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We calculate the vector form factor in K ! �l� semileptonic decays at zero momentum transfer f��0�
from numerical simulations of two-flavor QCD on the lattice. Our simulations are carried out on 163 � 32
at a lattice spacing of a ’ 0:12 fm using a combination of the DBW2 gauge and the domain-wall quark
actions, which possesses excellent chiral symmetry even at finite lattice spacings. The size of fifth
dimension is set to Ls � 12, which leads to a residual quark mass of a few MeV. Through a set of double
ratios of correlation functions, the form factor calculated on the lattice is accurately interpolated to zero
momentum transfer, and then is extrapolated to the physical quark mass. We obtain f��0� � 0:968�9��6�,
where the first error is statistical and the second is the systematic error due to the chiral extrapolation.
Previous estimates based on a phenomenological model and chiral perturbation theory are consistent with
our result. Combining with an average of the decay rate from recent experiments, our estimate of f��0�
leads to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element jVusj � 0:2245�27�, which is consistent
with CKM unitarity. These estimates of f��0� and jVusj are subject to systematic uncertainties due to the
finite lattice spacing and quenching of strange quarks, though nice consistency in f��0� with previous
lattice calculations suggests that these errors are not large.
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I. INTRODUCTION

There has recently been rapid progress in the precise
determination of the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1] leading towards a stringent
test of its unitarity. Let us recall that such a test is a
powerful method to search for new physics beyond the
standard model. In particular d! u and s! u semilep-
tonic transitions provide the most precise constraints on the
size of the elements, and hence CKM unitarity on the first
row

 jVudj2 � jVusj2 � jVubj2 � 1� � (1)

can now be examined accurately [2,3].
The values quoted in the 2004 PDG [4]

 jVudj � 0:9738�5�; jVusj � 0:2200�26�;

jVubj � �3:67� 0:47� � 10�3;
(2)

lead to

 � � 0:0033�15�; (3)

which deviates from zero by two �. We have to improve
the accuracy on � in order to confirm whether this devia-
tion is a genuine signal of unitarity violation. We note that
jVubj is so small that it can be safely neglected in this
unitarity test. Since about half the error of � comes from
the uncertainty in jVudj, and another half from jVusj, we
need a more precise determination of both of these two

elements. In the present paper, we focus on the determi-
nation of jVusj.

We also note that jVusj gives the basic parameter � in the
Wolfenstein parameterization of the CKM matrix [5]. A
precise determination of jVusj is, therefore, important also
for phenomenological studies of CP violation processes
based on this parametrization.

So far, jVusj has been determined from several pro-
cesses: Kl3 decays [4] which provide the value in Eq. (2),
hyperon � decays [6], K�2 and ��2 decays [7], and
hadronic � decays [8]. At the moment, the Kl3 decays
provide the most precise determination among these, and
its result has been quoted in the PDG. We, therefore, try to
determine jVusj through the Kl3 decays.

As will be explained in Sec. II, jVusj can be determined
through experimental determination of the decay rate �
and theoretical calculation of the vector form factor at zero
momentum transfer f��0�. The two � deviation from
unitarity in Eq. (3) motivated recent measurements of �
[9–13]. These experiments prefer a larger value for jVusj,
which is consistent with unitarity. However, a precise
calculation of f��0�, say with an accuracy of 1%, is also
indispensable in order to establish this consistency with
unitarity.

A good theoretical control on f��0� is provided by
SU�3� symmetry and the Ademollo-Gatto theorem [14].
The vector current conservation guarantees f��0� � 1 at
zero momentum transfer [15], and then the Ademollo-
Gatto theorem states that the SU�3� breaking effects
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f��0� � 1 start at second order in (ms �mud), where mud
represents the averaged mass of up and down quarks. This
also indicates that the leading correction to f��0� in chiral
perturbation theory (ChPT) does not contain the low-
energy constants (LECs) of the next-leading order chiral
Lagrangian, and hence is practically free of uncertainties.

In this paper, we calculate the vector form factor of the
Kl3 decay at zero momentum transfer f��0� nonperturba-
tively from numerical simulations of lattice QCD with two
degenerate flavors of dynamical quarks, which are identi-
fied with up and down quarks. Strange quarks are treated in
the quenched approximation. To make the best of use of the
good theoretical control mentioned in the previous para-
graph, we employ a combination of the DBW2 gauge
action [16] and the domain-wall quark action [17,18],
which has excellent chiral symmetry even at finite lattice
spacings. We also employ the so-called double ratio
method [19] to improve the accuracy on the form factor.
Preliminary results of these calculations have been re-
ported in Ref. [20].

This paper is organized as follows. We present a brief
introduction of the Kl3 decays and status of experimental
and theoretical studies on them in Sec. II. Our simulation
method is introduced in Sec. III. Section IV is devoted to
our determination of the form factor at finite momentum
transfer from a double ratio of three-point functions. We
describe the interpolation of the form factor to zero mo-
mentum transfer and the chiral extrapolation in Secs. Vand
VI. Section VII presents our estimate of jVusj. Our con-
clusions are given in Sec. VIII.

II. Kl3 DECAYS

A. Phenomenology of Kl3 decays

The Kl3 decays are K to � semileptonic decay channels

 K0
l3: K0 ! ��l��l; (4)

 K�l3 : K� ! �0l��l; (5)

where l represents the electron or muon. In the following,
we mainly consider the neutral kaon decay K0

l3. A simpli-
fication in theoretical studies of these decays is that the
matrix element of the axial current vanishes due to the
parity symmetry. Therefore, the decay amplitude contains
only the matrix element of the vector current V� � �s	�u
which can be expressed in terms of form factors
 

h��p0�jV�jK�p�i � �p� � p0��f��q2�

� �p� � p0��f��q2�; (6)

where q � p� p0 represents the momentum transfer.
In literature, the so-called scalar form factor

 f0�q
2� � f��q

2� �
q2

M2
K �M

2
�
f��q

2�; (7)

and

 
�q2� �
f��q

2�

f��q2�
(8)

are often used instead of f��q2�. In particular, f0�q
2� is a

useful quantity in lattice calculations, since i) it equals to
f��0�, which appears in the expression of the decay rate
(see Eq. (10) below), at zero momentum transfer q2 � 0,
ii) it can be precisely calculated from the matrix element
with kaon and pion momenta equal to zero

 h��0�jV4jK�0�i � �MK �M��f0�q2
max�; (9)

where q2
max � �MK �M��

2.
The rate of the Kl3 decays is given by [15]

 � �
G2
�

192�3 M
5
KC

2IjVusj2jf��0�j2Sew�1� �em�; (10)

where I and Sew�1� �em� represent the phase space inte-
gral and radiative corrections, respectively. The Clebsch-
Gordan coefficient C2 � 1�1=2� for the neutral (charged)
kaon decay is written explicitly in the above expression so
that f��0� for both decay channels equals to unity in the
SU�3� symmetric limit.

The phase space integral I is generally defined as [15]
 

I �
1

M8
K

Z
d�q2��3=2

I

�
1�

M2
l

2q2

��
1�

M2
l

q2

�
2

�

�
f��q

2�

f��q2
0�
�

3M2
l �M

2
K �M

2
��

2

�2q2 �M2
l ��I

f0�q
2�

f��q2
0�

�
; (11)

 �I � q4 �M4
K �M

4
� � 2q2M2

K � 2q2M2
� � 2M2

KM
2
�;

(12)

where q0 is a reference value of the momentum transfer. If
we take q0 � 0, f��0� in Eq. (10) has to be replaced by
f��q0�. As in Eq. (10), q0 is usually set to 0 so that I
depends on f�;0�q2� only through small coefficients ��1�� ,
��2�� and ��1�0 , which parametrize the q2 dependence of
f�;0�q

2�

 f��q2� � f��0��1� �
�1�
� q

2 � ��2�� q
4�; (13)

 f0�q
2� � f0�0��1� �

�1�
0 q

2�; (14)

where we include the quadratic term suggested by the
KTeV experiment to f��q2� [21]. From recent experimen-
tal measurements of these coefficients [21–23], the current
estimate for I is�0:154 (0.159) forK0

e3 (K�e3) and 0.102 for
K0
�3 with an accuracy of around 1% [2,3], where a domi-

nant error comes from the choice of the parametrization
form of the q2 dependence of f��q2�. The choice of the
reference scale q0 � 0 forces us to study the q2 depen-
dence of the form factor and take the limit of q2 � 0 as in
Sec. V.
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The radiative corrections split into the short-distance
electroweak piece Sew and the long-distance electromag-
netic piece (1� �em). The former is precisely determined
as Sew � 1:022 [24]. Chiral perturbation theory including
the electromagnetic interaction [25] and a phenomenologi-
cal model [26] reveal that the latter is small correction, and
its uncertainty leads to & 1% error to �.

Recently several new experimental determination of �
have been performed to clarify the origin of the two �
deviation from unitarity in Eq. (3) [9–13]. In Ref. [3],
jVusf��0�j � 0:2173 is obtained from the new measure-
ments of � and recent estimates of I and �em through
Eq. (10). This is about 3% larger than 0.2114 correspond-
ing to jVusj in Eq. (2), and may lead to a good consistency
with CKM unitarity. However, we have to determine f��0�
with an accuracy of 1% in order to make a definite con-
clusion on this unitarity test.

B. Previous theoretical studies of f��0�

In previous theoretical studies, f��0� is considered in
the following ChPT expansion

 f��0� � 1� f2 � f4 �O�p
6�; (15)

where f2n is the O�M2n
�;K;�� � O�mn

q� correction to f��0�.
We note that the leading term is unity, because f��0�
becomes the Clebsch-Gordan coefficient in the SU�3�
symmetric limit thanks to the vector current conservation,
and we explicitly factor it out Eq. (10).

The Ademollo-Gatto theorem [14] states that SU�3�
breaking effects are second order in (ms �mud). From
previous theoretical studies, it turned out that the SU�3�
breaking effects f��0� � 1 are order of 3–5%. Therefore,
we can achieve 1% accuracy on f��0� by calculating the
SU�3� breaking effects with an accuracy of 20%–30%,
which is not prohibitively challenging.

In addition, the Ademollo-Gatto theorem guarantees that
the leading correction f2 does not contain any poorly-
known LECs, which are associated with analytic terms
from the O�p4� chiral Lagrangian. For example, its ChPT
formula for the K0

l3 decay is given by [27]

 f2 � HK0� �
1

2
HK�� �

3

2
HK�� � �

���
3
p
�HK� �HK��;

(16)

 HPQ � �
1

64�2f2
�

�
M2
P �M

2
Q �

2M2
PM

2
Q

M2
P �M

2
Q

ln
�M2

Q

M2
P

��
;

(17)

where � � �
���
3
p
=4��md �mu�=�ms �mud�.

However, the next leading correction f4 contains LECs
in O�p4� and O�p6� chiral Lagrangians [28–32].
Therefore, f4 is difficult to determine only from ChPT,
and hence a phenomenological estimate f4 � �0:016�8�

by Leutwyler and Roos [15] has been employed in previous
determinations of jVusj.

Clearly, it is desirable to calculate f��0� nonperturba-
tively. This background led to the first lattice study in
quenched QCD [33]. They demonstrated that lattice cal-
culations can achieve the 1% accuracy for f��0� by using a
set of the so-called double ratios of correlation functions,
and by making good use of the ChPT formula for f2,
namely, Eq. (16), in the chiral extrapolation of their lattice
data. They employed the nonperturbativelyO�a�-improved
Wilson quark action and obtained f��0� � 0:960�9�,
which is consistent with the Leutwyler-Roos’s estimate.

The calculation was extended to two-flavor QCD with
the O�a�-improved Wilson quark action [34] and to three-
flavor QCD with an improved Kogut-Susskind (KS) quark
action [35]. While the q2 dependence of f��q2� has not
been investigated in the latter study, their estimates of
f��0� are consistent with that in quenched QCD.

It is also worth while to note that the so-called twisted
boundary condition [36], which enables us to explore small
q2 region, has been tested in quenched QCD [37].

III. SIMULATION METHOD

In this study, we calculate the kaon form factor f��0� by
numerical simulations of lattice QCD with two-flavors of
dynamical quarks, which are identified with up and down
quarks. We note that the isospin breaking effects in
Eq. (16) is proportional to � 	 0:01, and f2 itself is of
order 2%–3% shift, so the correction due to isospin break-
ing is well below our target accuracy on f��0� of 1%.
Strange quarks are treated in the quenched approximation.
We employ the domain-wall quark action [17], which has
the following advantages over the conventional Wilson-
and KS-type actions.

First, it possesses chiral symmetry even at finite lattice
spacings in the limit of Ls ! 1, while the conventional
Wilson- and KS-type fermions break the chiral symmetry
explicitly. The chiral behavior of physical quantities may
be distorted with the conventional fermions. Rigorously
speaking, we have to take account of effects of the explicit
symmetry breaking in the chiral extrapolation of the quan-
tities obtained with the conventional fermions at finite
lattice spacings [38,39]. In contrast, chiral extrapolations
with domain-wall quarks are fairly straightforward and
simple as they need use essentially continuum ChPT
[40]. This is particularly important in this study of the
Kl3 from factor, since we can safely subtract the leading
correction f2 from our lattice data of f��0� by using the
ChPT formula Eq. (16) before the chiral extrapolation so
that systematic uncertainties due to the extrapolation influ-
ence the final result only through the small higher order
corrections.

Another advantage of the use of domain-wall quark
action is that it is automatically O�a�-improved. Unlike
the Wilson-type fermions, the nonperturbative tuning of
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improvement coefficients for the vector current is not
necessary to remove possibly large O�a� effects [41]. We
also note that the leading O�a2� scaling violation in physi-
cal quantities such as the kaon B parameter is not large at
a�1 ’ 2 GeV [42,43].

These virtues of domain-wall fermions are lost if Ls is
not sufficiently large. Since the CPU cost is proportional to
Ls, it is limited to values around 10–20 in practical un-
quenched simulations. In order to improve chiral properties
of the form factors with Ls fixed, we employ the DBW2
gauge action [16] with which the light hadron spectrum
and the kaon B parameter show better chiral properties
than with the conventional plaquette action [44,45].

We use gauge ensembles generated on a L3 � T �
163 � 32 lattice at � � 0:80, as discussed in Ref. [45].
The lattice spacing is a ’ 0:12 fm and the physical spatial
size is La ’ 1:9 fm. We set the domain-wall height to
M5 � 1:8 and the fifth-dimensional length to Ls � 12.
The resulting residual quark mass is a few MeV. We
simulate sea quark masses mud;sea � 0:02, 0.03, and 0.04
in the range of ms;phys=2 & mud;sea & ms;phys, where ms;phys

represents the physical strange quark mass. Our statistics
are 94 configurations separated by 50 HMC trajectories at
each sea quark mass. We refer to Ref. [45] for further
details on the configuration generation.

On these gauge ensembles, we calculate two and three
point functions

 

CP�t; p� �
X

x
hOP;snk�x; t� t0�O

y
P;src�0; t0�ie

�ipx;

���!
t!1

Z
P;srcZP;snk

2EP�p�
e�EP�p�t (18)

 

CPQ� �t; t0; p;p0� �
X
x;x0
hOQ;snk�x0; t0 � t0�V��x; t� t0�

�OyP;src�0; t0�ie
�ip0�x0�x�e�ipx;

���!
t;�t0�t�!1

Z
P;srcZQ;snk

4EP�p�EQ�p0�ZV

� hQ�p0�jV�R�� jP�p�ie�EP�p�t�EQ�p
0��t0�t�

(19)

where P and Q denote K or � meson. The sink (source)
operator for the meson P is represented by O�y�P;snk�src�, and
its overlap to the physical meson state is given by
ZP;snk�src� � h0jOP;snk�src�jPi. We denote the energy of me-
son P with a spatial momentum p by EP�p�. The renor-
malized vector current with the renormalization factor ZV
is represented by V�R�� .

In our preliminary study [20], an exponential smeared
operator

 

X
r
�jrj� �q�x�	5q�x� r�; �jrj� � A exp��Bjrj�

(20)

with A � 1:2 and B � 0:1 was used for the initial meson.
We observe that the correlators CP�t; p� and
CPQ� �t; t0; p;p0� with nonzero p show poor signals with
this choice of the smearing function. This may suggest
that this operator is too close to the wall source, and the
correlators have small overlap with meson states with non-
zero p. In this study, therefore, we use more localized
operators with B � 0:5, 0.6, and 0.7 at mud � 0:02, 0.03,
and 0.04, respectively. We take a single choice of t0 � 4 for
both of CP�t; p� CPQ� �t; t0; p;p0�. The local operator, which
is combined with the sequential source method [46] for
CPQ� �t; t0; p;p0�, is used for the sink meson operator.

As in Ref. [45], we calculate the quark propagator with
each of the periodic and antiperiodic boundary conditions
in temporal direction for quarks. The correlation functions
CP and CPQ� are constructed by using the averaged quark
propagator over the boundary conditions. This procedure
cancels effects of valence quarks wrapping the lattice in the
temporal direction by odd number of times, and enable us
to take the time slice for the sink operator (t0 � t0) for CPQ�
larger than T=2. In this study, we fix t0 to 24 for all
combinations of sea and valence quark masses.

In our measurement of CP and CPQ� , we fix the valence
ud quark mass equal to the sea quark mass, and take four
strange quark masses ms � 0:02, 0.03, 0.04, and 0.05,
which are roughly in a range of �ms;phys=2; 5ms;phys=4�.
For the meson momentum, we take all possible configura-
tions p with jpj2 � 0, 1, and 2 for the initial meson ‘‘P’’ in
CP and CPQ� . For notational simplicity, we use the momen-
tum pk in units of 2�=Lk throughout this paper. Two
configurations p � �0; 0; 0� and ��1; 0; 0� are used for
the final meson ‘‘Q’’ in CPQ� .

IV. SCALAR FORM FACTOR AT q2
max

A. Meson masses

In extraction of the form factors from CPQ� , we need
precise knowledge of the pion and kaon masses and their
energies with finite momenta, which appear in Eq. (19). In
Fig. 1, we plot the effective mass for pions calculated from
C�. We observe a clear and long plateau in the effective
mass, and hence the (lattice) meson masses summarized in
Table I are determined with an accuracy of & 1%. We note
that masses presented in Ref. [45], in which the local and
wall sources are employed, are consistent with ours within
statistical error.

For the meson energies with nonzero momenta, we use
an estimation from the fitted mass M and the lattice dis-
persion relation
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 Ê�p�2 � M2 � p̂2; Ê�p� � 2 sinh
�
E�p�

2

�
;

pk � 2 sin
�
pk
2

�
;

(21)

instead of the fitted energy to CP, since its statistical error
rapidly increases as the size of the meson momentum
increases. We observe that i) the fitted energy shows a
good consistency with Eq. (21) as in Fig. 2; ii) the final
result for f��0� at the physical quark mass does not change
significantly if we use the dispersion relation in the con-
tinuum limit instead of Eq. (21).

B. f0�q
2
max�

We consider the double ratio which was originally pro-
posed in Ref. [19] for B meson decays

 R�t� �
CK�4 �t; t

0; 0; 0�C�K4 �t; t
0; 0; 0�

CKK4 �t; t
0; 0; 0�C��4 �t; t

0; 0; 0�
; (22)

where we fix t0 to 24 as mentioned in Sec. III, and t0

dependence of R is ignored in the following. All of ZV ,
ZP;src, ZQ;snk and the exponential damping factor in
Eq. (19) are exactly canceled in R�t�. As a result, R�t�
contains only meson matrix elements with zero momen-
tum, and gives f0�q

2
max�

 

R�t� ���!
t;�t0�t�!1

h�jV�R�4 jKihKjV
�R�
4 j�i

hKjV�R�4 jKih�jV
�R�
4 j�i

�
�MK �M��

2

4MKM�
jf0�q

2
max�j

2: (23)

We note that R�t� is exactly equal to unity in the SU�3�
symmetric limit and hence it is a useful quantity to measure
SU�3� breaking effects to f0�q2

max�.
In Fig. 3, we show the three-point functions CK�4 , C�K4 ,

CKK4 and C��4 for each jackknife sample. Their fluctuation
leads to the jackknife error of about 5%. As seen in the
figure, they are highly correlated with each other, and
hence the double ratio R�t� has a very small fluctuation
over the jackknife samples, which leads to the error of
about 0.03%.

TABLE I. Fitted meson masses.

mud M� mud M� mud M�

0.02 0.2927(18) 0.03 0.3570(26) 0.04 0.4081(21)

mud ms MK mud ms MK mud ms MK

0.02 0.03 0.3239(17) 0.03 0.02 0.3288(28) 0.04 0.02 0.3565(22)
0.02 0.04 0.3528(17) 0.03 0.04 0.3836(24) 0.04 0.03 0.3830(20)
0.02 0.05 0.3797(17) 0.03 0.05 0.4088(24) 0.04 0.05 0.4323(21)
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FIG. 1. Effective mass plots for pion at mud � 0:04 (top fig-
ure), 0.03 (middle figure), and 0.02 (bottom figure). Lines for
data with zero meson momentum represent the fitted mass, while
those for larger momentum are an estimation from the lattice
dispersion relation Eq. (21).
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Figure 4 shows that the magnitude of the statistical error
does not change drastically at other values of t. From the
fitted value of R�t� and measured meson masses on lattice,
we obtain f0�q2

max� summarized in Table II. There is a
tendency that the error of f0�q

2
max� increases asms deviates

from mud, which is probably because f0�q
2
max� deviates

from its trivial value 1 towards larger jms �mudj.
However, the statistical accuracy is & 0:1% even in the
worst case �mud;ms� � �0:02; 0:05�.

V. INTERPOLATION TO ZERO MOMENTUM
TRANSFER

To study the q2 dependence of the form factor, we
calculate

 F�p;p0� �
f��q2�

f0�q2
max�

�
1�

EK�p� � E��p0�
EK�p� � E��p0�


�q2�

�
; (24)

from a ratio

 

~R�t; p;p0� �
CK�4 �t; t

0; p;p0�CK�t; 0�C��t0 � t; 0�
CK�4 �t; t

0; 0; 0�CK�t; p�C��t0 � t; p0�

���!
t;�t0�t�!1

EK�p� � E��p0�
MK �M�

F�p;p0�: (25)

Since ~R�t; p;p0� has its trivial value 1 at jpj � jp0j � 0, it
might be a good probe to study how f0�q2� changes as q2
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deviates from q2
max. We also note that ~R�t; p;p0� is reduced

to the double ratio employed in Ref. [34], if we fix p � 0.
In order to reduce the statistical error, we calculate

~R�t; p;p0� from three-point functions averaged over mo-
mentum configurations which correspond to the same mo-
mentum sizes jpj and jp0j. Figure 5 shows example of
F�p;p0� obtained from ~R�t; p;p0� as a function of t. We

observe that data with the smallest nonzero momentum
jpj2 � 1 show a clear plateau, and hence F�p;p0� is deter-
mined with an accuracy of roughly 5%.

In order to convert F�p;p0� to f0�q
2�, we evaluate 
�q2�

by employing the method proposed in Ref. [33]. Namely,
we measure the double ratio

 Rk�t; p;p0� �
CK�k �t; t

0; p;p0�CKK4 �t; t
0; p;p0�

CK�4 �t; t
0; p;p0�CKKk �t; t

0; p;p0�
; �k � 1; 2; 3�; (26)

and calculate 
�q2� from

TABLE II. Scalar form factor f0�q
2
max� at simulated quark masses.

mud ms f0�q
2
max� mud ms f0�q

2
max� mud ms f0�q

2
max�

0.02 0.03 1.000 67(17) 0.03 0.02 1.000 50(22) 0.04 0.02 1.000 98(55)
0.02 0.04 1.002 02(48) 0.03 0.04 1.000 36(11) 0.04 0.03 1.000 24(10)
0.02 0.05 1.003 52(82) 0.03 0.05 1.001 26(35) 0.04 0.05 1.000 18(6)
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�q2� �
��EK�p� � EK�p0���p� p0�k � �EK�p� � E��p0���p� p0�kRk
�EK�p� � EK�p0���p� p0�k � �EK�p� � E��p0���p� p0�kRk

: (27)

As for ~R�t; p;p0�, we first take the average for the relevant
three-point functions over appropriately chosen momen-
tum configuration and the Lorentz index for V� (� � 1, 2,
3), and then double ratio Rk�t; p;p0� is constructed from the
averaged correlation function. We note that Rk�t; p;p0� is
exactly unity in the SU�3� symmetric limit, and is sensitive
to SU�3� breaking effects in the matrix element CK�� .

Figure 6 shows examples of Rk�t; p;p0� as a function of
t. We observe that, at most of our simulated quark masses,
Rk�t; p;p0� is close to unity, and hence 
�q2� from Eq. (27)
has small magnitude & 0:1. Its error is typically 30%–
100% with our statistics.

We note that F�p;p0� and 
�q2� can be calculated also
from the following ratios constructed from the �! K
matrix element

 

~R 0�t; p;p0� �
C�K4 �t; t

0; p;p0�C��t; 0�CK�t0 � t; 0�
C�K4 �t; t

0; 0; 0�C��t; p�CK�t0 � t; p0�
; (28)

 R0k�t; p;p0� �
C�Kk �t; t

0; p;p0�CKK4 �t; t
0; p;p0�

C�K4 �t; t
0; p;p0�CKKk �t; t

0; p;p0�
: (29)

We confirm that, for jpj � 0 and jp0j � 1, ~R�t; p;p0� and
~R0�t; p0;p� give consistent results for F�p;p0�, while the
latter leads to much smaller error. This is because, as
described in Sec. III, CPQ� �t; t0; p;p0� is measured with the
single choice of the final meson momentum p0 for each
jp0j, and we can not take average of ~R�t; p;p0� over the
momentum configuration ‘‘fp0g’’. We also observe that
data with jpj, jp0j> 0 show poor signal. Therefore, in
the following analysis, we use F�p;p0� and 
�q2� obtained
from ~R�t; p;p0�, Rk�t; p;p0�, ~R0�t; p;p0�, and R0k�t; p;p0�
with jp0j � 0.

In order to take the limit of zero momentum transfer of
f0�q

2� reliably, we test two methods to calculate f0�0�, and
check the consistency between results from these methods.
In the first method, which we call method-1 in the follow-
ing, we calculate f0�q2� at simulated q2 from F�p;p0� and

�q2�. Then, the results for f0�q2� and f0�q2

max� from R�t�
are interpolated to q2 � 0. As well as the linear fitting form
Eq. (14), we test the quadratic form

 f0�q
2� � f0�0��1� �

�1�
0 q

2 � ��2�0 q
4�; (30)

and the pole form

 f0�q2� � f0�0�=�1� �
�1�
0 q

2�: (31)

The physical value of q2
max for Kl3 decays is much

smaller than that for B meson decays. In addition, q2
max is

further reduced in our lattice calculation, since the simu-
lated values of mud are larger than its physical value. As
shown in Fig. 7, f0�0� can be determined by a very short
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interpolation from q2
max, where we have very accurate data

f0�q
2
max� from R�t�. As a result, the choice of the interpo-

lation form does not affect the interpolated value f0�0�
significantly. Actually we observe that the interpolated
values obtained from the three forms, Eqs. (14), (30), and
(31) are consistent with each other.

In the following, we employ the result from the pole
form Eq. (31), because i) data of f0�q

2� does not have a
strong curvature, and hence the quadratic fit leads to ill-
determined ��2�0 , which has typically 100% error, and ii) the
pole form leads to slightly smaller value of �2=dof than the
linear fit. The fit parameters are summarized in Table III.
While the pole form at mud � 0:03 leads to a slightly
higher value of �2=dof than at other values of mud, the
inclusion of the quadratic term does not reduce �2=dof
significantly. We note that the statistical error on f0�0� is
& 0:3% level.

We also test an alternative method to calculate f0�0�
employed in Ref. [34], which we call method-2 in the
following. In this method, we first take the limit of
F�p;p0� and 
�q2� to q2 � 0, and then calculate f0�0�
from F�p;p0�jq2�0 and 
�0�. Since F�p;p0� depends on
two momenta jpj, and jp0j, the q2 interpolation of
F�p;p0� has to be carried out using data with fixed jpj (or
jp0j). This also enables us to identify jp0j �jpj� correspond-
ing to q2 � 0, which is needed to convert F�p;p0�jq2�0 to
f0�0�. In the following, we repeat the interpolation for two
data sets with jpj � 0 and jp0j � 0, and take the average of
results for F�p;p0�jq2�0.

For the q2 interpolation, we test linear, pole, and qua-
dratic fitting forms similar to Eqs. (14), (30), and (31), and
employ the quadratic fit

 F�p;p0�jq2 � F�p;p0�jq2�0  �1� cF;1q
2 � cF;2q4�

�jpj or jpj0 is fixed�;
(32)

since this fit leads to the smallest value for �2=dof among
the tested forms, and to the reasonably well-determined
cF;2. Examples of this quadratic fit are shown in Fig. 8.

While 
�0� has to be determined by an extrapolation, we
observe that 
�q2� has very mild q2 dependence, as seen in

Fig. 9, and the simplest linear form

 
�q2� � 
�0��1� c
;1q2� (33)

leads to reasonably small �2=dof. Table IV shows 
�0� and
f0�0� calculated from F�p;p0�jq2�0 and 
�0�.

TABLE III. Fit parameters for interpolation of f0�q
2� to q2 �

0 using pole form Eq. (31).

mud ms �2=dof f0�0� ��1�0

0.02 0.03 0.76 0.999 55(47) 1.16(39)
0.02 0.04 0.67 0.997 9(14) 1.13(32)
0.02 0.05 0.60 0.995 2(25) 1.09(28)
0.03 0.02 1.49 0.998 72(43) 2.23(40)
0.03 0.04 1.91 0.999 12(26) 1.75(32)
0.03 0.05 2.07 0.996 97(90) 1.60(30)
0.04 0.02 1.98 0.995 74(95) 1.97(33)
0.04 0.03 1.79 0.999 11(20) 1.80(28)
0.04 0.05 1.06 0.999 24(15) 1.61(23)
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FIG. 8. Interpolation of F�p;p0� as a function of q2 at mud �
0:03. Top and bottom figures show data with jp0j � 0 and jpj �
0, respectively.

TABLE IV. Results for 
�0� and f0�0� obtained from Eqs. (32)
and (33).

mud ms 
�0� f0�0�

0.02 0.03 �0:056�23� 1.000 07(94)
0.02 0.04 �0:101�34� 0.999 2(29)
0.02 0.05 �0:133�39� 0.996 2(57)
0.03 0.02 �0:041�15� 1.000 17(58)
0.03 0.04 �0:0307�94� 0.999 85(36)
0.03 0.05 �0:053�16� 0.999 0(12)
0.04 0.02 �0:050�22� 0.996 8(15)
0.04 0.03 �0:0195�85� 0.999 15(31)
0.04 0.05 �0:0144�65� 0.999 12(24)
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We observe that two methods of the q2 interpolation give
consistent results for f0�0� with each other. However, the
error from method-2 is slightly larger than from method-1
due to the error for 
�0� enhanced by the extrapolation.
Therefore, we employ results from method-1 in the
following.

We note that the above observation is opposite from that
in our preliminary study [20], where method-1 give larger
error for f0�0� mainly due to the uncertainty in 
�q2� at
simulated q2. As described in Sec. III, we calculate corre-
lation functions with the different choice of the smearing
function from that in Ref. [20]. This improves accuracy in

�q2� at simulated q2 and hence f0�0� in method-1.
However, in order to reduce the uncertainty from
method-2, the change of the smearing functions is not
sufficient and we need to have data at small q2 for a better
control of the extrapolation of 
�q2�.

VI. CHIRAL EXTRAPOLATION

In the chiral extrapolation of f��0� � f0�0�, we rewrite
the ChPT expansion Eq. (15) as

 f��0� � 1� f2 ��f; (34)

where �f represents all higher order corrections starting at
O�M4

K;�;��.
As mentioned in Sec. II, the leading correction f2 does

not have analytic terms from the O�p4� chiral Lagrangian
thanks to the Ademollo-Gatto theorem. It is shown in
Ref. [47] that the above statement is true even in two-flavor
partially quenched (PQ) theory, as seen in their PQChPT
formula of f2

 f�PQ�
2 � �

2M2
K �M

2
�

32�2f2
�
�

3M2
KM

2
� ln�M2

�=M2
K�

64�2f2
��M2

K �M
2
��

�
M2
K�4M

2
K �M

2
�� ln�2�M2

�=M2
K�

64�2f2
��M

2
K �M

2
��

: (35)

Therefore, f2 does not contain any poorly-known LECs in
the O�p4� chiral Lagrangian, and its value at simulated
quark mass can be precisely calculated from the measured
meson masses through Eq. (35).

Consequently, the chiral extrapolation of f��0� is noth-
ing but the extrapolation of the higher order correction �f.
Since it is also proportional to �ms �mud�

2 thanks to the
Ademollo-Gatto theorem, we consider the ratio

 R�f �
�f

�M2
K �M

2
��

2 ; (36)

as in Ref. [33], and extrapolate it to the physical quark
mass. To this end, we test the following constant, linear and
quadratic fits

 R�f � c0; (37)

 R�f � c0 � c1;v�M2
K �M

2
��; (38)

 R�f � c0 � c1;sM2
� � c1;v�M2

K �M
2
��; (39)

 R�f � c0 � c1;sM
2
� � c1;v�M

2
K �M

2
�� � c2;sM

4
�

� c2;v�M2
K �M

2
��

2: (40)

The constant fit Eq. (37) should work if �f is dominated by

 

0.1 0.2 0.3 0.4

M
K

2
 + Mπ

2

-8.0

-6.0

-4.0

-2.0

0.0

2.0

m
ud

 = 0.02
m

ud
 = m

ud,phys

R∆f

m
ud

 = 0.03

m
ud

 = 0.04

0.1 0.2 0.3 0.4

M
K

2
 + Mπ

2

-8.0

-6.0

-4.0

-2.0

0.0

2.0

m
ud

 = 0.02
m

ud
 = m

ud,phys

R∆f

m
ud

 = 0.03

m
ud

 = 0.04

FIG. 10. Chiral extrapolation of R�f. Top and bottom figures
show results using Eqs. (38) and (39), respectively.

 

-0.2 -0.1 0

q
2

-0.2

0.0

0.2 m
s
 = 0.02

-0.2

0.0

0.2

ξ(
q2 )

m
s
 = 0.04

-0.2

0.0

0.2
m

s
 = 0.05

m
ud

 = 0.03

FIG. 9. Linear extrapolation of 
�q2� as a function of q2 at
mud � 0:03.

DAWSON, IZUBUCHI, KANEKO, SASAKI, AND SONI PHYSICAL REVIEW D 74, 114502 (2006)

114502-10



the analytic term in f4. Linear and quadratic dependences
in Eqs. (38)–(40) are assumptions for an effective descrip-
tion of the chiral logarithms in f4 and higher order
corrections.

Figure 10 shows the chiral extrapolation using the linear
forms Eqs. (38) and (39). We observe that R�f has mild
dependence on the sea and valence quark masses, and the
linear and even constant fits achieve sufficiently small
value of �2=dof. While the quadratic fit Eq. (40) also gives
a small value of�=dof, it leads to more than 100% error for
both of c2;s and c2;v. We, therefore, do not use the results
from the quadratic fit in the following discussion.

From the fit parameters summarized in Table V and the
physical meson masses determined in Ref. [45], we obtain
�f at the physical quark mass which is also collected in
Table V. We note that all fits lead to consistent results for
�f with each other. We obtain

 �f � �0:009�9��6�; (41)

by employing result from the linear fit Eq. (39), which is
also employed in the unquenched calculations in
Refs. [34,35]. The first error is statistical, and the second
is a systematic error due to the chiral extrapolation which is
estimated as the largest deviation in �f among the constant
and linear fits.

By using f2 � �0:023 at physical quark mass in full
QCD, we obtain

 f��0� � 0:968�9��6�; (42)

which is consistent with the previous lattice calculations
[33–35], employing different discretizations (Wilson and
KS) in quenched and unquenched QCD, listed in Table VI,
as well as with estimates based on O�p6� ChPT [30–32],
and the Leutwyler-Roos’s value [15].

In Eq. (42), we have not included systematic uncertain-
ties due to the discretization error and effects of dynamical

strange quarks, which are difficult to estimate reliably
without simulations at different lattice spacings or those
in three-flavor QCD. However, these uncertainties affect
our estimate of f��0� only through the small higher order
correction �f, and hence are expected not to be large. This
is supported by the nice consistency with results from
different lattice actions and/or with different numbers of
flavors for dynamical quarks (see Table VI). We also note
that the RBC and UKQCD Collaborations have already
started large-scale simulations with three flavors of dy-
namical domain-wall quarks, and their preliminary esti-
mate is consistent with Eq. (42). In particular, that
comparison should provide a more reliable estimate of
systematic error due to quenching of strange quarks.

We also calculate 
�0� at the physical quark mass. Since

�0� vanishes in the SU�3� symmetric limit, we test the
following simple linear fit

 
�0� � d1;v�M2
K �M

2
��; (43)

and find that this leads to a reasonable value of �2=dof as
shown in Table VII. The fit line is plotted in Fig. 11. We
obtain

 
�0� � �0:105�22�; (44)

which is consistent with the experimental values �0:01�6�
for K0

l3 and �0:125�23� for K�l3 [4].

TABLE VI. Recent lattice estimates of f��0�. Note that un-
quenched results in Ref. [34,35] are preliminary. Two values in
Ref. [34] are obtained from two choices of the chiral extrapo-
lation form (polynomial and ChPT based forms).

Nf quark action f��0�

this work 2 domain-wall 0.968(11)
Becirevic et al. [33] 0 improved Wilson 0.960(9)
JLQCD [34] 2 improved Wilson 0.967(6), 0.952(6)
MILC [35] 3 improved staggered 0.962(11)

TABLE VII. Fit parameter for chiral extrapolation of 
�0�.

�2=dof d1;v

0.45 �1:30�28�

TABLE V. Fit parameters for chiral extrapolation of f��0�, and �f at physical quark mass.

fit form �2=dof c0 c1;s c1;v �f

Equation (37) 0.46 �1:99�34�       �0:013�2�
Equation (38) 0.46 �1:2�2:0�    �2:6�6:3� �0:009�9�
Equation (39) 0.10 �2:3�1:8� �44�14� 22.1(5.4) �0:003�11�
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VII. jVusj AND CKM UNITARITY

By combining with an estimate of jVusf��0�j �
0:2173�8� based on the recent experimental determination
of � [3], we obtain

 jVusj � 0:2245�26��8�; (45)

where the first and second errors come from the uncertainty
in f��0� and jVusf��0�j, respectively. This leads to

 jVudj
2 � jVusj

2 � jVubj
2 � 1� �; � � 0:0013�16�;

(46)

which is completely consistent with CKM unitarity.

VIII. CONCLUSION

In this paper, we have calculated f��0� from numerical
simulations of two-flavor dynamical QCD using the
domain-wall quark action. We obtained

 f��0� � 0:968�9��6�; jVusj � 0:2245�26��8�; (47)

which supports CKM unitarity. While we have not esti-
mated systematic uncertainties due to the use of the finite
lattice spacing and the quenched approximation for strange
quarks, these are expected to be small from the nice con-
sistency with other lattice estimates.

Our result for f��0� is consistent with the phenomeno-
logical estimate, which has been used in previous determi-
nations of jVusj, and hence has not changed jVusj
significantly. The main significance of this study is that
now f��0� has been calculated nonperturbatively from
two-flavor QCD and its uncertainties can be systematically

reduced in future lattice calculations. Systematic errors
which all the present lattice calculations share are those
connected with the interpolation in momenta and extrapo-
lation in mass. In both these cases it was necessary to use
an ansatz. Since the interpolation in the momentum trans-
fer was over a very small range, and the extrapolation in
mass systematically took into account the calculated be-
havior up to NLO in ChPT, relying on the ansatz only for
higher orders, both these effects are expected to be small.

However, it should be noted that the sea quark masses
used in this calculation are relatively heavy, and to be
confident that ChPT is a good description of the data it
would be advisable to move to smaller masses. In turn this
will make the momentum interpolation more difficult as
q2

max deviates further from 0. Another important step in the
future is clearly an extension to dynamical three-flavor
QCD. The RBC and UKQCD Collaborations’ study of
three-flavor QCD is well underway [48,49], and a more
reliable estimate of systematic uncertainties in f��0� will
come in the near future.
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[47] D. Bećirević, G. Martinelli, and G. Villadoro, Phys. Lett.
B 633, 84 (2006).

[48] D. J. Antonio et al. (RBC and UKQCD Collaborations),
PoS, LAT2005 (2005) 080.

[49] C. Dawson et al. (RBC and UKQCD Collaborations),
Proc. Sci. LAT2006 (2006) 095; D. J. Antonio et al.
(RBC and UKQCD Collaborations), Proc. Sci. LAT2006
(2006) 101.

VECTOR FORM FACTOR IN Kl3 SEMILEPTONIC . . . PHYSICAL REVIEW D 74, 114502 (2006)

114502-13


