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(Received 23 May 2006; published 6 December 2006)

We study effective lattice actions describing the Polyakov-loop dynamics originating from finite-
temperature Yang-Mills theory. Starting with a strong-coupling expansion the effective action is obtained
as a series of Z�3�-invariant operators involving higher and higher powers of the Polyakov loop, each with
its own coupling. Truncating to a subclass with two couplings we perform a detailed analysis of the
statistical mechanics involved. To this end we employ a modified mean-field approximation and
Monte Carlo simulations based on a novel cluster algorithm. We find excellent agreement of both
approaches concerning the phase structure of the theories. The phase diagram exhibits both first and
second order transitions between symmetric, ferromagnetic, and antiferromagnetic phases with phase
boundaries merging at three tricritical points. The critical exponents � and � at the continuous transition
between symmetric and antiferromagnetic phases are the same as for the 3-state Potts model.
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I. INTRODUCTION

In two seminal papers Svetitsky and Yaffe have tenta-
tively linked the finite-temperature phase transitions in
‘‘hot’’ gauge theories to the simpler order-disorder phase
transitions of spin models [1,2]. In the general case their
conjecture may be stated as follows: The effective theory
describing finite-temperature Yang-Mills theory with
gauge group SU�NC� in d� 1 dimensions is a spin model
in d dimensions with a global symmetry group given by the
center Z�NC� of the gauge group. A somewhat stronger
version of the conjecture can be formulated if the phase
transitions in question are of second order. In this case
Yang-Mills theory and spin model fall into the same uni-
versality class and the critical exponents coincide. This has
been convincingly demonstrated for SU�2� [3,4] in d � 3.

However, continuous phase transitions in hot gauge
theories are not generic and hence the universality state-
ment is almost empty—at least in 3� 1 dimensions [5].
On the other hand, the more general version of the state-
ment has already been used by Svetitsky and Yaffe to argue
that the phase transition for SU�3� Yang-Mills theory must
be first order for d � 3 as there is no Z�3� renormalization
group (RG) fixed point in this case. Since then this has been
firmly established by a number of lattice calculations [6–
11].

The conjecture implies that the effective theories may be
formulated as ‘‘Polyakov-loop models’’ [12–14]. For
SU�NC� this means that the macroscopic dynamical vari-
ables have to reflect the complete gauge invariant informa-
tion contained in the (untraced) Polyakov loop, which in

lattice notation is given by

 P x�U� �
YN�
t�1

Ut;x;0: (1)

This is a temporal holonomy winding around the compact
Euclidean time direction of extent N�. For gauge groups
with nontrivial center the traced Polyakov loop,

 Lx � trFPx; (2)

with the trace being taken in the defining representation1

serves as an order parameter for the deconfinement phase
transition. The phase transition goes along with spontane-
ous breaking of the center symmetry resulting from non-
periodic gauge transformations under which

 Lx ! zLx; z 2 Z�NC�: (3)

The deconfined broken-symmetry phase at sufficiently
large Wilson coupling �> �c is characterized by hLi �

0 (see [15] for a review).
Recently it has been found that gauge groups with trivial

center may also lead to a deconfinement transition depend-
ing on the size of the gauge group [16–18].

At this point the choice of dynamical variables needs to
be addressed. Under periodic gauge transformations g 2
SU�NC� the holonomy (1) transforms as

 P x ! gxPxg
�1
x ; (4)

1We do not include a normalization factor 1=NC for the ease of
later notation.
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which leaves its eigenvalues and, as a consequence, its
trace (2) invariant. The eigenvalues are permuted arbi-
trarily by gauge transformations corresponding to Weyl
reflections [19]. This invariance is taken into account by
constructing symmetric polynomials in the NC eigenval-
ues. From unimodularity the product of the eigenvalues is 1
and there are only NC � 1 independent polynomials, for
example, the traces trFPn

x for 1 	 n < NC. These in turn
are in one-to-one correspondence with the characters of the
NC � 1 fundamental representations (see below). Hence,
for SU�2� Lx (which is real) is sufficient while SU�3�
requires Lx and L
x, the latter being a linear combination
of L2

x and trFP2
x. Only for NC � 4 traces of higher powers

of P are needed as independent dynamical variables [20].
In two recent papers [21,22] we have studied Polyakov

loop models on the lattice for the simplest non-Abelian
gauge group SU�2�. The models have been derived using
strong-coupling techniques at small Wilson coupling� and
a newly developed inverse Monte Carlo (IMC) method
which works for arbitrary values of �. The latter method
allows for a mapping of Yang-Mills theory at a certain
value of � to any appropriately chosen Polyakov-loop
model of the form

 Seff �
X
hxyi;IJ

�IJ�����I�x��J�y� � H:c:�; (5)

where the summation is over nearest neighbors and group
representations I, J. The group character �I is the trace of
the Polyakov loop in representation I,

 �I�x� � �I�Px� � trIPx: (6)

All characters �I are polynomials in the characters corre-
sponding to the fundamental representations. For SU�2�
the simplest model is of Ising type,

 S1 � �
X
hxyi

LxLy; (7)

as first suggested in [23] (see also [24,25]).
The output of the IMC routines are the �-dependent

effective couplings �IJ. Even without particular knowledge
of these one may study the models (5) in their own right as
statistical field theories. The Svetitsky-Yaffe conjecture
may then be utilized to deduce information about the
Yang-Mills phase transition. For SU�2� we have been
able to show that the mean-field analysis of the effective
models yields a surprisingly good agreement with the
Monte Carlo analysis of both the model itself and the
underlying Yang-Mills dynamics. It should be stressed at
this point that the models (5) are not just simple scalar field
theories with a linear target space as all characters (6) take
values in a compact space parametrized by the NC � 1
fundamental characters. Hence, in the lattice path integral
each lattice site is endowed with the reduced Haar measure
on the gauge group rather than a Lebesgue measure.

This paper presents our first steps to generalize the
results of [21,22] to the gauge group SU�3�. We label the
characters by two integers p and q which count the num-
bers of fundamental and conjugate representations
(‘‘quarks’’ and ‘‘antiquarks’’ in the SU�3� flavor language)
required to construct the representation �p; q�. Equiva-
lently, these integers characterize the horizontal extensions
of SU�3� Young tableaux (see Fig. 1). Under the Z�3�
center transformations the characters transform according
to the rule
 

�pq ! zpk z

q
k �pq � zp�qk �pq;

zk � exp
�
2�i

3
k
�
; k � 0; 1; 2;

(8)

so that the most general center-symmetric effective action
with nearest-neighbor interaction may be written as

 Seff��� �
X

hxyi;pq;p0q0

p�p0�q�q0 mod 3

�pq;p0q0 ��pq�x��p0q0 �y� � H:c:�

�
X
x;pq

p�q mod 3

�pq;00��pq�x� � H:c:�: (9)

This coincides with the ansatz suggested by Dumitru et al.
[14]. The first sum in the effective action consists of
hopping terms involving monomials of the form Lmx L

n
y or

Lmx L

n
y (and H.c.) while the second sum is a ‘‘potential’’

term containing only powers Lnx (and H.c.) localized at
single sites.

The remainder of the paper is organized as follows. In
Sec. II we confirm the ansatz (9) by means of a strong-
coupling (small-�) expansion for Seff���. For a restricted
set of couplings (and hence representations) we investigate
the resulting Z�3� models by minimizing the classical
action (Sec. III) followed by an improved mean-field
analysis in Sec. IV. In agreement with the Svetitsky-Yaffe
conjecture we find a first order phase transition from the
symmetric to a ferromagnetic phase. Our improved mean-
field analysis already reveals an interesting phase structure
with four different phases: two distinct ferromagnetic
phases, one symmetric, and one antiferromagnetic phase.
Besides the first order transitions we detect second order
transitions from the symmetric to an antiferromagnetic and
to a ferromagnetic phase. The continuous transition from
the symmetric to the antiferromagnetic phase is to be
expected since the models reduce to the 3-state Potts model
for Polyakov loops having values in the center of the gauge

q

p

FIG. 1 (color online). Character labels and SU�3� Young tab-
leaux.
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group. Section V contains the results of our extensive
Monte Carlo simulations performed on a Linux cluster
where we have implemented the powerful package
jenLaTT. Similarly as for SU�2� the mean-field and nu-
merical results are in surprisingly good agreement. This is
presumably due to the existence of (three) tricritical points.
Depending on the order of the transition we localize the
critical lines with either a Metropolis, a multicanonical, or
a modified cluster algorithm. In addition we have checked
that the critical exponents � and � at the second order
transition to the antiferromagnetic phase agree with those
of the 3-state Potts model in 3 dimensions. Finally, in
Sec. VI we wrap up with discussion and conclusions.

II. STRONG-COUPLING EXPANSION

In this section we briefly recapitulate the strong-
coupling (small-�) expansion for the SU�3�Wilson action
at finite temperature [24,26]. It is known that the leading
order result (�N�) stems from ladder diagrams that wind
around the temporal lattice extension and corresponds to
an Ising type model analogous to (7). By going beyond the
leading order we will encounter higher group representa-
tions/characters and hence have an independent confirma-
tion of the ansatz (9) for the effective action.

Our starting point is the standard Wilson action,

 SW � �
X
�

�
1�

1

NC
Re trU�

�
; (10)

where the summation over plaquettes contains both tem-
poral and spatial links. The effective action Seff�P� is
introduced as usual by inserting an appropriate (group
valued) delta function in the path integral,

 Z �
Z

DUe�SW

�
Z

DP
Z

DU�
�
P;

YN�
��0

U�;0

�
e�SW�U�

�
Z

DPe�Seff �P�: (11)

While it is not known how to perform the final integration
analytically for the full Wilson action one can straightfor-
wardly integrate order by order in �. Thus we expand the
Boltzmann weight

 e�SW �
X
k

~Ok�
k; (12)

and integrate separately over temporal and spatial links,
DU �DUtDUs. Adopting temporal gauge we set all
temporal links equal to unity apart from the links in the
first time slice which according to (1) may be identified
with the Polyakov loop. Integrating out all spatial link
variables we obtain the partition function

 Z �
Z

DP exp
�

log
X
k

Ok�
k
�

�
Z

DP exp ��Seff�P��; (13)

where we have introduced the operators Ok �
R

DUs
~Ok.

The effective action may finally be written as

 Seff � � log
�X
k

Ok�k
�
�
X
n

Sn�n; (14)

where the coefficients Sn are related to the operatorsOk via
the linked-cluster theorem. In the remainder of this section
we are going to determine the explicit form of the effective
operators Sn.

We first rewrite the Wilson-Boltzmann weight (12) as

 e�SW � exp
�
�
X
�

Sp

�
�
Y
�

e�Sp ; (15)

and expand the single-plaquette contribution in terms of
SU�3� characters,

 e�Sp �
X
I

aI����I�Up�; (16)

with I � �p; q� (see Fig. 1). All � dependence now resides
in the generalized Fourier coefficients aI which accord-
ingly may be further expanded,

 e�Sp �
X
I;k

akI�
k�I�Up�: (17)

An explicit computation of the akI shows that these vanish
whenever the representation labels become sufficiently
large, namely, if jIj � p� q > k [27]. This yields the
important intermediate result that to any given order k in
the strong-coupling expansion only a finite number of
characters contributes,

 e�Sp �
X
k

� Xk
jIj�0

akI�I�Up�

�
�k: (18)

The integrations over the spatial links are standard group
integrals which can be found in the texts [28,29]. The
upshot is that only connected link arrangements (‘‘poly-
mers’’) wrapping around the temporal extent of the lattice
yield nonvanishing contributions. The leading term is a
ladder diagram consisting of N� plaquettes each of which
contributes a factor of � implying a total contribution of
O��N��. The associated operator is explicitly found to be

 ON� / �10�Px��01�Px�i� � H:c: (19)

A typical operator of order �jN� is given by

 Sj �
X
I;jIj�j

X
x;i

CI�����I�Px��
I �Px�i� � H:c:�; (20)

in terms of which the Wilson-Boltzmann weight (15) be-
comes
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 e�SW � exp
�
� ln

X
n

On�
n
�

� c��� �
X
r�1...k

X
a1...ar

a1�����ar	k

Sa1 . . . Sar : (21)

Expanding this to next-to-leading order (�2N�) yields the
simple expression

 Seff � S1 � S2 � S1S1 �O��3N��: (22)

Note, however, that some care has to be taken in interpret-
ing products such as SiSj which by (20) also contain
disconnected pieces. Upon expanding the logarithm by
means of the linked-cluster theorem we are led to keep

only connected contributions of the form
 

SiSj /
X
I;jIj�i
J;jJj�j

X
x;k

��I�Px��


I �Px�k� � H:c:�

 ��J�Px��


J�Px�k� � H:c:�: (23)

Making use of the character reduction formula

 �I�x��J�x� �
X
K

CKIJ�K�x�; CKIJ 2 R; (24)

products of characters at the same site may be reduced to
single characters. As a consequence, the connected part of
(22) takes the explicit form

 

Seff � �10

X
x;i

��10�Px��01�Px�i� � H:c:� � �20

X
x;i

��20�Px��02�Px�i� � H:c:� � �11

X
x;i

�11�Px��11�Px�i�

� �21

X
x;i

��20�Px��10�Px�i� � �10�Px��20�Px�i� � H:c:� � 	1

X
x

�11�Px� �O��3N��: (25)

For what follows it is useful to introduce the shorthand
notation

 Seff � �10S10 � �20S20 � �11S11 � �21S21 � 	1V1

�O��3N��; (26)

with the obvious term-by-term identifications as compared
to (25). Our conventions are such that all couplings in (25)
and (26) are real functions of �, the single leading one
being �10 � O��N�� (as noted already in [24]) while the
subleading ones are O��2N��. It is straightforward to in-
clude higher-order terms the number of which increases
rapidly. At order �3N� , for instance, there are already 11
terms so that we refrain from going beyond next-to-leading
order in �.

For later purposes it is useful to express the operators
appearing in (26) in terms of the fundamental loops L and
L
. Octet and sextet characters (�11 and �20, respectively)
are eliminated via the standard reduction identities

 3 � 3
 � 8 � 1 and 3 � 3 � 6 � 3
; (27)

which are equivalent to the character relations (recall that
L � �10)

 �11 � jLj2 � 1 and �20 � L2 � L
: (28)

Making use of the latter the different terms in (26) become

 S10 �
X
hxyi

�LxL
y � H:c:�; (29)

 S20 �
X
hxyi

�L2
xL
2y � L2

xLy � L
xL
2y � L
xLy � H:c:�; (30)

 S11 �
X
hxyi

�jLxj
2jLyj

2 � jLxj
2 � jLyj

2 � 1�; (31)

 S21 �
X
hxyi

�L2
xLy � L
xLy � L2

yLx � LxL
y � H:c:�; (32)

 V1 �
X
x

�jLxj
2 � 1�: (33)

From these expressions it is obvious that each operator Spq
is manifestly real. Under charge conjugation �pq ! �
pq �
�qp, hence Lx ! L
x, whereupon all terms in Seff are
charge conjugation invariant as required [15]. Note that
the orders included correspond to terms that are quadratic,
cubic, and quartic in L and/or L
. Higher powers will arise
upon taking into account higher representations. Thus, in
this respect S21 is somewhat singled out being of only cubic
order. This will become important in a moment.

III. QUALITATIVE CLASSICAL ANALYSIS

It has already been pointed out by Svetitsky and Yaffe
[1] that effective actions with Z�3� center symmetry are
closely related to the 3-state Potts model which shows a
first order phase transition from a symmetric to a ferro-
magnetic phase [30–32]. To make the relation manifest we
restrict the Polyakov loop to the center elements zk intro-
duced in (8). Setting Px � zk we find the general formula

 �pq�zk� � zp�qk dpq; (34)

where dpq denotes the dimension of the representation
�p; q�,

 dpq �
1
2�p� 1��q� 1��p� q� 2�: (35)

Applying this to the effective action in (26) we find, up to
an additive constant,
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 Seff�zk� � �
X
hxyi

cos
�
2�
3
�kx � ky�

�
; kx 2 f0; 1; 2g;

(36)

with effective coupling

 � � 18��10 � 4�20 � 4�21�: (37)

The action (36) is precisely the one of the 3-state Potts
model [32,33]. We thus expect that our effective Polyakov
loop models will have a phase structure generalizing the
one of the 3-state Potts model. The latter is known to have a
ferromagnetic phase for large negative � and an antiferro-
magnetic phase for large positive � [34,35]. As a prepara-
tion for the discussion of later sections it is hence useful to
obtain some qualitative understanding of the phase struc-
ture of the Polyakov loop models viewed as generalizations
of the 3-state Potts model. For the reason mentioned at the
end of the previous section we choose as a minimal gen-
eralization the following effective action,

 Seff � �10S10 � �21S21; (38)

which in terms of the fundamental loops may be written
explicitly as
 

Seff � ��10 � 2�21�
X
hxyi

�LxL
y � H:c:�

� �21

X
hxyi

�L2
xLy � L2

yLx � H:c:�: (39)

Note that there are also quadratic contributions stemming
from S21. The action (39) is manifestly Z�3� center sym-
metric under Lx ! zkLx.

It is important to realize that (39) differs from the
standard lattice actions for scalar fields in several respects.
First, the field Lx is dimensionless, being the trace of a
unitary matrix. This allows for the presence of cubic hop-
ping terms connecting neighboring sites. Even more im-
portant is the fact that the target space of Lx is compact.
Introducing the eigenvalues of P via

 P diag � diag�ei
1 ; ei
2 ; e�i�
1�
2��; (40)

and writing L � L1 � iL2 we find for the real and imagi-
nary part of L,

 L1 � cos
1 � cos
2 � cos�
1 �
2�; (41)

 L2 � sin
1 � sin
2 � sin�
1 �
2�: (42)

The target space of Lmay then be sketched in the complex
L-plane (see Fig. 2). The boundary corresponds to the
points with 
1 � 
2, the singular ‘‘corners’’ being given
by the three center elements P � zk1. Let us try to get
some first rough idea of the phase structure associated with
the two-coupling model (39) in the �10-�21 plane by look-
ing at the extrema of the classical action. If we vary the
couplings these will trace out a certain (possibly discon-

tinuous) trajectory in the target space given by the triangle
of Fig. 2.

As we argued earlier, for center-valued Polyakov loops
the effective action (39) reduces to the action of the Potts
model (36) with coupling � � 18��10 � 4�21�. Thus we
expect a ferromagnetic phase (F) for large negative �10 �
4�21 and an antiferromagnetic phase (AF) for �10 � 4�21

large and positive. In a region around the origin in the
coupling plane entropy dominates energy and we cannot
expect to actually obtain the correct phase structure in this
region by purely classical reasoning based on minimizing
the energy. Qualitatively we expect a symmetric phase in a
neighborhood of the origin. This is represented schemati-
cally in Fig. 3 by the central rectangle.

In order to study the ordered phases (in particular AF)
we divide the lattice in two sublattices (denoted ‘‘even’’
and ‘‘odd’’) where the Polyakov loop takes values Le and
Lo, respectively. Two nearest neighbors belong to different
sublattices. The absolute minima of the classical action
 

Seff�Le; Lo� / ��10 � 2�21��LeL
o � H:c:�

� �21�L
2
oLe � L

2
eLo � H:c:� (43)

will then be located at certain values �Le and �Lo of the
Polyakov loop which are identified with its ‘‘expectation
values.’’ We trust this reasoning as long as we are suffi-
ciently far from the origin of the coupling plane i.e. from
the disordered, entropy-dominated phase.

Any ferromagnetic ordering will be characterized by a
minimum with �Le � �Lo � �L � 0 while in an antiferro-
magnetic phase �Le � �Lo. Quite interestingly we find two
distinct ferromagnetic phases, one for which the Polyakov
loop is near a center element or �L in the vicinity of 3zk and

3z0

3z1

3z2

Re

Im

− 2 − 1 0 1 2 3 4

− 2

− 1

0

1

2

FIG. 2 (color online). Target space of the Polyakov loop L in
the complex L-plane. The corners represent the three center
elements. The intermediate points (denoted anticenter elements)
will also become relevant for the discussion of the phase struc-
ture.
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a different ferromagnetic phase with �L taking values near
the intermediate points marked by triangles in Fig. 2. We
call this an anticenter phase (AC). We expect a phase
transition line separating the ferromagnetic and antiferro-
magnetic phases at vanishing Potts coupling �10 � 4�21.
The resulting qualitative phase diagram is depicted in
Fig. 3.

To discuss the ferromagnetic phases it suffices to mini-
mize the action (43) with Le � Lo � L, in which case

 Seff�L� / ��10 � 2�21�jLj
2 � 2�21�L

3 � L
3�: (44)

This can be done analytically. To localize the antiferro-
magnetic phase we have calculated the absolute minima of
(43) on the target space depicted in Fig. 2 numerically. The
combined analytical and numerical results are summarized
as follows. For negative �21 we have a transition

 F !
�10��3�21

AF; (45)

while for positive �21 there is a richer structure,

 F !
�10��3:1962�21

AC !
�10��

28
11�21

AF: (46)

The behavior of a suitably projected order parameter ‘r
(the precise definition of which will only be needed later
on) for positive �21 � 1 is shown in Fig. 4. Upon inspec-
tion one notes that for �10 sufficiently negative the system
starts out with the Polyakov loop at a center element.
Increasing �10 beyond �7�21 the order parameter drops
monotonically until, at a critical coupling �10 �
�3:1962�21, there is a jump to the AC phase with �L near
an anticenter element. The jump of ‘r is due to a center

transformation and does not imply that the Polyakov loop
itself jumps. Indeed, �L changes smoothly and arrives at an
anticenter element for �10 � �3�21. The system stays
there until �10 � �28�21=11, where it jumps again, this
time to the AF phase. As expected, we see no symmetric
phase in a purely classical analysis. Actually, for �21 � 1
there is just no symmetric phase.

IV. MEAN-FIELD APPROXIMATION

The next step of refinement to be presented in this
section is a mean-field (MF) analysis of the effective action
(39). This will serve as a basis for a comparison with
results from direct Monte Carlo simulations to be discussed
later on. Because of the peculiarities of the model as
compared to standard scalar field theories the application
of the MF approximation is not entirely straightforward.
For the benefit of the reader we will set the stage by giving
a brief outline of the necessary modifications. For further
details the reader is referred to our earlier paper [22]. To
keep the discussion sufficiently general we will first treat
the effective action (26) with five couplings focussing on
simpler examples later on.

We are interested in expectation values which are com-
puted by evaluating integrals of the form

 hAi �
1

Z�0�

Z
DPe�Seff �P�A�P�; DP �

Y
x

d��Px�;

(47)

which apparently extend over the whole group manifold
employing the Haar measure d��Px�. However, due to the
gauge invariance of both action and measure the integrals

10

r

F

AFAC

classical

mean-field

− 10 − 9 − 8 − 7 − 6 − 5 − 4

−
3

.1962

− 3

−
2

.5455

− 2 − 1 0
− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FIG. 4 (color online). Behavior of the order parameter ‘r
defined in (97) as a function of �10 for fixed �21 � 1. For
comparison we have added the result from the mean-field
analysis to be developed in the next section.

λ10

λ21

AF

F

AC

S

− 4 − 3 − 2 − 1 0 1

− 0.4

− 0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Qualitative prediction of the phase diagram in the
coupling constant plane for the effective action (39). The ferro-
magnetic (F), anticenter (AC), and antiferromagnetic (AF)
phases are obtained by looking for classical minima. The sym-
metric, disordered phase (S) is located where entropy is expected
to dominate over energy.
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can be reduced to the coset space of conjugacy classes
which we (somewhat symbolically) denote by P x. Hence
we integrate with the reduced Haar measure by replacing

 d��Px� ! d�red�P x�: (48)

Thus, (47) is equivalent to
 

hAi �
1

Z�0�

Z
DP e�Seff �P �A�P �;

DP �
Y
x

d�red�P x�:
(49)

The probability measure DP exp��Seff�=Z�0� is charac-
terized as the unique solution to the variational problem

 inf
p
hSeff � logpip � � logZ�0� � �W�0�: (50)

The expectation value on the left-hand side has to be taken
with respect to the integration measure

Q
xd�red�P x�p�P �

with p�P � denoting the probability density of P . From this
point of view the MF approximation is nothing else but the
restriction of the permissible densities to product form,

 p�P � ! pmf�P � �
Y
x

px�P x�: (51)

Expectation values can now be simply computed site by
site via factorization,

 h�I�P x��J�P y�i ! h�I�P x�ixh�J�P y�iy: (52)

Our goal is to compute the effective potential as function of
the mean characters umf � umf� ��I�. For that purpose we
solve the variational problem (50) on the space of product
measures with fixed expectation values of the characters.
This is done by introducing appropriate Lagrange multi-
pliers jI. For ferromagnetic systems one may assume that
the weight functions px at each site are identical, px � p.
This assumption corresponds to a translationally invariant
ground state. According to the discussion of the previous
section we expect antiferromagnetic phases and hence we
must refine our choice for px. We therefore introduce
different weight functions on the even and odd sublattices,
respectively,

 px�P x� �

�
pe�P x� : sgn�x� � 1;
po�P x� : sgn�x� � �1;

(53)

defining the sign of a lattice point as

 sgn �x� � ��1�
P

i
xi : (54)

As a consequence, expectation values of characters will
subsequently have two values depending on the sublattice
where they are evaluated,

 h�Iix �
�

��I;e : sgn�x� � 1;
��I;o : sgn�x� � �1:

(55)

The sources are taken constant as well when restricted to

the even and odd sublattices, jI;x � jI;e or jI;o, respectively.
Like the characters the sources are complex.

The action (21) couples only nearest-neighbor sites so
that its expectation value entering (50) may be written as
 

hSeffi � Vdf�10� ��10;o ��01;e � H:c:� � . . .g

�
V
2
	1� ��11;o � ��11;e�; (56)

with V � Nd denoting the lattice volume in d spatial
dimensions. The logarithm in (50) decomposes as

 hlogpi �
V
2
�hlogpoio � hlogpeie�: (57)

It is convenient to drop the common volume factor V and
consider densities instead. The variation of (50) finally
yields the weight function for the even sublattice,
 

pe�P � �
1

z�je; j
e�
exp f�	1V1�P � � je � ��P �

� j
e � �

�P �g (58)

and a completely analogous expression for the odd sub-
lattice. Here we have introduced j � � as a shorthand forP
IjI�I and the single-site partition function

 

z�j; j
� �
Z
d�red�P � exp f�	1V1�P � � j � ��P �

� j
 � �
�P �g: (59)

The sources jo; e are eliminated by inverting the relations

 �� I�j; j

� �

@
@jI

w�j; j
�; ��
I �j; j

� �

@
@j
I

w�j; j
�;

(60)

to be evaluated separately on both sublattices. The
Schwinger function w�j; j
� is defined as usual,

 w�j; j
� � log z�j; j
�: (61)

Introducing the Legendre transform of (61) according to

 �0� ��; ��
� � sup
j;j

fj � �� � j
 � ��
 � w�j; j
�g (62)

the solution of (50) is finally obtained as the MF potential
(density) as a function of even and odd mean fields,
 

umf� ��e; ��
e ; ��o; ��
o� � df�10� ��10;o ��01;e � H:c:� � . . .g

� 1
2	1� ��11;o � ��11;e� �

1
2�0� ��o; ��
o�

� 1
2�0� ��e; ��
e�: (63)

From this expression one can easily derive relations be-
tween the sources j and mean characters �. For instance,
by varying umf with respect to ��10;o we obtain

 0 � d��10 ��01;e � �21 ��20;e� �
1
2j10;o; (64)

where we have used that the current is given as
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 j10;o �
@

@ ��10;o
�0� ��o; ��
o�: (65)

The first term in (63) derives directly from the effective
action (26) and hence contains four couplings to which the
potential coupling 	1 has to be added. A complete MF
analysis of this system becomes very awkward. In what
follows, we therefore specialize to effective actions with
only one or two couplings.

A. One coupling

The action (29) defines what we call the ‘‘minimal
model’’ with one coupling only,

 Seff � �S10 � �
X
hxyi

�LxL


y � H:c:�: (66)

Identifying � ��10�e;o � Le;o and inserting (66) the MF po-
tential (63) simplifies to
 

umf�Le; L


e ; Lo; L



o� � d��LeL



o � LoL



e� �

1
2�0�Le; L



e�

� 1
2�0�Lo; L



o�: (67)

It is useful to define the generic MF potential

 vmf�L;L
� � d�jLj2 � �0�L; L
�; (68)

so that (67) can be rewritten as
 

umf�Le; L
e ; Lo; L
o� � �
d�
2
jLo � Lej

2 �
1

2
vmf�Le; L
e�

�
1

2
vmf�Lo; L



o�: (69)

This expression clearly shows that negative � configura-
tions with Lo � Le are favored making the distinction
between even and odd sublattices obsolete. The remaining
unique expectation value,

 L �
1

V

X
x

Lx �
1

2
�Le � Lo�; (70)

thus serves as an order parameter for the ferromagnetic
phase transition. On the other hand, if � > 0 Le and Lo will
cease to be positively correlated and we expect an anti-
ferromagnetic phase transition. In this case, a reasonable
order parameter is given by [32,36]

 M �
1

V

X
x

Lxsgn �x� �
1

2
�Le � Lo�: (71)

Let us also introduce the absolute values of the order
parameters, henceforth denoted by

 ‘ � jLj and m � jMj: (72)

If we assume for the moment that the occurring phase
transitions are second order the corresponding MF critical
couplings can be computed analytically as we are going to
demonstrate next. The consistency condition (64) reduces
for the case at hand to

 0 � d�Lo �
1
2j


e and 0 � d�Le �

1
2j


o: (73)

As both Le and Lo may be assumed small near the critical
coupling �c the corresponding sources will also be small.
Thus, we may expand

 L �

R
d�red exp fj�10 � H:c:g�10R
d�red exp fj�10 � H:c:g

� j
 �O�j2�; (74)

which again holds separately on each sublattice, Le ’ j


e

and Lo ’ j


o. Plugging this into (73) yields �2d��2 � 1 and

hence the critical couplings

 �� � �
1

2d
: (75)

For arbitrary order parameters we have solved the gap
equations (73) numerically. The result is depicted in the
following figure. The transition S-AF is second order, the
one to the phase F first order. Thus, the antiferromagnetic
transition must be at �� � 1=2d. The first order ferromag-
netic transition is slightly above �1=2d. Our MF analysis
thus confirms the qualitative results from the preceding
section that already in the simplest model there is both a
ferromagnetic and an antiferromagnetic transition, which
is also visible from Fig. 5. This is qualitatively consistent
with the phase diagram Fig. 3 restricted to the horizontal
axis.

B. Two couplings

Even for the simple model of the previous subsection no
explicit expression is known for z0�j; j


� as the SU�3�
group integrals cannot be evaluated in closed form (a fact
well known from strong-coupling expansions, see e.g.
[29]). Things naturally become worse if additional cou-
plings are turned on. Already for two couplings i.e. the
action (39), the only way to proceed is by means of
numerical methods.

In order to obtain the MF version of the phase diagram
Fig. 3 we have employed the following algorithm:

(1) At the extremal points of (63) all sources jo;e occur-
ring in (58) can be eliminated in favor of the expec-
tation values ��o;e as in (64). Since the character
target space is compact it can be easily discretized
defining measures pe and po at each point. Using
these measures expectation values h�io;e can now be
computed which in general will differ from ��o;e.
Hence, we first look for local minima of

 �� ��o; ��e� � kh�io � ��ok � kh�ie � ��ek; (76)

with norm kvk �
P
ijvij. These minima, however,

do not correspond to exact solutions yet but rather
serve as the starting points of a recursion.

(2) We now solve the equation �� ��o; ��e� � 0 for ��o

and ��e by Newton iteration using the local minima
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of the previous step as initial input. In this way we
end up with multiple solution vectors ��o;e each
extremizing (63).

(3) The solution vector with minimal umf contains the
desired ground state expectation values.

With the help of this algorithm we are able to compute
the expectation values of L (70) and M (71).

We conclude this section with some remarks concerning
our choice of the sources j. Allowing them to be complex
yields an 8-dimensional parameter space for the observ-
ables of model (39) with two characters, �10 and �21. For
this large parameter space it would actually be simpler to
perform a high-precision Monte Carlo simulation than to
find a good approximation for the global minima of (63).
For this reason, we have chosen real sources as an input to
our MF approximation. We expect this to be a very good
approximation as long as the peak of the probability dis-
tribution for �10 is concentrated near the real axis in Fig. 2.

Comparing with the classical analysis we note that our
real-source assumption is justified for all couplings which
are located away from the boundary between the phases F
and AC. The F-AC transition should be second order
according to the analysis of Sec. III while the MF approxi-
mation with real sources predicts a first order transition
(see Fig. 4). The contradiction will be finally resolved by
Monte Carlo simulations showing that near the F-AC
transition the peaks of the probability distribution for �10

are off the real axis. Apart from this fairly small region
in parameter space we find a remarkable agreement be-
tween the MF results and the Monte Carlo results of
the next section. This provides the ultimate justification
for our simplifying choice of real sources in the MF
approximation.

V. MONTE CARLO SIMULATION

The previous two sections have provided us with a good
deal of information on the phase structure of the effective
model in the most interesting regions of parameter space.
Based on this we have performed a large number of
Monte Carlo simulations to quantitatively check the MF
predictions and obtain a precise picture of the critical
behavior. As before, to avoid excessive complexity, we
have concentrated on the action (39) with two couplings
�10 and �21.

At the beginning of Sec. IV we have already noted that
both the action and the reduced Haar measure depend only
on the conjugacy class of the (untraced) Polyakov loop.
Hence, one can choose the basic field variables either as the
traces in the fundamental representations �L; L
� and
powers thereof or as a suitable parametrization in terms
of the eigenvalues as introduced in (40). It turns out that for
a numerical treatment the latter proves to be more appro-
priate and so we use (40) to represent the conjugacy class
according to

 

�Px� � P x��� � diag�ei
1 ; ei
2 ; e�i�
1�
2��;

� � �
1; 
2�:
(77)

Here, the following restrictions should be imposed such
that the angular coordinates cover each class only once,

 0 	 
1; 
2; 
1 <
2;


2 < ��
1 �
2�mod 2�:
(78)

These restrictions are somewhat awkward to implement in
a simulation code. It is much more convenient to let � take
values in the full square �0; 2��  �0; 2��which covers the
fundamental domain given by (78) 6 times. Because of the
residual gauge symmetry of the system it is clear that
expectation values will be unaffected by this overcounting.

In the coordinates (77) the reduced Haar measure be-
comes
 

d�red��� �
8

3�2 sin2

�

1 �
2

2

�

 sin2

�

1 �


2

2

�
sin2

�

2 �


1

2

�
d
1d
2;

(79)

where the normalization is such that the measure integrates
to unity over the square �0; 2��  �0; 2��. All characters
can be expressed in terms of
1 and
2. Using (79) the full
measure (49) may be straightforwardly expressed in terms
of the angular coordinates as

 DPe�Seff �P � �
Y
x

d�red��x�e
�Seff ���: (80)

The focus of our numerical studies has been the phase
diagram in the �10-�21 plane. There, we have scanned
through the region ��0:25; 0:33�  ��0:22; 0:16� with a
resolution of 71 46 points, which were in total 3 266
different Monte Carlo simulations. Before we present our
results a few words on our numerical techniques are in
order.

A. Algorithms

For the investigation of phase transitions, in particular,
their order, histogram methods are widely used and ac-
cepted. This approach, however, requires large statistics
and thus tends to consume a lot of computer time. In
addition, we are interested in a fairly large range of cou-
pling constants. For these reasons, the updating algorithm
for the Polyakov-loop models has to be fast and versatile. It
turns out that the standard Metropolis algorithm favorably
matches both requirements if we aim at an accuracy of
about 5%–10%. On the other hand, because of the highly
nontrivial probability measure involved, a heat bath algo-
rithm does not seem applicable or, in any case, would be
too time consuming. In addition, its local nature should not
yield any enhancement of statistics near a first order phase
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transition. We have thus refrained from implementing a
heat bath update scheme but rather decided to optimize the
Metropolis algorithm as described in the following two
paragraphs.

1. Multicanonical algorithm

When a system undergoes a first order phase transition,
the histogram associated with the order parameter will
generically display a multipeak structure. Depending on
the total volume of the system the peaks can be very
pronounced. In other words, the configuration space is
decomposed into distinct sectors between which local
algorithms can hardly mediate. One way to overcome the
resultant failure in sampling the total configuration space is
to make use of the multicanonical algorithm, see e.g. [37].

The crucial improvement step consists in the replace-
ment of the measure used in (80) according to

 d�red exp��S� ! d�red exp��S��‘�: (81)

The new improved measure on the right-hand side has a
weight  � �‘� which depends on the (modulus of the)
order parameter. One chooses the particular form

 �‘� � 	�1�‘�; (82)

where 	�‘� denotes the probability density of the order
parameter. This choice leads to an enhancement of con-
figurations that would otherwise be suppressed and thus
allows for a much improved ergodic behavior of the
algorithm.

The effect due to the altered measure is illustrated in
Fig. 6 where two typical distributions are plotted. In the
original distribution one clearly recognizes two well-
separated peaks. Any local algorithm will fail to sample

such a distribution properly once it is trapped at one of its
peaks. The distribution actually used ‘‘closes the gap’’
enabling transitions between different peak regions during
the simulation. In the end, of course, one has to correct for
the change in the measure by reweighting with �1,

 hQi �
hQ�1�‘�imult:

h�1�‘�imult:
�
hQ	�‘�imult:

h	�‘�imult:
; (83)

where we have denoted expectation values taken with
respect to the modified measure with a subscript ‘‘mult.’’

A slight problem with this approach, however, still has to
be overcome. One actually needs right at the beginning
what one set out to compute originally, namely, the distri-
bution 	. A practicable strategy is e.g. the following. From
a small lattice volume, say V0, where peaks are usually less
pronounced, one obtains an approximate distribution func-
tion 	0�‘� which is then used on a slightly bigger lattice,
say of volume V1. This simple trick can be further refined if
on the larger lattice one first computes 	1�‘� using 	0 and
subsequently repeats all measurements employing 	1. In
practice, this procedure is iterated several times to make
larger and larger lattices available. Going beyond a volume
of V � 123 requires additional knowledge of the scaling
behavior of 	�‘�. Figure 7 shows that, to a very good
approximation, the scaling depends linearly on the volume,
V � N3,

 log	�‘; N� � A�‘� � C�‘�N3: (84)

In summary, the multicanonical algorithm yields substan-
tial improvements compared to the standard Metropolis
algorithm and allows for very accurate simulations.
Lattices with volumes up to V � 203 could thus be studied
near the first order phase transition. However, as the im-
plementation is very involved we applied it only to the
minimal model (�21 � 0). In principle, the generalization
to incorporating further couplings is straightforward, being

( )

real histogram

sampled histogram
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0.015
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FIG. 6 (color online). Histogram of ‘ with �10 � �0:137 21
on a 103-lattice sampled against the histogram for N � 9.
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FIG. 5 (color online). Mean-field results for the minimal
model with one coupling. The first order ferromagnetic transition
S-F is at �� � �0:134 33 and the second order transition S-AF
at �� � 0:166 667.
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merely a matter of having sufficient computing time
available.

2. Cluster algorithm

The multicanonical algorithm is best suited for studying
first order transitions. This is no longer true for second
order transitions where it is outperformed by cluster algo-
rithms—at least if there is one available. For our purposes,
none of the algorithms on the market could be immediately
put to use. We therefore decided to modify the well-known
Wolff algorithm [38], an extension of the Swendsen-Wang
[39] algorithm originally proposed for discrete spin
systems.

Before actually describing our modifications let us
briefly recall the main idea of [38]. Suppose the action
(and the measure) are invariant under a certain global
symmetry which acts on the fields according to

 � x ! �0x � R�x: (85)

Typically, the symmetry operator R will depend on some
parameters which we collectively denote by! (continuous
or discrete) so that R � R�!�. It is important to note that
the operator R has to be idempotent, R2 � id, in order to
ensure detailed balance. The algorithm then works accord-
ing to the following list.

(1) Fix some parameter !0 and hence some transforma-
tion R0 � R�!0�. Randomly choose a lattice point x
and apply the symmetry transformation

 � 0
x � R0�x; (86)

which may be viewed as flipping the field variable
�x. The point x is checked and added to the cluster.

(2) Repeat the following for all unchecked neighbors y
of x:

Let ~S � ~S��x;�y� denote the contribution to the
action from the link hxyi and compute

 �~S � ~S��0x; R0�y� � ~S��0x;�y�; (87)

which may be rewritten as

 �~S � ~S��x;�y� � ~S��0x;�y�; (88)

since ~S is already invariant under R. The decision to
add y to the cluster is subject to an accept/reject step
so that the probability to flip �y becomes

 p �
�

0 : �~S > 0;
1� e�~S : �~S < 0:

(89)

If �y is flipped, check the point y.
(3) Go back to step (2) for all sites added to the cluster

in the previous step.
Note that (88) measures whether it is advantageous to flip
�y once �x has been flipped. From the very construction
of the algorithm it should be already clear that the clusters
will increase with the correlation length of the system. In
this way one suppresses the phenomenon of critical slow-
ing down observed with local algorithms. This makes the
cluster algorithm particularly suited for the study of second
order phase transitions.

The first step in adapting the cluster algorithm to our
needs is to find suitable symmetries of the action (21).
Being a Polyakov-loop model the symmetry in question is
the discrete Z�3� symmetry, L! zkL. In addition, the
action has to be real which implies constraints on the
way complex conjugation acts. From these symmetries
one can construct three operators Ri, i � 0, 1, 2, acting
on the Polyakov loop according to

 RiL � �ziL�
; zi 2 Z�3�: (90)

As required the Ri square to unity. Furthermore, it is easy
to see that both the operators Spq appearing in (26) and the
domain of the Polyakov loop L are left invariant by the
action of Ri. The latter is illustrated in Fig. 8 for a particu-
lar value of L. For the actual algorithm the transformations
(90) are not immediately applicable since the simulation is
based on the angular variables � introduced in (77).
However, it is just a matter of a little algebra to show
that the Ri act on the angles � via

 �
1; 
2��

8><
>:
�2��
1; 2��
2� under R0;
�4�3 �
1;

4�
3 �
2�mod 2� under R1;

�2�3 �
1;
2�
3 �
2�mod 2� under R2:

(91)

Whereas in the original cluster algorithm flipping along
randomly chosen lattice sites is sufficient to guarantee
ergodicity this is no longer true in the present case.
Hence, we have to augment the update scheme by standard
Metropolis sweeps to make the algorithm ergodic. For one
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FIG. 7 (color online). Plot of log	�‘; N� against volume V �
N3 for the minimal model with �10 � �0:137 21 confirming the
scaling behavior (84). The coupling is very close to critical.
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Monte Carlo step our cluster algorithm finally can be
summarized as follows:

(1) Choose a random number NM between 0 and V �
N3.

(2) Do NM standard Metropolis sweeps at randomly
drawn lattice points.

(3) For a suitable fixed number Ncl repeat the steps for
building a cluster as described above.

(4) Do V � NM additional Metropolis sweeps, again at
randomly chosen lattice sites.

From several test runs we have found that the number Ncl

should be chosen such that the total number of flipped sites
after performing step (3) is approximately half the number
of all lattice sites. Thus, if jCj denotes the typical size of a
cluster, the following equation should hold (at least ap-
proximately),

 Ncl �
V

2jCj
: (92)

One of the most interesting questions of course is the gain
in performance compared to e.g. the standard Metropolis
algorithm. We have found that the autocorrelation time for
the order parameter �‘ is independent of both the lattice
extent (at least in the range N � 8 . . . 28) and the coupling
constant (if close to the second order phase transition)
implying a dynamical critical exponent of z � 0.
Moreover, for an optimal choice of Ncl the autocorrelation
time is of order unity. As a result, our cluster algorithm
outperforms the Metropolis algorithm even for small latti-
ces. On the largest lattices we have considered the cluster
algorithm reduces autocorrelation times by 2 orders of
magnitude as compared to Metropolis updating. This im-
provement comes at the cost of a slightly increased com-
plexity, specifically a factor of 1.5 in computing time
which clearly is negligible. On the other hand, in line

with our expectations, no significant improvement has
been found near the first order transition.

B. Results

We present the results of our Monte Carlo simulations in
the same two steps as for the MF approximation. Hence,
we first report on the minimal model (66) and switch on �21

later on. With only �10 different from zero it is reasonably
cheap to perform highly accurate measurements so that a
precise quantitative comparison with the 3-state Potts
model is possible.

For the model (39) with two couplings we determine the
phase diagram in the �10-�21 plane and compare with our
expectations as laid out in the previous two sections. We
conclude with a careful study of the nature of the phase
transitions, in particular, their continuity properties.

1. Minimal model (one coupling)

To determine the ferromagnetic phase transition for
�10 < 0 we have used standard techniques which need no
further explanation. It suffices to note that in order to study
the first order (S-F) transition we performed 106 sweeps on
a 163-lattice in the multicanonical ensemble for each value
of the coupling constant. This led to highly accurate sta-
tistics until we approached the close vicinity of the critical
coupling itself. In this regime our statistics are restricted to
102 independent samples due to large correlation times of
the order of 104 sweeps. As Fig. 9 shows this is sufficient to
demonstrate that the transition is first order.
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FIG. 9 (color online). Ferromagnetic phase transition com-
puted with the multicanonical algorithm on a 163-lattice. The
expectation value of ‘ is plotted against its probability distribu-
tion given by the area shaded in gray. The latter clearly shows the
correct discontinuous behavior. Note that, since we measure the
modulus, statistical fluctuations manifest themselves in a (small)
positive value of the order parameter even in the symmetric
phase.
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FIG. 8 (color online). Illustration of the Z�3� reflections Ri
used in our modified cluster algorithm.
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In Figs. 9 and 10 we compare our Monte Carlo result for
‘��10� with its MF approximation. The figure basically
zooms into that part of Fig. 5 where the first order ferro-
magnetic transition is located. Again, the first order nature
of the transition is corroborated.

In addition to the coupling dependence of the order
parameter we have determined both the critical coupling
and the discontinuity �‘ at �10;crit. The results are given in
Table I together with the MF prediction. Again we find a
surprisingly good quantitative agreement between simula-
tions and MF approximation. The critical couplings for the
S-F transition agree very well with both a previous
Monte Carlo result of �10;crit � �0:137 22 [40] and a MF
determination yielding �10;crit � �0:1343 [41].

Moreover, if we consider the ratio of the two critical
couplings, say �10;crit;F=�10;crit;AF, we are able to compare
this with results of the 3-state Potts model. The actual
figures turn out to be fairly close, namely �0:6904�4� for
the minimally coupled Polyakov model and �0:675 02�3�
for the 3-state Potts model [34,35].

Table I also displays the (positive) critical coupling for
the second order AF transition. This has been analyzed
with our modified cluster algorithm by performing a total
number of 2 106 sweeps. With these large statistics at

hand it is also possible to determine some of the critical
exponents thus probing the universality properties of the
model. To do so we have employed standard renormaliza-
tion group techniques following [42]. In particular, we
consider the Binder cumulant U and susceptibility � given
by

 U � 1�
hm4i

3hm2i2
; (93)

 � � N3hm2i; (94)

with m as defined in (71) and N denoting the spatial extent
of the lattice as before.

The Binder cumulant U � U�N; �10� is constructed
such that it becomes independent of N close to the critical
point. Hence, the latter is rather precisely determined as the
point where the graphs of U (plotted for different N)
intersect. This behavior is nicely exhibited in Fig. 11.

From the standard relations at criticality,

 ���10;crit� / N
�=�; (95)

 

@U�N;�10�

@�10

���������10��10;crit

/ N1=�; (96)

we have finally computed the critical exponents � and �
which are listed in Table II.

TABLE I. Critical couplings for the S-F and S-AF phase
transitions and jump �‘. For the first order transition (S-F) there
is excellent agreement between MF and Monte Carlo data. Even
the values for �‘ agree within 10%. For the second order
transition (S-AF) the critical couplings agree within approxi-
mately 20%.

Method �10;crit (S-F) �‘ �10;crit (S-AF)

Monte Carlo �0:137 21�5� 1.33(2) 0.198 75(5)
Mean Field �0:134 33�1� 1.46(1) 0.166 67(1)

TABLE II. Critical exponents for the second order AF transi-
tion of the minimal model.

Exponent 3-state Potts [35] Minimal Polyakov

� 0.664(4) 0.68(2)
�=� 1.973(9) 1.96(2)
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FIG. 10 (color online). Phase transition of Fig. 9 when calcu-
lated within MF approximation.
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FIG. 11 (color online). Binder cumulants U for different lattice
sizes as a function of the coupling �10. The critical coupling
�10;crit is determined via the intersection point.
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The uncertainty in �10;crit quoted in Table I is mainly due
to the fact that the different cumulants do not precisely
meet in a single intersection point (cf. again Fig. 11). The
error in the critical exponents is estimated from a least
square fit to the logarithm of (95) and (96). To cross-check
our results we have measured the expectation value of m
and its probability distribution 	�m� in analogy with the
ferromagnetic transition already discussed. As in the for-
mer case, the expectation value of the order parameter
alone does not suffice to decide on the order of the tran-
sition. However, the probability distribution shown in
Fig. 12 is quite different from the one in Fig. 9. No

discontinuous behavior is observed now which provides
further (numerical) evidence for a second order phase
transition. Equally important, the critical coupling ob-
tained is compatible with the results presented in Table I.
For the sake of completeness Fig. 13 shows the MF pre-
diction for the transition S-AF.

Comparing with earlier results on the 3-state Potts
model [36] we draw the important conclusion that the
minimal Polyakov loop model is in the same universality
class.

2. The phase diagram for two couplings

Having discussed the minimal model at length let us
continue by switching on the second coupling �21 in order
to analyze the phase diagram in the coupling constant
plane. This requires a suitably chosen ‘‘indicator’’ to dis-
tinguish the (at least) four phases (S, F, AC and AF) we
expect in accordance with our MF analysis of Sec. IV.
While ‘ andm clearly are order parameters for the minimal
model they are numerically less suited for the model with
two couplings. It turns out advantageous to construct a new
observable denoted ‘r which may be obtained from ‘ by
the following procedure. We first divide the domain of L
into six distinct parts as shown in Fig. 14. The light-shaded
region represents the preferred locus of the Polyakov loop
in the ferromagnetic phase F, whereas the dark-shaded
region corresponds to the anticenter ferromagnetic phase
AC. To eliminate the (numerically superfluous) Z�3� sym-
metry the first step in our projection is to identify the
regions as indicated by the arrows in Fig. 14. In this way
we end up with a fundamental domain F for the Z�3�
symmetry centered along the real axis. Every L is mapped
into F by a center transformation. To finally obtain a real
observable we project the transformed L onto the real axis.
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FIG. 12 (color online). Expectation value and probability dis-
tribution of m near the antiferromagnetic phase transition ob-
tained from Monte Carlo simulations. To identify clear signals
we have chosen a large lattice with V � 283 and evaluated 5
105 sweeps. In contrast to Fig. 9 no discontinuity is observed.
Again the expectation value of the symmetric phase is biased
since we measure the modulus of the order parameter.
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FIG. 14 (color online). Fundamental domain F of the order
parameter L obtained by identifying Z�3� copies according to the
depicted arrows.
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FIG. 13 (color online). Expectation value of m near the anti-
ferromagnetic phase transition computed via MF approximation.
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This projection results in the variable ‘r the sign of which
clearly distinguishes between the two ferromagnetic
phases. ‘r < 0 indicates the AC phase, ‘r > 0 the ferro-
magnetic phase F, while ‘ � 0 in the symmetric phase S.
Mathematically, the projection of L to ‘r is given by

 ‘r �

8>><
>>:
�1

2 ReL : L 2 F ;

�1
2 ReL�

��
3
p

2 ImL : L 2 F 0;

�1
2 ReL�

��
3
p

2 ImL : L 2 F 00:

(97)

To detect the AF phase we simultaneously measure m so
that we can finally discriminate between all possible
phases.

Our main results for the phase diagram are shown in
Fig. 15 obtained by the modified MF approximation ex-
plained earlier and Fig. 16 which displays the Monte Carlo
data and hence constitutes the most faithful representation
of the phase structure.

The Monte Carlo simulations were carried out on an
83-lattice. The number of sweeps was chosen such as to
reduce the jackknife error in the estimate of ‘r below 0.1.
The independence of our samples was ensured by demand-
ing that the autocorrelation time �‘r associated with the
observable ‘r was less then 1% of the total number of
sweeps. As a result our simulations included at least 4
104 sweeps far away from the critical regions and more
than 106 sweeps in their vicinity.

It is reassuring to note that the qualitative phase diagram
Fig. 3 predicted from energy-entropy arguments is quanti-
tatively confirmed by both Figs. 15 and 16. Comparing the

latter in some detail it is once more remarkable how good
the MF approximation works. Within large regions of
parameter space it agrees with the ‘‘real’’ data within
10% or less. Interestingly, the observable ‘r also seems
to be sensitive to the AF phase (see lower right part of
Figs. 15 and 16). However, any further discrimination
between phases F and AF by means of ‘r is impossible.
To lift this degeneracy one clearly needs the AF order
parameter m as an additional input.

It remains to be discussed why ‘r is sensitive at all to AF
ordering. In what follows we will provide a heuristic
answer in the context of the 3-state Potts model. By defi-
nition, all spins are (anti)aligned in the (anti)ferromagnetic
ground state. In the Z�2� symmetric Ising model with only
two spin states each possible ground state is two-fold
degenerate, independent of the particular ordering (F or
AF). The counting of degeneracies, however, is totally
different for systems with more spin states (hence higher
symmetry). In the AF phase the additional freedom of
choice between two (or more) states antialigned with a
given one leads to an enormous degeneracy of the ground
state in energy. As a consequence, entropy will be the sole
judge deciding what is to be observed in a measurement.
For the Z�3�-Polyakov-loop model both MF approximation
and the Monte Carlo simulations tell us that the most
probable ground state corresponds to a preferred direction
for the Polyakov loop on one of the two sublattices and an
equal distribution of the two remaining directions on the
other sublattice. Although we do not have an analytical
justification for this statement the numerical evidence is
compelling. Based on the latter, the sensitivity of ‘r to AF
ordering can be explained by a net expectation value which
for the case of the 3-state Potts model is easily computed as
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FIG. 15 (color online). Phase diagram of the model with two
couplings as obtained via MF approximation. The figure shows a
contour plot of the ground state expectation value of ‘r in the
�10-�21 plane. The phase transition between the two ferromag-
netic phases (F-AC) is clearly visible in the lower left part. Note
that ‘r even discriminates between symmetric and antiferromag-
netic phases (S-AF) as can be seen in the lower right part of the
figure. A heuristic explanation of this phenomenon is given in
the main text.
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FIG. 16 (color online). Same phase diagram as in Fig. 15, this
time obtained via Monte Carlo simulations on an 83-lattice. Like
in the minimal model MF and Monte Carlo results agree quan-
titatively within an accuracy of 10% and less. The distinction
between S and AC will become more apparent in Fig. 17.
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 ‘r � 0:5z1 � 0:25z2 � 0:25z3 � 0: (98)

We conclude this discussion with an overview of the
resulting phases, their boundaries, and the order of the
transitions in between presented in Fig. 17. Our reasoning
here is based on additional measurements carried out along
parametrized curves � � ��s� as depicted in Fig. 18.
These simulations were exclusively focused on the order
of the phase transition measuring the histograms of the
observables L and M. As before all measurements were
carried out on 83-lattices each trajectory ��s� being
sampled with 20 points. For every such point �s 106

Monte Carlo sweeps were performed. To improve the
statistics of the histograms we made use of all previously
discussed symmetries (Z�3�, complex conjugation, and
exchange of even and odd sublattice) by binning L or M
together with their center images zL, z2L, zM, z2M and
their complex conjugates. This amounts to using each
measured value of L 6 times and of M even 12 times. In
total we have recorded 20 such runs four of which are
depicted in Fig. 18.

To illuminate the order of the transitions corresponding
to the four directed line crossings displayed in Fig. 18 we
present six (out of 20) histograms in Figs. 19–22 which
display the distribution of the observable L, respectivelyM
in the complex plane.

The first figure in this series, Fig. 19, corresponds to the
ferromagnetic transition, S-F. The histograms displayed
may be viewed as a ‘‘movie sequence’’ starting out in the
symmetric phase with the distribution 	�L� located at the
origin. Recalling the relation between probability distribu-

tion 	�L� and the constraint effective potential [43],
U�L� / exp��	�L��, this situation corresponds to a unique
minimum of U�L� at L � 0. As the couplings change three
further maxima—which are Z�3� copies of each other—
arise in addition to the one at the origin. Hence, we observe
coexistence of ordered and disordered phases. The new
maxima are separated from the original unique maximum
at the origin by a finite amount. The associated disconti-
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FIG. 18 (color online). Phase diagram of Fig. 17 with oriented
trajectories (marked by arrows) used for the histograms of
Figs. 19–22. The curves are directed from the symmetric to
the broken phases intersecting the critical lines vertically. We
have chosen a representative subset from a total of 20 such
curves which were analyzed to determine the order of the
transitions.
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FIG. 19 (color online). Histogram of the observable L in the
complex plane at a first order ferromagnetic phase transition.

S

AF
AC

F

λ10

λ21

1. order

2. order

− 0.2 − 0.1 0 .0 0 .1 0 .2 0.3

− 0.20

− 0.15

− 0.10

− 0.05

0.00

0.05

0.10

0.15

FIG. 17. Phase boundaries and orders of transitions as obtained
via Monte Carlo simulation on an 83-lattice. We observe a
mixture of both first and second order transitions depending on
the particular values for the couplings. The symmetric phase is
enclosed by ordered phases as already expected from the dis-
cussion of Sec. III. For further details on the simulation see the
main text.
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nuity together with coexistence clearly shows that the
transition is first order.

In contrast to this the situation depicted in Fig. 20 is
quite different. First of all the distribution is much more
delocalized as compared to Fig. 19 implying a much flatter
effective potential. Moreover, as soon as the maxima of
the broken (ordered) phase emerge the maximum at the
origin has dissolved. Hence, there is no coexistence of
different phases as in the previous case but rather a con-
tinuous appearance of new maxima, branching away
from the origin towards the corners of the fundamental
domain. These features characterize a second order phase
transition.

Analogous behavior can be observed in Fig. 21 with the
maxima now moving in roughly the opposite directions
indicating a transition to the AC phase. Still different is the
S-AF transition of Fig. 22. By the same reasoning as given
above this transition is of second order as well. However,
the probability function emerging in the broken phase does
not display the usual three-fold symmetry we have ob-
served for the previous transitions. Although the figures
seemingly look rotationally invariant one actually finds a
six-fold degeneracy rather than a continuous one. The
symmetry enhancement by a factor of 2 has a simple
explanation. Note that Fig. 22 shows the probability dis-
tribution of the AF order parameter M which is defined in
terms of even and odd sublattices; interchanging the latter
accounts for the additional factor of 2.

Let us conclude this section with a short remark con-
cerning Figs. 20 and 21. We have seen that our numerical
data seem to indicate the possibility of second order tran-
sitions from the disordered phase S to F or AC ordering.
This is at variance with the folklore claiming the absence of
a Z�3� universality class in d � 3, see e.g. [5]. It is not
excluded that the observed second order characteristics
near the tricritical point (S-F-AC) derive from artifacts
due to our algorithms. At the moment, however, we cannot
make a definite statement about this issue. Obviously, the
puzzle deserves further investigation in the future.

VI. SUMMARY AND OUTLOOK

As outlined in the introduction the original motivation
for Polyakov-loop models lies in their status as effective
theories for finite-temperature gluodynamics. However,
our investigation of the statistical mechanics involved
should have made it clear that they are interesting in their
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FIG. 22 (color online). Histogram of the observable M in the
complex plane at a second order antiferromagnetic phase tran-
sition.
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FIG. 20 (color online). Histogram of the observable L in the
complex plane at a second order ferromagnetic phase transition.
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FIG. 21 (color online). Histogram of the observable L in the
complex plane at a second order anticenter phase transition.
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own right. In support of this statement we mention the 3-
fold Z�3� symmetry shared with the 3-state Potts model,
the nontrivial complex target space, and the enormously
rich phase structure resulting thereof.

As we have seen, the latter can be understood qualita-
tively by simple energy-entropy considerations which pre-
dict a symmetric phase S close to the origin in coupling
space ‘‘surrounded’’ by broken phases. These can exhibit
ferromagnetic, antiferromagnetic, or anticenter ordering.
This picture has been confirmed quantitatively both within
a mean-field approximation and by extensive Monte Carlo
simulations. Both methods find a first order transition for
S-F and a second order one for S-AF. In order to capture the
details of the phase diagram a total number of 8 000
simulations (corresponding to roughly 3 000 hours of
CPU time) was required. Naturally, this has added further
refinements to our classical and MF analysis like precise
values for critical couplings and exponents.

The agreement between the MF and Monte Carlo result
is much better than naively expected for a statistical model
in d � 3. The S-F critical couplings agree to within 1%, the
discontinuity �‘ within 10%, and the S-AF critical cou-
pling within 20%. The precise agreement for the S-F
transition suggests that the point where the S-F and S-AC
critical lines merge is actually a tricritical point where two
first order transitions merge into a second order one. It is
known that the upper critical dimension for a tricritical
point is three [44,45] so that in d � 3 the MF approxima-
tion actually is exact apart from logarithmic corrections
[46]. This observation is corroborated by the fact that the
Polyakov-loop model with two couplings is somewhat
similar to the spin-one Blume-Capel [47,48] model which
apart from an Ising term has an addition K

P
is

2
i , si � �1,

0, 1, with 3 spin states. The model is known to have a
tricritical point and is closely related to the 3-state Potts
model [49]. The second order phase transition line is
characterized by 3d Ising critical exponents. Obviously,
one should test the analogous exponents for our AC-F
transition at the very left of our phase diagrams.

One may also address the spatial localization of the
phases. On the 3d lattice the coexisting phases should be
separated by interfaces the tension of which can be mea-
sured (see e.g. [15] and references therein).

In this paper we have concentrated on the physics of the
effective Polyakov-loop models and their rich phase struc-

ture. Of course, in the end one is interested in matching the
effective couplings to the underlying microscopic theory,
i.e. finite-temperature Yang-Mills. This requires an inverse
Monte Carlo calculation which determines the effective
couplings �IJ as functions of the Wilson coupling �. The
resulting curve �IJ��� in the space of effective couplings is
expected to stay in the symmetric and ferromagnetic
phases of the effective models as those two correspond to
the confinement and deconfinement phases of the hot
gauge theory. Antiferromagnetic and anticenter phases,
on the other hand, do not seem to have a Yang-Mills
analogue.

With the effective couplings fixed there are no free
parameters left and we can go on and compare observables
obtained from either the effective or the Yang-Mills
Monte Carlo ensembles. Of particular interest in this re-
spect would be a comparison of the two-point functions (as
in [22] for SU�2�) or the pressure (along the lines of [50]).
Another option is to systematically study the expectation
values of Polyakov loops (or, equivalently, group charac-
ters) in the first few representations, say up to p � q � 2.
Here, one could compare MF and Monte Carlo results for
the Polyakov-loop models with Yang-Mills lattice data,
following [41,51]. Presumably, this will require a UV
renormalization of the loops [14,52].

We have already solved the matching problem for the
(simpler) case of SU�2� using inverse Monte Carlo meth-
ods based on Schwinger-Dyson equations [22]. For SU�3�
this task is considerably more difficult (at least technically)
due to the increased complexity of the Haar measure.
Nevertheless, we have been able to derive the relevant
Schwinger-Dyson equations and will report on their appli-
cations and the above-mentioned comparison of physical
observables in a forthcoming publication.
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