corresponds to the limit of L! 1.
According to the original paper [4], for negative q2, we
introduce the phase 	0���, which is defined by an analytic
continuation of �0 into the complex p plane through the
relation
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FIG. 9 (color online). Energies of the second excited state in
the 1S0 channel of the e�e� system as a function of spatial
lattice size L for Q � 4. All symbols are defined as in Fig. 8.

TABLE VII. Energies of the ground state, the first excited state and the second excited state (only for Q � 4), which are obtained by
a single cosh fit with 2T periodicity, in the 1S0 channel of the e�e� system at five different lattice volumes L3 � 32.

Spatial size Q � 3 Q � 4
L E0

ee E1
ee Mbs E0

ee E1
ee

16 0.951 83(40) 1.169 03(55) 0.762 31(26) 1.0242(52) 1.287(33)
20 0.954 45(36) 1.104 35(36) 0.763 00(22) 1.0145(40) 1.197(14)
24 0.956 44(37) 1.065 90(36) 0.763 14(22) 1.0126(34) 1.1318(93)
28 0.956 72(31) 1.040 62(41) 0.763 70(17) 1.0119(26) 1.1044(53)
32 0.957 67(32) 1.024 40(49) 0.763 59(20) 1.0113(32) 1.0888(68)
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 tan	0��� � �i tan�0�p�; (26)

where � � �ip. Therefore, the bound-state pole condition
in the infinite volume reads cot	0��� � �1 for the binding
momentum � [4]. As we pointed out in Sec. II B, the finite-
volume correction on this condition is exponentially sup-
pressed by the spatial extent L in a finite box L3:

 

lim
�!�

cot	0��� � �1�
X1
��1

N����
�
p
L�

e�
���
�
p
L� (27)

 

� �1�
6

L�
�e�L� �O�e�

��
2
p
L��; (28)

where the factor N� is the number of integer vectors n 2
Z3 with � � n2. Therefore, if the bound state is formed, we
may observe the phase 	0 satisfies lim�!�	0��� � �

�
4 �

"L where "L�>0� vanishes as the spatial size L increases.
We want to examine this bound-state pole condition

numerically in the known bound system. As described
previously, it is found that our simulation in the Q � 4
case yields an S-wave bound state as the ground state in the
1S0 channel. Thus, we determine the phase 	0 from an
energy level of the ground state in theQ � 4 simulation by
using Lüscher’s formula (3). We first calculate the relative
momentum of two particles (electron-positron) from the
measured energy level of the ground state Eee by matching
with twice the single electron energy 2Ee�p�. As we dis-
cussed in Sec. III C 2, we prefer to use the lattice dispersion
relation (18) for a formula of the single electron energy
Ee�p� in order to avoid lattice discretization errors as much
as possible.

In Fig. 10, we plot the phase 	0 in the 1S0 channel as a
function of p2�<0�. The data plotted appear in Table VIII.
One can easily observe that the phase 	0 approaches
�45 deg : (� �=4) from below as the spatial size L
increases. Even at the smallest spatial extent L � 16, the
phase 	0 is very close to��=4. Needless to say, observed
values of p2�� ��2�, which are related to the binding
energy of the bound state, are almost insensitive to the
spatial size L within statistical errors. Thus, we confirm
that our observed ‘‘bound state’’ in finite volume approxi-
mately fulfills the pole condition of the S-matrix.

A more rigorous way to test for bound-state formation
would be to use an asymptotic formula for the finite-
volume correction to the pole condition as Eq. (28). In

Fig. 11, we plot the value of cot	0 versus the spatial lattice
extent L and show two fit results using Eq. (28) with
different numbers of exponential terms (one term and three
terms). As shown in Table IX, the optimum number of
exponential terms, which yields a convergent result of �, is
about three. However, results with one term and three
terms are quite consistent with each other because of rapid
convergence. Then both fit curves in Fig. 11 reproduce all
data points very well.

D. e�e� elastic scattering phase shifts

Finally, we evaluate the elastic scattering phase shift of
both the unbound system (Q � 3) and the bound system
(Q � 4) using Lüscher’s formula (3).
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FIG. 11 (color online). cot	0 in the 1S0 channel for Q � 4 as a
function of the spatial lattice size L. The solid (dashed) curve
represents a fitting result using Eq. (28) with only a leading
exponential term (three exponential terms).

TABLE VIII. Summary of the relative momentum squared p2, the phase 	0 and cot	0 measured in the 1S0 channel forQ � 4 at five
different lattice volumes L3 � 32.

16 20 24 28 32

p2 �0:1252�17� �0:1281�15� �0:1245�15� �0:1259�17� �0:1252�18�
	0 (deg.) �45:1218�58� �45:020 12�99� �45:004 44�26� �45:000 860�65� �45:000 186�17�
cot	0 �0:995 76�20� �0:999 298�35� �0:999 8449�91� �0:999 9700�23� �0:999 993 52�58�

TABLE IX. Fitting results for the bound-state pole condition
in the 1S0 channel for Q � 4 using Eq. (28) with variation of the
number of exponential terms.

Fitting range (L) # of exp. terms � �2=d:o:f:

16–32 1 0.3524(11) 1.79
2 0.3547(11) 0.86
3 0.3549(11) 0.85
4 0.3549(11) 0.85
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1. Unbound system (Q � 3)

In the Q � 3 case, as we described previously, there is
no bound state. The ground state and the first excited state
correspond to n � 0 and n � 1 scattering states, respec-
tively, and those energy levels are successfully separated
by the diagonalization method. Then we can measure the
scattering phase shifts �0�p� at two different kinematical
points, which correspond to the relative momenta of the
two particles (electron-positron) p for both n � 0 and n �
1 scattering states. However, as for the n � 0 scattering
state, the relative momentum squared is negative (p2 < 0)
because of the attractive interaction between the electron

and the positron. Therefore, we only access the phase 	0

from the energy level of the n � 0 scattering state in this
sense. However, we consider the effective-range expansion
for the scattering phase as p cot�0�p� �

1
a0
� 1

2 r0p2 �

O�p4� in the vicinity of zero relative momentum. We
then assume this expansion is still valid for negative p2.
Therefore, we may translate the phase 	0 to the scattering
phase shift �0 in the following relation:

 lim
�!0

� cot	0��� � lim
p!0

p cot�0�p� �
1

a0
: (29)

In other words, we approximately identify the value of
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spatial lattice sizes. Remark that the sign of �0 for Q � 4 is opposite to that for Q � 3.
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	0��� at p2 � ��2 to the scattering phase shift �0�p� at
p2 � ��2. On the other hand, the relative momentum
squared of the n � 1 scattering state is definitely positive
so that we directly access the scattering phase shift �0

through Lüscher’s formula without any approximation
[36].

We plot scattering phase shifts measured from both n �
0 and n � 1 scattering-state energies in theQ � 3 case as a
function of the relative momentum squared in the left panel
of Figs. 12 and in the left panel of Figs. 13 following the
above descriptions.

2. Bound system (Q � 4)

In the Q � 4 case, it is found that the ground state
corresponds to the S-wave bound state. As we discussed
in Sec. III B, the first and the second excited states should
be n � 0 and n � 1 scattering states, respectively.
Although we can not access any information of the scat-
tering phase shift from the energy level of the ground state,
we instead determine the scattering phase shift from the
energy levels of the first and second excited states. In
contrast to the purely scattering system without bound
states (Q � 3), the relative momentum squared is given
as the positive value even from the lowest (n � 0) scatter-
ing state, which appears above the threshold. Therefore, we
can simply evaluate the phase shift �0 using Lüscher’s
formula with measured p2.

In the right panels of both Figs. 12 and 13, we plot our
measured scattering phase shifts for Q � 4 versus the
relative momentum squared. Here, the values of the phase
shift �0 are simply restricted to the interval �� �

2 ;
�
2.

Therefore, we observe negative phase shift �0 despite an
attractive interaction between the electron and the positron.
Roughly speaking, the phase shift �0 monotonically in-
creases as p2 decreases and approaches zero toward zero
momentum squared. It implies that the S-wave scattering
length a0 is negative for the bound system (Q � 4).

3. Scattering amplitude

Here, we define an S-wave scattering amplitude T�p�

 T�p� �
tan�0�p�

p
Eee
2
; (30)

where Eee represents the measured energy of the scattering
state. Analyticity of the scattering amplitude T�p� allows
us to consider the following fit ansätz:

 T�p� � d0 � d1p
2 � d2p

4 � d3p
6 � d4p

8; (31)

which is a simple polynomial function in the relative
momentum squared p2. The results of the fit are summa-
rized in Table X. For Q � 4, a linear fit with respect to p2

is enough to describe the data with reasonable �2=d:o:f:,
while the fourth order polynomial fit still yields large
�2=d:o:f: in the case of Q � 3. The latter point will be
discussed before this session is closed.

We then obtain a global p2-dependence of the phase
shift �0 in the measured region of p2, which is deduced
from fitted results of the scattering amplitude. We show all
measured phase shifts �0, which are obtained from the
energy levels of both n � 0 and n � 1 scattering states,
in Figs. 14. Solid curves represent inferred p2-dependence
of the phase shift with the band of their errors.

In the right panel (Q � 4), we take into account the
modulo-� ambiguity in determination of the phase shift �0

because of the bound system and raise the phase shift by an
additional � in order to fulfill Levinson’s theorem. That is
why the phase-shift data starts from � and monotonically
decreases as p2 increases. All data are well covered with
rather wide bands of error associated with the global fit.

On the other hand, in the left panel (Q � 3), two data
sets determined from energy levels of n � 0 and n � 1
scattering states seem not to be smoothly connected with
each other due to the lower data points from the n � 1
scattering state at L � 28 and 32. We remark that although
statistical errors on all points are rather small, a hidden and
large systematic error stems from an order O�a� lattice
artifact in the determination of p2. As we discussed in
Sec. III C 2, we have used the lattice dispersion relation
in the analysis of the scattering phase shift. The
continuum-type dispersion relation yields smaller estima-
tions of p2 than those obtained from the lattice dispersion
relation. These differences are far beyond statistical errors,
especially for p2 obtained from the n � 1 energy level in
the Q � 3 case. Furthermore, discrepancies are largely
enhanced in determination of the scattering phase shift
through the Lüscher finite formula. The scattering phase
shift from the n � 1 energy level for Q � 3 typically
increases by about a factor of 2, if the continuum-type
dispersion relation is utilized in the whole analysis.

At the low-energy limit, the scattering amplitude be-
comes

 lim
p!0

T�p� � a0Me: (32)

Therefore, the fitting parameter d0 in Eq. (31) is associated
with the scattering length a0. We then obtain the scattering
lengths as a0 � 1:46�5� for Q � 3 and �2:28�40� for

TABLE X. Fitting results for the scattering amplitude for Q � 3 and Q � 4 using Eq. (31).

Charge Q d0 d1 d2 d3 d4 �2=d:o:f:

3 0.697(26) �33:8�7:4� 102�25� � 10 �103�28� � 102 34�10� � 103 7.26
4 �1:15�20� �4:6�7:3� . . . . . . . . . 0.52
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Q � 4 in lattice units, which are much smaller than our
utilized lattice sizes (L � 12). Needless to say, the sign of
the scattering length for Q � 4 is opposite to that for Q �
3 due to formation of one bound state in the case ofQ � 4.

V. NUMERICAL RESULTS IN THE 3S1 CHANNEL

A. Low-lying spectra in the Q � 4 case

The 3S1 spectroscopy has been done in exactly the same
way as the 1S0 case by using the bilinear vector operator
��x���x. As for the Lorentz indices, we take an average

over the spatial indices so as to gain possible reduction of
statistical errors. After we perform the diagonalization
method with the 3� 3 matrix correlator constructed with
three operators in Eq. (21), we get the energy spectra of
both the ground state and the first excited state.

In the Q � 4 case, we have concluded that one bound
state is formed in the 1S0 channel as described in the
previous section. The binding energy B � jMbs � 2Mej
is rather large as B 	 Me=2. The observed bound state
should be a ‘‘tightly bound state’’ rather than a ‘‘loosely
bound state.’’ On the other hand, the mass of the 3S1 bound
state is naturally expected to be higher than the 1S0 bound
state due to the hyperfine-splitting interaction. Indeed, we
observe that the ground state in the 3S1 channel is much
closer to the threshold energy as j�Ej 	 Me=25. Although
the energy level of the ground state is too near the threshold
to be simply identified as a bound state, we may expect that
the 3S1 ground state is a near-threshold bound state or a
loosely bound state. Needless to say, to draw a solid con-
clusion, we need more rigorous signatures of bound-state
formation in the 3S1 channel.

We employ the diagonalization method to separate the
first excited state from the ground state. Figure 15 shows

L-dependence of energies of the ground state and the first
excited state in the 3S1 channel for Q � 4. The horizontal
axis is the spatial size L and the vertical axis is the energy
of the ground state (full circles) or the first excited state
(full diamonds). The horizontal lines represent the thresh-
old energy of the e�e� system together with the 1 standard
deviation, which is evaluated as twice the measured elec-
tron mass. Although it seems that the ground state has no
appreciable finite-size effect for L larger than 20, the 3S1
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FIG. 15 (color online). Energies of the ground state and the
first excited state in the 3S1 channel of the e�e� system as a
function of spatial lattice size for Q � 4. The horizontal line
represents the threshold energy determined by 2Me. Full circles
and full diamonds are measured energies for the ground state and
the first excited state, respectively. A solid curve with full
squares shows twice of the single electron energy with nonzero
smallest momentum p1 � 2�=L.
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FIG. 14 (color online). All measured scattering phase shift �0 as a function of the squared relative momentum. As for theQ � 4 case
(the left panel) where the formation of bound state is observed, the scattering phase shifts �0 are shifted as �0 ! �0 � � according to
Levinson’s theorem. Solid curves represent the fitting results with the band of their errors.
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ground state lies too close to the threshold energy to be
assured of bound-state formation.

As shown in Sec. IV C, the distinctive signature of
bound states is given by an information of the excited state
spectra: if a bound state is formed, the lowest (n � 0)
scattering state could appear just above the threshold
(2Me), but far from the n � 1 energy level of noninteract-
ing two-electron system (2Ee�p1�). Indeed, we observe that
the first excited state appears just above the threshold and
its energy rapidly approaches the threshold as spatial size L
increases. The first excited state can be clearly distin-
guished from the n � 1 scattering state. Of course, it

indicates that the ground state should not be the lowest
scattering state. Thus, we can conclude: the 3S1 ground
state should be the S-wave bound state, of which formation
clearly induces the sign of the scattering length to change.
Therefore, the lowest (n � 0) scattering state approaches
the threshold from above, the same as the repulsive system
in the attractive channel. This result shows that our pro-
posal could be quite promising for identifying a near-
threshold bound state or a loosely bound state such as a
hadronic molecular state in a finite box on the lattice.

B. Bound-state pole condition

Next, we evaluate the phase 	0 from the energy level of
the ground state through the phase-shift formula (3) as we
did in Sec. IV C 2. All results measured at five different
lattice volumes L3 � 32 are tabulated together with results
of p2 and cot	0 in Table XI. Indeed, we observe that the
phase 	0 gradually approaches �45 deg : (� �=4) as
spatial lattice extent L increases. However, 	0 is not really
close to�45 deg : even at the largest volume (L � 32), in
comparison to 	0 from the smallest volume (L � 16) in
the 1S0 channel. In this sense, it is hard to judge how large
of a lattice size is enough to deal with the asymptotic
solution of the bound state even in finite volume. Thus,
we should examine the L-dependence of the specific quan-
tity, cot	0, by reference to Eq. (28), where the finite-
volume corrections on the bound-state pole condition are
theoretically predicted.

As shown in Fig. 16, the values of cot	0 are plotted as a
function of spatial lattice extent L. Full circles are mea-
sured value at five different lattice volumes. The solid and
dashed curves represent fit results with a single leading
exponential term and six exponential terms in Eq. (28). The
four data points in the region 20 � L � 32 are used for
those fits. The fitting with the six exponential terms yields a
convergent result of � as shown in Table XII. Either fit
curves in Fig. 16 reproduce all data points except for data at
the smallest L. Indeed, the resulting �2=d:o:f: is no longer
reasonable as �2=d:o:f: 	 3 if the data point at L � 16 is
used. Therefore, the ground state at least for L � 20 can be
identified as a bound state without ambiguity.

VI. SUMMARY AND CONCLUSION

In this paper, we have discussed signatures of bound-
state formation in finite volume via Lüscher finite-size
method. Assuming that the phase-shift formula inherits
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FIG. 16 (color online). cot	0 in the 3S1 channel for Q � 4 as a
function of the spatial lattice size L. The solid (dashed) curve
represents a fitting result using Eq. (28) with only a leading
exponential term (six exponential terms).

TABLE XII. Fitting results for the bound-state pole condition
in the 3S1 channel for Q � 4 using Eq. (28) with variation of the
number of exponential terms.

Fitting range (L) # of exp. terms � �2=d:o:f:

20–32 1 0.1109(60) 0.24
2 0.1218(57) 0.24
3 0.1236(56) 0.25
4 0.1242(55) 0.25
5 0.1251(55) 0.26
6 0.1256(54) 0.27
7 0.1256(54) 0.27

TABLE XI. Summary of the relative momentum squared p2, the phase 	0 and cot	0 measured in the 3S1 channel for Q � 4 at five
different lattice volumes L3 � 32.

16 20 24 28 32

p2 �0:0255�26� �0:0158�23� �0:0167�23� �0:0148�26� �0:0120�34�
	0 (deg.) �56:1�2:9� �57:1�4:5� �49:2�1:5� �47:6�1:2� �47:2�1:6�
cot	0 �0:673�73� �0:65�11� �0:864�45� �0:914�38� �0:926�53�
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all aspects of the quantum scattering theory, we can pro-
pose a novel approach to distinguish a ‘‘loosely bound
state’’ from the lowest scattering state, which is located
below the threshold in finite volume in the case of attrac-
tive two-particle interaction. According to the quantum
scattering theory, the S-wave scattering length is positive
(a0 > 0) in the attractive channel, if the attraction is not
strong enough to give rise to a bound state. However, the
sign of the scattering length turns out to be opposite (a0 <
0) once the bound state is formed. This fact provides us a
distinctive identification of a loosely bound state even in
finite volume through the observation of the lowest scat-
tering state that is above the threshold. We also reconsider
the bound-state pole condition in finite volume, based on
the phase-shift formula in the Lüscher finite-size method.
We find that the bound-state pole condition is fulfilled only
in the infinite-volume limit, but its modification by finite-
size corrections is exponentially suppressed by the spatial
lattice size L.

To check the above theoretical considerations, we have
performed numerical simulations to calculate the positro-
nium spectrum in compact scalar QED, where the short-
range interaction between an electron and a positron is
realized in the Higgs phase. We introduce the fictitious
Q-charged electron to control the strength of this interpar-
ticle force and then can adjust the charge Q to give rise to
the S-wave bound states such as 1S0 and 3S1 positronium.
We choose two parameter sets �Q;�� that lead to an un-
bound e�e� system (Q � 3) and a bound e�e� system
(Q � 4) at approximately the same mass of a single elec-
tron. We observe the following signatures of the bound-
state formation, some of which are related to our theoreti-
cal proposals, in our numerical simulations.

(i) The lowest scattering state has better overlap with
the wall-wall correlator than the point-point correla-
tor. This tendency is inverted in the case of the bound
state.

(ii) The sign of the S-wave scattering length turns out to
be opposite (repulsivelike) even in the attractive
channel, once the bound state is formed.

(iii) In the bound system, the phase 	0, which is related
to the scattering phase �0�p� and analytically con-
tinued into the complex p-plane, is near�45 deg :
(� �=4) which is associated with the pole condi-
tion of the S-matrix.

(iv) The deviation from the pole condition, cot	0 �
�1, in finite volume is well described by a finite
series of exponentially convergent terms with re-
spect to the spatial extent L scaled by the binding
momentum �.

In particular, we regard the second point, the bound-state
formation induces the sign of the scattering length to be
changed, as crucially important for identifying a ‘‘loosely
bound state.’’ This is because one can distinguish it from
the lowest scattering state even in a single simulation at

fixed L through determination of whether the second low-
est energy state appears just above the threshold or near the
n � 1 energy level of noninteracting two-particle system.
We also emphasis that Lüscher’s phase-shift formula prop-
erly reflects one of the most essential features of the
quantum scattering theory, namely, Levinson’s theorem.
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APPENDIX A: SENSITIVITY OF MASS SPECTRA
TO SPATIAL BOUNDARY CONDITIONS

Kinematics of two-particle states on the lattice should be
sensitive to choice of the spatial boundary condition. In
many literatures, this particular point is often discussed and
sometimes applied to explore hadronic or nonleptonic
decay processes [37,38] or to search exotic hadrons
[39,40] on the lattice. The main point is that the total
energy of two-particle states, which is roughly estimated
by a sum of the energy of noninteracting two particles,
depends on the spatial size L unless the relative momentum
of two particles is zero. Of course, this is because all
momenta on the lattice are discretized in units of 2�=L.
Here, we have considered the e�e� system. The total
energy of electron-positron states is approximately esti-
mated by using the naive relativistic dispersion relation in
the following:

 Enee � 2Ee�pn� � 2
�������������������
M2
e � p2

n

q
: (A1)

The discrete momenta of a single electron are obtained as
pn � 2�

L n for the periodic boundary condition (P.B.C.) and
pn � �

L �2n� 1� for the antiperiodic boundary condition
(A.P.B.C.). In the antiperiodic boundary condition, zero
relative-momentum is not kinematically allowed, so that
the lowest energy of two-particle scattering states is ex-
pected to be very sensitive to the spatial lattice size. In
other words, different types of spatial boundary conditions
(periodic or antiperiodic) exhibit different energy levels of
the two-particle scattering states even at the fixed spatial
size, while a mass of e�e� bound states (positronium
states) should be insensitive to the spatial boundary condi-
tion for the electron fields [41]. For an example, in the n �
0 case, we obtain
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 E0
ee � 2Ee�p0� �

8<
:

2Me �P:B:C: for all spatial directions�;

2
����������������������������
M2
e � 3 
 ��L�

2
q

�A:P:B:C: for all spatial directions�;
(A2)

which imply an inequality E0
ee�P:B:C:�<E0

ee�A:P:B:C:�. In
general, we can expect that Enee�P:B:C:�<Enee�A:P:B:C:� is
always fulfilled.

Recently, such sensitivity of spatial boundary condition
is often utilized to distinguish between two-particle scat-
tering states and a single-particle state (a bound state or a
resonance state) [42,43]. However, there is no rigorous test
of whether this approach is adequate for such purpose so
far. In this subsection, we examine this approach in our
simulated e�e� system.

We use the following operators under the antiperiodic
spatial boundary condition for electron fields:
 

�P�t� �
1

L3

X
x

���x; t��5��x; t�; (A3)

 �M0
�t� �

1

L6

X
x;y

���y; t��5��x; t�eip0
�x�y�; (A4)

 �M1
�t� �

1

L6

X
x;y

���y; t��5��x; t�eip1
�x�y�; (A5)

where p0 �
�
L �1; 1; 1� and p1 �

�
L �3; 1; 1�. The first opera-

tor is a simple local-type operator. The second and third
operators project both the electron and the positron on
nonzero lowest momentum (jp0j �

��
3
p
�
L ) and nonzero sec-

ond lowest momentum (jp1j �
����
11
p

�
L ), respectively. We can

expect that n � 0 and n � 1 scattering states have strong

overlap with �M0
and �M1

, while the bound state has the
better overlap with �P than �M0

and �M1
.

Figures 17 show the effective mass plots of the PP,
M0M0 and M1M1 correlators in simulations at L � 28
for Q � 3 (the left panel) and Q � 4 (the right panel) in
the 1S0 channel. There is a similarity between Figs. 5
(P.B.C.) and Figs. 17 (A.P.B.C.). Very clear plateaus are
given by theM0M0 correlator in theQ � 3 case and the PP
correlator in the Q � 4 case in Figs. 17, while the same
quality shows up for the WW correlator in the Q � 3 case
and the PP correlator in theQ � 4 case in Figs. 5. In either
P.B.C. and A.P.B.C. cases, the PP correlator strongly over-
lap with the Q � 4 ground state, which has already been
identified as the bound state in Sec. IV. Both WW and
M0M0 correlators are expected to have large overlap with
the lowest (n � 0) scattering state under each spatial
boundary condition. A main difference between Figs. 5
(P.B.C.) and Figs. 17 (A.P.B.C.) is that the PP (M1M1)
correlator for Q � 3 (Q � 4) in the A.P.B.C. approaches
the plateau much faster than the P.B.C. cases. This is
simply because Ene�A:P:B:C:� is larger than Ene�P:B:C:�
and then propagations of non-ground state can die out
more quickly in the A.P.B.C. case than the P.B.C. case.
Indeed, the M1M1 correlator approaches the plateau faster
than the M0M0 correlator in the left panel (Q � 4) of
Fig. 17 since the M1M1 correlator hardly overlaps with
the n � 0 scattering state as shown in the right panel (Q �
3) of Fig. 17.

We finally employ the diagonalization method to extract
the ground states in both Q � 3 and Q � 4 through the
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FIG. 17 (color online). The effective masses in the 1S0 channel on the lattice with L � 28 as a function of the time-slice t in lattice
units The antiperiodic boundary condition is imposed in the spatial direction. The left (right) panel is for Q � 3 (Q � 4) electron
fields. Full circles, full squares and full diamonds are obtained from PP, M0M0 and M1M1 correlators, respectively.
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same procedure described in Sec. IV B. Then we compare
ground-state energies for both Q � 3 and Q � 4 in the
P.B.C. with those in the A.P.B.C. in Figs. 18. The left panel
(Q � 3), the effective mass of the ground state is clearly
shifted up in changing from P.B.C. to A.P.B.C., while the
plateau of the ground state does not change between P.B.C.
and A.P.B.C. cases in the right panel (Q � 4). An energy
shift in the Q � 3 case is consistent with an estimation of
2�E0

e�A:P:B:C:� � E0
e�P:B:C:��. We certainly confirm that

the scattering state (Q � 3) is sensitive to the spatial
boundary condition, while the bound state has no depen-
dence of the spatial boundary condition for the electron
fields.

APPENDIX B: VOLUME DEPENDENCE OF THE
SPECTRAL WEIGHT

The spectral decomposition of the matrix correlator is
given by

 Gij�t� �
X

�0

�v
�i�v
�

�je

�E
t (B1)

with the spectral amplitude �v
�i � h0j�ij
iV . A sub-
script in a ket j
iV stands for finite volume V � L3.
Remark that the finite-volume states j
iV are normalized
to unity. The spectral amplitudes are given by solving the
following equations [44]

 

X
i

�w
�i�v���i � �
�eE
t0=2; (B2)

where �w
�i is an i component of vectors w
, which are
determined through the following generalized eigenvalue
problem [44]:

 G�t�w
 � �
�t; t0�G�t0�w
: (B3)

To solve this eigenvalue equation, we have employed a
diagonalization of the transfer matrix M�t; t0� �
G�1=2�t0�G�t�G�1=2�t0�, which provides the same eigen-
values �
�t; t0� � e�E
�t�t0� of Eq. (B3)

 M�t; t0�u
 � �
�t; t0�u
 (B4)

with the orthonormal eigenvectors u
 � G1=2�t0�w
, if
G�t� is an Hermite matrix [44]. The relative overlap be-
tween the chosen operator �i and energy eigenstates (
 �
0; 1; 2; 
 
 
 ) can be determined by the squared normalized
amplitudes (the normalized spectral weights)

 �A
�i �
j�v
�ij

2P


j�v
�ij

2 : (B5)

The normalized spectral weights calculated in simulations
at L � 28 are tabulated in Table V as typical examples.

Here, we remind that the finite-volume states are nor-
malized to unity, regardless of whether the single-particle
state or the multiparticle state. Suppose the eigenstate 
 is
a single-particle state, we simply obtain the correspon-
dence between the finite-volume and the infinite-volume
states:

 j
iV �
1�������������

2E
V
p j
i1 �single particle state�; (B6)

where j
i1 is normalized as 2E
 particles per unit volume.
On the other hand, if the eigenstate 
 is a two-particle
state, the correspondence factor between j
i1 and j
iV
should depend on dynamics between two particles. Such
corrected factor is explicitly derived by Lellouch and
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FIG. 18 (color online). The effective mass plots for the largest eigenvalue �
�t; t0 � 7�, which corresponds to the lowest energy
state, on the lattice with L � 28 in the 1S0 channel. The left (right) panel is for Q � 3 (Q � 4). Full circles (full squares) represent the
ground states from simulations with periodic (antiperiodic) boundary conditions for electron fields in the spatial direction.
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Lüscher (denoted in the following by LL) to determine the
physical K ! �� amplitude from the finite-volume cal-
culation [45]. Here, we consider the LL-factor only in the

noninteracting case, where the scattering phase shift be-
tween two particles is taken to be zero, for a simplicity, and
then obtain the following correspondence between j
i1
and j
iV for S-wave two-particle states [45,46]:

 j
iV /
1

E
V
j
i1 �two-particle state�; (B7)

which indicates that observed spectral amplitudes �v
�i for
the local-type operator (i � P) are proportional to 1=

����
V
p

for the single-particle state and proportional to 1=V for the
S-wave two-particle state, since the physical spectral
amplitude h0j�Pj
i1 in the case of the local-type
operator should not depend on the size of the spatial
volume V � L3.

Let us consider the volume dependence of the spectral
amplitude of the ground state with the local-type operator
�P. In Fig. 19, we plot the finite-volume spectral weight
jh0j�Pj
 � 0iV j

2 scaled by V2 for Q � 3 and by V for
Q � 4 as a function of spatial lattice size L. Recall that
Q � 3 is the unbound system, while Q � 4 is the bound
system. No appreciable L-dependence is observed in either
cases. This indicates that the finite-volume spectral weight
for the local-type operator has a specific volume depen-
dence according to whether the single-particle state or the
two-particle state. In other words, each contribution from
two-particle states (scattering states) relative to the single-
particle state is suppressed by a inverse of the volume
factor, 1=L3 in the PP correlator.
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