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We present skeleton-motivated evaluation of QCD observables. The approach can be applied in analytic
versions of QCD in certain classes of renormalization schemes. We present two versions of analytic QCD
which can be regarded as low-energy modifications of the ‘‘minimal’’ analytic QCD and which reproduce
the measured value of the semihadronic � decay ratio r�. Further, we describe an approach of calculating
the higher-order analytic couplings Ak �k � 2; 3; . . .� on the basis of logarithmic derivatives of the
analytic coupling A1�Q

2�. This approach can be applied in any version of analytic QCD. We adjust the
free parameters of the aforementioned two analytic models in such a way that the skeleton-motivated
evaluation reproduces the correct known values of r� and of the Bjorken polarized sum rule (BjPSR)
db�Q

2� at a given point (e.g., at Q2 � 2 GeV2). We then evaluate the low-energy behavior of the Adler
function dv�Q2� and the BjPSR db�Q

2� in the aforementioned evaluation approach, in the three analytic
versions of QCD. We compare with the results obtained in the minimal analytic QCD and with the
evaluation approach of Milton et al. and Shirkov.
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I. INTRODUCTION

In perturbative QCD (pQCD), the coupling parameter
a�Q2� � �s�Q

2�=� [where: Q2 � �q2 � ��q0�2 � q2] is
obtained on the basis of the perturbative �-function which
is a (truncated) polynomial of a. As a consequence, a�Q2�
has Landau singularities in an infrared spacelike zone
(Q2 > 0), and therefore these singularities are unphysical.
This problem was fully recognized and a solution found
about ten years ago by Shirkov and Solovtsov [1]. The
solution found was minimal in the sense that the analyti-
zation a�Q2�� A1�Q

2� was performed by removing the
Landau-cut singularities, while keeping the singularities on
the timelike axis unchanged. Further, completely analo-
gous minimal analytization was performed for the higher
powers ak � Ak (k � 2) and this replacement was per-
formed term-by-term in the simple truncated perturbation
series (STPS—in powers of a) of observables by Milton,
Solovtsov, Solovtsova, and Shirkov [2–4] (‘‘analytic
perturbation theory’’—APT).1 The resulting series have
in general better convergence behavior and much less
sensitivity under the variation of the renormalization scale
(RScl) and scheme (RSch). We will call the analytic QCD
model based on the aforementioned analytic coupling the
‘‘minimal analytic’’ (MA) model [ � A�MA�

1 �Q2�], and
the aforementioned evaluation approach (involving the
truncated analytic series) the APT-evaluation approach.

The MA coupling A�MA�
1 �Q2� contains just one adjust-

able parameter, the QCD scale �. Reproduction of the
measured values of the higher energy QCD observables

(jq2j> 10 GeV2) fixes the scale parameter to the value
��nf�5� � 0:26 GeV, corresponding to ��nf�3� �

0:4 GeV. However, then the well-measured value of the
massless strangeless semihadronic �-decay ratio r��4S �
0; mq � 0� � 0:204	 0:005 [7–9] (cf. Appendix E) can-
not be reproduced [4] unless large values of the u, d, and s
quark masses are introduced (mq � 0:25–0:45 GeV) [10]
and the threshold effects become very important. One may
want to avoid introduction of such large quark masses, by
modifying the MA model at low energies while keeping
the analyticity of A1�Q2� in the non-time-like region. In
this work we introduce two somewhat different modifica-
tions �A1�Q2� (A1 �A�MA�

1 ��A1), both having
powerlike behaviors. We construct in a systematic way
the higher-order couplings Ak�Q

2� based on the logarith-
mic derivatives of A1�Q

2�. Further, we construct a
skeleton-expansion-motivated algorithm of evaluation of
QCD observables, which can be applied in any analytic
version of QCD and in a large class of renormalization
schemes. For such an evaluation, we have to know the first
few coefficients of STPS and all the leading-�0 coeffi-
cients of the full perturbation series. We believe that the
inclusion in this evaluation of the light-by-light contribu-
tions, if they contribute, should be avoided. Such contri-
butions have a different topological structure and their
evaluation should be performed separately in most
evaluation (resummation) methods—see, for example,
Ref. [11]. Some of the main results of the present work
were published by us in a summarized form in Ref. [12].

In Sec. II, we explain the main features of the analytic
versions of QCD (anQCD), we present the known MA
model, and propose two versions of modified MA—the
models ‘‘M1’’ and ‘‘M2’’ 
� A�M1�

1 �Q2�;A�M2�
1 �Q2��. In

Sec. III, we introduce the higher-order couplings Ak�Q
2�

(k � 2) in a way that can be applied in any version of

*Electronic address: gorazd.cvetic@usm.cl
†Electronic address: cristian.valenzuela@usm.cl
1Analytization of noninteger powers in MA was performed

and used in Refs. [5], representing a generalization of results of
Ref. [6].

PHYSICAL REVIEW D 74, 114030 (2006)

1550-7998=2006=74(11)=114030(26) 114030-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.114030


anQCD, by imposing on them specific natural behavior
under the change of scale Q2 and of RSch. In Sec. IV we
then present an algorithm which allows us to evaluate any
QCD observable in any version of anQCD, an algorithm
motivated by the skeleton expansion. In Sec. V we fix the
free parameters in the M1 and M2 anQCD couplings
A�M1�

1 �Q2� and A�M2�
1 �Q2� in such a way that the afore-

mentioned skeleton-motivated approach gives us the mea-
sured values of r� and of the Bjorken polarized sum rule
(BjPSR) db�Q2� at Q2 � 2 GeV2. We then present the
resulting low-energy curves for the V-channel Adler func-
tion dv�Q2� and of the BjPSR db�Q2� in the skeleton-
motivated approach, in the anQCD versions MA, M1,
M2. We investigate the RScl and RSch dependence of the
numerical curves, and in the MA case we compare the
results of db�Q

2� obtained by our skeleton-motivated
evaluation approach with those of the APT approach of
Refs. [2–4]. Numerical calculations were performed using
MATHEMATICA [13]. In Sec. VI we present our conclusions
and prospects for further work in this direction.
Appendix A contains details of the coefficients appearing
in the evaluation method. In Appendix B we present an-
other evaluation method that is even more closely related to
the skeleton expansion. Appendix C contains a derivation
of the leading skeleton (LS) characteristic function of the
BjPSR, and relations between the spacelike and timelike
formulations for the LS term. Appendix D is a compilation
of expressions of some coefficients used in this work, and
Appendix E describes an extraction of the experimental
value of r��4S � 0; mq � 0�.

II. MINIMAL ANALYTIC QCD AND TWO
EXTENSIONS OF IT

The perturbative QCD coupling a�Q2� � �s�Q2�=� in
the spacelike region [Q2 not in ��1; 0�] has the scale
dependence governed by the renormalization group equa-
tion (RGE)

 

@a�lnQ2;�2; . . .�

@ lnQ2
� �

Xjmax

j�2

�j�2a
j�lnQ2;�2; . . .�; (1)

where the first two coefficients �0 � �1=4��11� 2nf=3�
and �1 � �1=16��102� 38nf=3� are scheme independent
in mass-independent schemes, and the other coefficients�j
(j � 2) characterize the RSch. In practice, the above sum is
truncated at a certain jmax where jmax � 1 is the loop level.
The perturbative RGE (1) has a standard iterative solution
in the form

 a�Q2� �
X1
k�1

Xk�1

‘�0

Kk‘
�lnL�‘

Lk
; (2)

where L � ln�Q2=�2� and Kk‘ are constants depending on
the �j coefficients and on the choice of the scale �. If the
conventional (‘‘MS’’) scale � � �� [14,15] is used, the

coefficients Kk‘ are
 

K10 � 1=�0; K20 � 0; K21 � ��1=�
3
0;

K30 � ��2
1=�

5
0 � �2=�4

0;

K31 � �K32 � ��2
1=�

5
0; . . .

(3)

Further coefficients Kk‘, up to k � 6, are given in
Appendix D. The coupling a�Q2�, Eq. (2), has nonanalytic
structure along the timelike axis Q2�� �q2�< 0. In addi-
tion, it has singularities in the spacelike region 0<Q2 �
��2, which are formally the consequence of the (truncated)
power expansion structure of the beta function on the right-
hand side of Eq. (1). Application of the Cauchy theorem to
function a�Q2� in the Q2-plane gives then the following
dispersion relation for a:

 a�Q2� �
1

�

Z 1
����2��

d���pt�
1 ���

���Q2�
; (4)

where ��pt�
1 ��� is the (pQCD) discontinuity function of a

along the cut axis in the Q2-plane: ��pt�
1 ��� � Im a����

i��. In the integration, � is positive (�! �0 can be
taken), reflecting the fact that the corresponding contour
integration path avoids entirely the singularities of a�z� in
the complex plane, including the singularity at z � �� �
�2 [cf. Eq. (2)].

By special relativity and causality, observables are ana-
lytic functions of the associated physical momentum
squared q2 � �Q2 in the Q2-plane with the timelike axis
(Q2 < 0) excluded. Since QCD observables are functions
of the invariant coupling a�Q2�, both should have the same
analyticity properties. The singularity sector 0<Q2 � �2

in a�Q2�, Eqs. (2) and (4), is therefore nonphysical. The
most straightforward rectification of this problem is to
eliminate that sector from the dispersion relation (4) while
keeping the pQCD discontinuity function ��pt���;�2; . . .�
unchanged on the timelike axis �> 0 [1], thus leading to
the specific ‘‘minimal analytic’’ (MA) coupling

 A �MA�
1 �Q2� �

1

�

Z 1
��0

d���pt�
1 ���

���Q2�
: (5)

In practice, truncated series (2) can be used to obtain the
discontinuity function ��pt�

1 ��� and thus the coupling (5).
Prescription (5) was investigated from calculational view-
points in Refs. [16–18]. There exists a practical iterative
solution [16,17] to RGE (1) based on the Lambert function
[19]. This solution is an expansion of a different form than
(2). When the number of terms in the Lambert-based
expansion and in expansion (2) increases, the two solutions
for A�MA�

1 converge to the exact numerical solution rapidly
for all Q2, but the Lambert-based expansion converges
faster. When kmax � 4 in (2), the corresponding solution
A�MA�

1 �Q2� differs in MS RSch from the exact numerical
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solution by less than one per cent for allQ2 > 0 [17]. In the
present work, we will use expansion (2) with kmax � 5 or 6.

Other types of analytization of a can be performed by
focusing on the analyticity properties of the beta function
[20,21], or by subtracting certain power correction terms
1=�Q2�n from the MA coupling A�MA�

1 [22]. For a review
of various models, see Ref. [23].

In general, the discontinuity function can be different,
and the analytic coupling must have the form

 A 1�Q
2� �

1

�

Z 1
��0

d��1���

���Q2�
; (6)

where �1��� � ImA1���� i��. Relation (6) defines an
analytic coupling in the Q2-plane excluding the timelike
semiaxis �s � Q2 < 0. On this semiaxis, it is convenient
to define the timelike coupling [24–26]

 A 1�s� �
i

2�

Z �s�i�
�s�i�

d�0

�0
A1��

0�: (7)

The integration here is in the Q2 � �0 plane avoiding the
(timelike) cut �0 < 0. The relation between A1�Q

2� and
A1�s� is the same as the relation between the (vector
channel) Adler function DV�Q2� and its timelike analogue,
the e�e� hadronic scattering cross section ratio RV�s�.
Therefore, while the leading QCD correction to DV�Q2�
in anQCD is A1�Q

2� [the anQCD analogue of a�Q2�], the
leading QCD correction to RV�s� is A1�s�. The following
additional relations [3] hold between A1, A1, and �1 in
any anQCD:

 A 1�s� �
1

�

Z 1
s

d�
�
�1���; (8)

 A 1�Q
2� � Q2

Z 1
0

dsA1�s�

�s�Q2�2
; (9)

 

d
d ln�

A1��� � �
1

�
�1���: (10)

The MA coupling (5) contains only one free parameter, the
value of the (MS) scale ��, which is not equal to the value of
�� in pQCD, but has to be adjusted so that the measured
values of QCD observables be reproduced. By introducing
and using a specific evaluation method within the MA
QCD, the authors of Refs. [2–4] reproduced the measured
values of the higher-energy QCD observables (jq2j>
10 GeV2) when the scale parameter �� had the value
���nf�5� � 0:26 GeV (where nf is the number of active

quark flavors). This corresponds to ���nf�3� � 0:4 GeV.
However, the measured value of the massless part of the
semihadronic strangeless �-decay ratio r��4S � 0; mq �

0� � 0:204	 0:005 [7–9] [cf. Appendix E, Eq. (E6)] can-
not be reproduced with such values of �� [4] unless large
masses of u, d, and s quarks are introduced (mq �

0:25–0:45 GeV) [10] and the mass threshold effects be-
come central.

The above consideration motivates us to introduce low-
energy modifications of the MA coupling. Modifications,
although simple, introduce additional parameters which
have to be fixed by requiring reproduction of the measured
values of low-energy QCD observables, including of r�.
One possible modification is inspired by the well measured
[7,8] isovector hadronic spectral function RV�s�. At low
energies (s < 1 GeV2), it is dominated by the �-resonance
(M� � 0:776 GeV) which, in the narrow width approxi-
mation, can be represented as a delta function 	�s�M2

��

[27]. This is in the spirit of the vector meson dominance
(VMD). If we assume that the s-dependence of the timelike
quantity RV�s� is at least qualitatively described by the first
order timelike coupling A1�s�, Eq. (8), then the aforemen-
tioned deltalike structure should appear in it. This then
leads to the following ansatz (model ‘‘M1’’):
 

A�M1�
1 �s� � cf �M2

r	�s� �M2
r� � k0�� �M2

0 � s�

���s� �M2
0�A

�MA�
1 �s�; (11)

where cf, k0, cr � �M2
r= ��2, c0 � �M2

0=
��2 are four dimen-

sionless parameters of the model; ��x� is the Heaviside
step function (� 1 for x > 0, zero otherwise). In this
model, the MA behavior of A1�s� at low energies s < �M2

0
has been replaced by a constant (k0) plus a delta function
(at s � �M2

r < �M2
0). The more literal application of the

VMD approach results in k0 � �1 [28]. This is so because
RV�s� � 1�A1�s� �O�A2

1�, and RV�s� ! 0 when s! 0,
implying A1�s� ! �1. However, such a model appears to
restrict the low-energy behavior of A1�s� and of A1�Q2�
too severely, especially if we want to impose the condition
of merging A1�Q

2� of the model with A�MA�
1 �Q2� at high

Q2. As a consequence, values of various unrelated low-
energy observables, such as Adler function (or r�) and
Bjorken polarized sum rule, cannot be reproduced simul-
taneously in such a model. Therefore, unlike the choice
k0 � �1 in Ref. [28], we keep here the constant k0 in
Eq. (11) free. Applying transformation (9) to expression
(11) gives the spacelike analytic coupling of the model:

 A �M1�
1 �Q2� �A�MA�

1 �Q2� � �A�M1�
1 �Q2�; (12)

 

�A�M1�
1 �Q2� � �

1

�

Z �M2
0

��0

d���pt�
1 ���

���Q2�
� cf

�M2
rQ

2

�Q2 � �M2
r�

2

� df
�M2

0

�Q2 � �M2
0�
; (13)

where the constant df is

 df � �k0 �
1

�

Z 1
�M2

0

d�
�
��pt�

1 ���: (14)
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The coupling (12) and (13) can also be rewritten in a
somewhat different, but equivalent, form:

 A �M1�
1 �Q2� � cf

�M2
rQ2

�Q2 � �M2
r�

2 � k0

�M2
0

�Q2 � �M2
0�

�
Q2

�Q2 � �M2
0�

1

�



Z 1
�� �M2

0

d���pt�
1 ������ �M2

0�

����Q2�
: (15)

In general, this coupling differs from the MA coupling (5)
by terms �A�M1�

1 � ��2=Q2. However, we will choose to
require �A�M1�

1 � ��4=Q4, i.e., that M1 effectively merge
into MA at higher energies, as we did in Ref. [28]. This
condition eliminates one of the four new parameters, for
example k0:
 

k0 � �
crcf
c0
�

1

�
1

c0
��2

Z c0
��2

0
d���pt�

1 ���

�
1

�

Z 1
c0

��2

d�
�
��pt�

1 ���: (16)

Since the presented version of M1 merges with MA at
higher energies, the value of the scale parameter �� remains
practically unchanged, ���nf�3� � 0:4 GeV, and the model
contains only three dimensionless parameters cf, cr, and
c0.

Another, somewhat simpler, modification of the MA
coupling consists in adding a constant value (cv) in the
low-energy region of the MA timelike coupling (model
‘‘M2’’):

 A �M2�
1 �s� � A�MA�

1 �s� � cv�� �M2
p � s�; (17)

 A �M2�
1 �Q2� �A�MA�

1 �Q2� � cv
�M2
p

�Q2 � �M2
p�
; (18)

where cv and cp � �M2
p= ��2 are two dimensionless parame-

ters of the model. For simplicity, we will assume that the
scale parameter is unchanged: ���nf�3� � 0:4 GeV. The
resulting additional term / 1=�Q2 � �M2

p� in A1�Q2� can
be interpreted, or motivated, as the leading powerlike
modification ( / 1=Q2) of the MA coupling such that the
condition jA1�Q2 � 0�j<1 is preserved. The latter con-
dition is regarded as desirable in our approach developed in
Sec. IV, because the so-called leading-skeleton resumma-
tion of observables remains finite in such a model.

Model M1 was motivated by simulating roughly the
�-resonance contribution in the one-loop expression for
RV�s�, via a VMD narrow width approximation ansatz in
A1�s�. However, this was only a motivation for the con-
struction of an explicit form of A1�s� as the starting point
of the model, and the higher-loop contributions Ak�s� and
Ak�Q2� (k � 2) are then constructed on the basis of this

A1�s� (see the next section). The approximation of the
�-resonance is then expected to get worse at higher-loop
level. Another possible approach, which we will not follow
here, would be to refine (retroactively) A1�s� so that
higher-loop evaluations of RV�s� give us a given specified
approximation of the �-resonance at low energies. A simi-
lar approach could possibly be followed also in M2. In
general, reproduction of the correct low-energy behavior of
timelike observables such as RV�s� represents a difficult
problem. In this work, we will follow a more modest
approach—in Sec. V we will fix the free parameters of
models M1 and M2 by requiring, at loop-level three or
four, the reproduction of the central experimental values
for the Bjorken polarized sum rule db�Q2� at two (in M1)
or one (in M2) values of scale Q�� 1 GeV�, and the
reproduction of the measured value of r��4S � 0�.

All the versions of anQCD presented here are infrared
finite, i.e., the zero momentum limits A1�0� � A1�0� are
finite.

III. ANALYTIZATION OF HIGHER POWERS OF
THE COUPLING PARAMETER

In the previous section, a few of the possibilities of
constructing the analytic version A1�Q

2� of a�Q2� were
presented. For evaluation of QCD observables, the analytic
versions of higher powers ak�Q2� are needed as well. For
that, there is no unique way of constructing the correspon-
dence ak $Ak. In the MA QCD, one possibility is to
apply the MA procedure (5) to each power of a [2]:

 ak�Q2�� A�MA�
k �Q2� �

1

�

Z 1
0

d�

��Q2 �
�pt�
k ���

�k � 1; 2; . . .�;

(19)

where ��pt�
k � Im
ak���� i���, and a is given, e.g., by

Eq. (2). Other choices would be, e.g. ak � Ak
1, Ak�2

1 A2,
etc. With construction (19), it was shown [16] that the
RGE’s governing the evolution of Ak’s are identical to
those governing the evolution of ak’s in pQCD when the
replacements aj � A�MA�

j are made [cf. Eq. (1)]
 

@A�MA�
k �
2�

@ ln
2 � �k
Xjmax

j�2

�j�2A
�MA�
j�k�1�


2�

� �k�0A
�MA�
k�1 �


2� � � � � ;

@2A�MA�
k �
2�

@�ln
2�2
� k

Xjmax

j;‘�2

�j�2�‘�2�‘� k� 1�


A�MA�
j�‘�k�2�


2�

� k�k� 1��2
0A

�MA�
k�2 �


2� � � � � ; etc: (20)

The reason for this lies in the fact that ak, and consequently
��pt�
k ���, fulfill analogous RGE’s. Further, the renormaliza-

tion scheme (RSch) dependence in pQCD, i.e., dependence
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of ak of �j (j � 2), is known [29] (cf. also [30]), the same
dependence holds for the discontinuity functions
��pt�
k ��;�2; . . .� and thus for the MA couplings (19) the

analogous dependence via aj $A�MA�
j is obtained (k �

1; 2; . . . ):

 

@A�MA�
k �
2�

@�2

�
k
�0

A�MA�
k�2 �


2� �
k�2

3�2
0

A�MA�
k�4 �


2�

�O�A�MA�
k�5 �; (21)

 

@A�MA�
k �
2�

@�3
�

k
2�0

A�MA�
k�3 �


2� �
k�1

6�2
0

A�MA�
k�4 �


2�

�O�A�MA�
k�5 �; (22)

 

@A�MA�
k �
2�

@�4

�
k

3�0
A�MA�

k�4 �

2� �O�A�MA�

k�5 �: (23)

The RGE-type relations (20)–(23), valid in the MA QCD,
imply the following important property: If the evaluation
of a spacelike QCD observable quantity D�Q2� is based on
the analytization of STPS of that quantity according to the
rule ak�
2�� A�MA�

k �
2� (k � 1), then the evaluated
value of D�Q2� has a dependence on RScl 
 and on
RSch (�j, j � 2) which is suppressed systematically.
The suppression gets stronger as the number of terms
increases, just as in pQCD. The precision O�A�MA�

n � cor-
responds in pQCD to the precision O�an�.

Having the STPS with terms up to �anmax (nmax � nm),
as well as its analytized analog

 D �nm�
STPS�Q

2� � a�
2;�2; . . .� �
Xnm

n�2

dn�1a
n�
2;�2; . . .�;

(24)

 D �nm�
an: �Q2� �A1�
2;�2; . . .�

�
Xnm

n�2

dn�1An�
2;�2; . . .�; (25)

it is then enough to include in the evolution rules (20)–(23)
(for k � 1 only) terms of up to Anm

on the right-hand side
(RHS). Then the analytized evaluated values Dan:�Q

2� will
have the RScl- and RSch-independence precision
@D�nm�

an: �Q2�=@X� Anm�1 �X � ln
2; �j� which has its

perturbative analog @D�nm�
STPS�Q

2�=@X � anm�1.
In view of these considerations, we propose to maintain

evolution relations (20) (for k � 1) for any version of
anQCD, including models M1 and M2 of the previous
section, truncating them as just mentioned:

 

@A1�
2;�2; . . .�

@ ln
2 � ��0A2 � � � � � �nm�2Anm
;

@2A1�

2;�2; . . .�

@�ln
2�2
� 2�2

0A3 � 5�0�1A4 � � � �

� ��2�nm
Anm

; etc:;

(26)

where we have altogether nm � 1 equations, and ��‘�n are
the corresponding coefficients of the pQCD evolution
equations. Equations (26) represent definitions of Ak’s
(2 � k � nm) via combinations of derivatives
@nA1=@�ln
2�n.

On the other hand, evolution Eqs. (21)–(23) (for k � 1)
for the change of RSch remain of the same form, but with
aforementioned truncation

 

@A1�

2;�2; . . .�

@�2

�
1

�0
A3 �

�2

3�2
0

A5 � � � �

� k�2�nm
Anm

;

@A1�

2;�2; . . .�

@�3
�

1

2�0
A4 �

�1

6�2
0

A5 � � � �

� k�3�nm
Anm

; etc:

(27)

where we have altogether nm � 2 equations, and k�‘�n are
the corresponding coefficients of the pQCD evolution
equations. Equations (27) are, in contrast to Eqs. (26),
not definitions, but in general approximations for the evo-
lution under RSch changes. The RSch dependence of
A1�


2� is treated in more detail later in this work.
On the basis of Eqs. (26) and (27), expressions for the

(truncated) derivatives @Ak=@X, for k � 2 �X �
ln
2; �j�, can be obtained.

In our approach, the basic spacelike quantities are
A1�


2� of a given anQCD model (e.g., MA, M1, M2)
and its logarithmic derivatives

 

~A n�
2� �
��1�n�1

�n�1
0 �n� 1�!

@n�1A1�

2�

@�ln
2�n�1 ;

�n � 1; 2; 3; . . .�;

(28)

whose pQCD analogs are

 ~a n�

2� �

��1�n�1

�n�1
0 �n� 1�!

@n�1a�
2�

@�ln
2�n�1 ;

�n � 1; 2; 3; . . .�:

(29)

The quantities �A1�
2�; ~A2�
2�; ~A3�
2�; . . .�, all de-
rived from A1�


2� � ~A1�

2�, are known functions of

the spacelike momenta 
 in any chosen anQCD version in
a given chosen RSch ��2; �3; . . .�. On the basis of these
quantities and the (truncated) evolution equations (26), any
higher-order quantity Ak�
2� (k � 2) can be constructed,
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in the given RSch. Further, (truncated) Eqs. (26) and (27)
then give us the values of ~Ak�
2� and of Ak�
2� (k � 1)
in any other chosen RSch ��02; �

0
3; . . .�. We emphasize that

in this approach, the higher-order quantities Ak�
2� (k �
2) are not as basic, they are defined via Eqs. (26) for
convenience of having closer notational analogy with
pQCD formulas (and ak $Ak). In these definitions
(26), as well as in �j-running Eqs. (27), we could have
kept one more term (�Anm�1), in order to come closer to
the exact analogy Ak � ak � NP for k � 2, where NP
stands for nonperturbative contributions (nonanalytic func-
tions of a at a � 0).2 However, this is not necessary, as
argued below.

The basic analytization rule we adopt will thus be

 ~a n � ~An �n � 1; 2; . . .�; (30)

where ~An and ~an are defined in Eqs. (28) and (29),
respectively.

At loop level nmax � nm, and in a chosen ‘‘starting’’
RSch ��2; �3; . . .�, the truncation (‘‘tr’’) of the RGE-
running of the pQCD coupling a�
2� is in principle via
Eq. (1) with jmax � nmax � 1 (a � atr, ~an � ~an;tr). The
corresponding truncated ~An �

~An;tr are then

 

~An�
2� � ~an�NP� ~an�
2��1� �NP�O��nm�1
0 anm�n�;

�n� 1;2; . . .�; (31)

and we assumed that we are in the class of the RSch’s
where �j � �

j
0 in the large-�0 limit. We recall that ~A1 �

A1 and ~a1 � a. The subscript (1) in Eq. (31) means that
this is the quantity obtained by not truncating RGE beta
function (1), i.e., for jmax � 1 and keeping the same value
of � in expansion (2) as in the case of the truncated beta
function (i.e., jmax � nmax � 1). The second identity in
Eq. (31) thus shows, as an additional reference, the mag-
nitude of error committed due to the truncation of the beta
function. Definitions (26) of An’s then imply

 

An�
2� � an�
2� � NP�O��nm�n
0 anm�1�

�n � 2; . . . ; nm�: (32)

Since the RGE-running (1) of a is truncated, we have an �

an
�1�
�O��nm�1

0 anm�n�, and relations (32) remain un-
changed when an�
2� there is replaced by an�1��


2�.
The �j-running Eqs. (27) are also truncated, i.e., the

RHS’s there have errors �Anm�1, so that the changes of
RSch entail additional errors. It can be verified that this
effect, when going from a chosen ‘‘starting’’ RSch

��2; �3; . . .� to another RSch ��02; �
0
3; . . .�, modifies rela-

tions (31) to
 

~A1�� A1�

2�� � a�
2� �O��nm�2

0 anm�1� � NP;

~An�
2� � ~an �O��nm�2
0 anm�n� � NP

�n � 2; . . . ; nm�;

(33)

while relations (32) do not get modified. We should keep in
mind that there is yet another truncation involved,
namely, in the solution (2) of RGE (1) the sum over index
k has in the calculational practice finite number of terms.
In our calculations, we will take there kmax � nmax � 2
( � jmax � 1), which is so high that it does not affect
‘‘precision estimate’’ relations (32) and (33).

For example, at loop level 3 (nmax � 3), where we
include in RGE (1) term with jmax � 4 (thus �2), relations
(26) are
 

~A2�

2� �A2�


2� �
�1

�0
A3�


2�;

~A3�
2� �A3�
2�;
(34)

implying
 

A2�

2� � ~A2�


2� �
�1

�0

~A3�

2�;

A3�
2� � ~A3�
2�:
(35)

The RSch (�2) dependence is obtained from the truncated
Eqs. (26) and (27)
 

@ ~Aj�
2;�2�

@�2
�

1

2�3
0

@2 ~Aj�
2;�2�

@�ln
2�2

�
�

1

�0

~A3�

2;�2�

�
�j � 1; 2; . . .�; (36)

where ~A1 �A1. These are second order approxi-
mate partial differential equations for A1�
2;�2�,
~A2�


2;�2�, ~A3�

2;�2�. Higher-order terms (� ~A4)

are neglected on the right-hand side of the RSch evolution
Eq. (36).

At loop level 4 (nmax � 4), where we include in RGE (1)
term with jmax � 5 (thus �3), relations analogous to
Eq. (35) are
 

A2�
2� � ~A2�
2� �
�1

�0

~A3�
2�

�

�
5

2

�2
1

�2
0

�
�2

�0

�
~A4�


2�;

A3�

2� � ~A3�


2� �
5

2

�1

�0

~A4�

2�;

A4�
2� � ~A4�
2�;

(37)

while the changes of the RSch are governed by (approxi-
2Ak � ak � NP holds exactly for the construction Eq. (19),

i.e., the construction by Milton et al. [2– 4] in MA.
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mate) relations

 

@ ~Aj�
2�

@�2

�

�
1

2!�3
0

@2

@�ln
2�2
�

5

3!2

�1

�5
0



@3

@�ln
2�3

�
~Aj�


2�;

@ ~Aj�
2�

@�3
� �

1

3!2�4
0

@3 ~Aj�
2�

@�ln
2�3
�j � 1; 2; . . .�:

(38)

Our approach is in a sense maximally truncating. Namely,
the evolution under the changes of the RSch is truncated in
such a way that @D�nm�

an: �Q2�=@�j �Anm�1. Further, our
definition of Ak’s (k � 2) via Eqs. (26) [cf. Eqs. (35) and
(37)] involve short (‘‘truncated’’) series which,
however, still ensure the correct RScl dependence
@D�nm�

an: �Q2�=@
2 �Anm�1. Furthermore, it may seem
that, for loop level 3 (nmax � 3), the RHS of the first of
Eqs. (34) represents only two perturbative terms [a2 �
��1=�0�a

3] plus nonperturbative terms (NP). However,
since taking jmax � nmax � 1 � 4 in RGE (1) as the basis
for calculation of A1�
2�, it3 is straightforward to show
that the following holds:

 

� ~A2�
2� ��A2�
2� �
�1

�0
A3�
2�

� a2�
2� �
�1

�0
a3�
2� �

�2

�0
a4�
2� �O��2

0a
5� � NP:

(39)

The completely analogous result holds at loop level 4
(nmax � 4 and jmax � 5).

In the MA QCD, in the approach of Ref. [2], here
Eq. (19) for Ak, a truncation is performed only in expan-
sion (2) for a [! ��pt�

1 ���, apparently with kmax � nmax],
and then powers of this truncated a are used to define ��pt�

k
and thus Ak (k � 2). This implies that in the MA QCD our
Ak’s (k � 2; . . . ), on the one hand, and those of the
approach of Milton, Solovtsov, Solovtsova, and Shirkov
(MSSSh) [2– 4], on the other hand, are not the same,
although they must gradually merge when the loop level
is increased. This is illustrated in Figs. 1 and 2, where the
MA-coupling parameters A2�Q

2� and A3�Q
2� of

both approaches are compared, for nf � 3, at loop level
( � nmax) three and four, in MS and in RSch A, respec-
tively. The Adler (A) RSch is defined later in Eqs. (93)
[cf. Eq. (94)]. For both A2 and A3, one can see a decrease
in the absolute difference between our and MSSSh meth-
ods when going from loop level � 3 to 4, Fig. 1 in MS
RSch, and Fig. 2 in RSch A. The decrease can be under-
stood as coming largely from the fact that the perturbative
part of this difference is O�a4� when loop level � 3, and
O�a5� when loop level � 4. Further, inspection of
Figs. 1(a) and 2(a) reveals that the A2 curves practically
merge already at loop level � 3 if RSch is MS, but less so

 

FIG. 1. The coupling parameters A2�Q
2� and A3�Q

2� in MA in MS RSch, with nf � 3 and ���nf�3� � 0:4 GeV, calculated at
(a) loop level � 3 (and kmax � 5), and (b) loop level � 4 (and kmax � 6). Presented are results of construction of Milton et al.
(MSSSh) [2– 4], and of our construction.

3When the anQCD is not MA, but rather M1 or M2, RGE (1)
and the (truncated) expansion (2) still remain the basis for
calculation of the MA part of A1�


2�, the difference between
A1�


2� and A�MA�
1 �
2� being purely nonperturbative,

cf. Eqs. (12), (13), and (18).
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if RSch is A. An indication towards understanding this
resides in the fact that the coefficient at a4 of the difference
between the two curves is proportional to (2�0�2 � 5�2

1),
this being in MS about one-fifth of the corresponding value
in RSch A (when nf � 3). In Fig. 3 the coupling parame-

ters A1�Q2� and A2�Q2� of anQCD models M1, M2, and
MA are presented as functions of the scale Q, for specific
chosen fixed parameters of the models M1 and M2 (see
Sec. V) and in the aforementioned specific RSch A. Note
that we used kmax � nmax � 2 in the calculation of ��pt�

1 via
Eq. (2) in all cases, i.e., also in the MSSSh cases. In Fig. 3,
loop level � 4 and kmax � 6 was taken (using our de-
scribed approach). In Figs. 1–3, the basis for calculation
was the kmax-truncated series (2) in the corresponding
RSch.

Even when already having anQCD coupling A1�Q
2�,

there is no unique way to merge analyticity requirements
with the perturbative results at higher orders, i.e., Eq. (32)
for Ak�Q

2� (k � 2). The latter relations are ensured by our
definitions of Ak�Q2� for k � 2 via relations (26), but this
is just one of the possibilities of addressing the problem. In
MA the construction of A1�Q

2� is very closely related to
the perturbative solution a�Q2� via the dispersion relation
(5). Therefore, it is very natural to keep that close analogy
at higher orders, via dispersion relations (19). As a con-
sequence, the RGE-type of relations (26) are fulfilled in
MA [16]. For a general anQCD model, this approach does
not apply. Deviations of A1�Q

2� and A1�s� from their MA
values imply that the discontinuity function �1��� deviates
from its MA analog ��pt�

1 ��� � Im a���� i�� at low val-
ues of�, cf. Eqs. (10), (11), and (17). Therefore, there is no
direct natural way of prescribing the low-� behavior of
the higher-order discontinuity functions �k��� appearing
in the dispersion relations of the type of Eq. (19) for
Ak, i.e., prescribing their deviations from ��pt�

k ��� �
Imak���� i�� for k � 2. We define Ak�Q2� for k � 2
by forcing them to obey the truncated RGE-type relations
(26). We emphasize that these relations define, in our
approach, the couplings Ak�Q2� for k � 2. Thus, we

 

0.5 1 1.5 2 2.5 3 3.5 4
Q GeV

-0.1

0

0.1

0.2

0.3

0.4

A
1,

3
A

2

loop level 4, kmax 6, A RSch

3 A2 , M2

3 A2 , M1

3 A2 , MA

A1 , M2

A1 , M1

A1 , MA

FIG. 3. Same as in Fig. 2, but now A1 and A2 for various
models (M1, M2, and MA) with specific model parameters (see
Sec. V): c0 � 2:94, cr � 0:45, cf � 1:08 for M1; cv � 0:1 and
cp � 3:4 for M2; nf � 3 and ���nf�3� � 0:4 GeV in all three
models. The upper three curves are for A1, the lower three
curves are for 3
A2. All couplings are in RSch A, Eq. (93).
A2 is constructed with our approach.

 

FIG. 2. Same as in Fig. 1, but now in RSch A, Eq. (93).

GORAZD CVETIČ AND CRISTIÁN VALENZUELA PHYSICAL REVIEW D 74, 114030 (2006)

114030-8



indirectly define the corresponding discontinuity functions
�k. This construction of Ak’s is motivated also by the
skeleton approach as discussed in Ref. [12]. Furthermore,
as we will see later, this construction of Ak’s allows us to
suppress systematically the RScl and RSch dependence in
the evaluated observables with the increasing order, be-
cause an RGE-type of analogy with pQCD is being
preserved.

IV. SKELETON-MOTIVATED EXPANSION

Consider an observable D�Q2� depending on a single
spacelike physical scale Q2�� �q2�> 0. Its perturbation
expansion has the form

 D �Q2�pt � a� d1a
2 � d2a

3 � � � � ; (40)

where a � a�
2;�2; . . .� is taken at a given RScl (
) and
RSch ��2; . . .�. As mentioned before, we will take the
convention � � ��, i.e., the MS QCD scale as the reference
scale for 
 [cf. Eq. (2) and (3)]. Further, we will work in
the following classes of RSch: each �k (k � 2) is a poly-
nomial in nf of order k; equivalently, it is a polynomial in
�0:

 �k �
Xk
j�0

bkj�
j
0; k � 2; 3; . . . : (41)

The MS clearly belongs to this class of schemes. In such
schemes, the coefficients dn of expansion (40) have the
following specific form in terms of �0, as can be deduced
from the scheme independence of observable D�Q2�, e.g.
by using relations of Ref. [29]:

 d1 � c�1�11�0 � c
�1�
10 ; dn �

Xn
k��1

c�1�nk�
k
0; (42)

i.e., each dn is a polynomial of order n in �0 and includes
in general, in addition, a term with the negative power
1=�0 (d1 does not have it). In the MS scheme, the negative
powers do not occur.

We will now construct a separation of the series (40) into
a sum of RScl-independent subseries

 D �Q2�pt �D�1��Q2�pt �
X1
n�2

knD�n��Q2�pt; (43)

with the following properties: (a) each dimensionless con-
stant kn is RScl independent; (b) each subseries D�n�

pt (n �

1) is RScl independent, and it is normalized so that D�n�
pt �

an �O�an�1�; (c) the subseries D�n��Q2�pt contains all the
leading-�0 coefficients of the following ‘‘rest’’:

 

1

kn

D�Q2�pt �D�1��Q2�pt � � � � � kn�1D

�n�1��Q2�pt�:

(44)

We will show that these conditions uniquely determine

factors kn and perturbation expansions of all D�n��Q2�.
Further, we show in Appendix B that the above subseries,
which always exist, would coincide with the expansions of
the corresponding skeleton terms in the skeleton expansion
of the observable if such an expansion existed in the
considered RSch.

We consider first the leading-�0 part of expansion (40):

 D �1�
0 �Q

2�pt � a�
X1
j�2

ajc�1�jj �
j
0: (45)

Under the change of RScl from 
2 to 
2
�, using the

notation L� � ln�
2
�=


2�, we have by RGE (1)
 

a � a� �
X1
n�1

~a�n�1�
n
0L

n
�

� a� � a2
��0L� � a3

���2
0L

2
� � �1L��

� a4
�

�
�3

0L
3
� �

5

2
�0�1L

2
� � �2L�

�
� � � � ; (46)

where a � a�
2� and a� � a�
2
��. Inserting this into

expansion (40) we obtain the transformation rules for
the coefficients c�1�ij (42) under the change of RScl.
Specifically, for the diagonal coefficients the transforma-
tions are

 c�1��kk �
Xk
s�0

k
s

� �
Ls�c

�1�
k�s;k�s; (47)

where we use the notations c�1�ij � c�1�ij �

2� and c�1��ij �

c�1�ij �

2
�� (and c�1�00 � 1 by definition). Inserting expansion

(46) into expansion (45) we obtain
 

D�1�
0 �Q

2�pt � a� � a2
�
�0c

�1�
�11�

� a3
�
�2

0c
�1�
�22 � �1�c

�1�
�11 � c

�1�
11 �� �O��3

0a
4�:

(48)

This implies that the leading-�0 series (45) does not main-
tain its form under the change of RScl, since a new term
a3
��1�c

�1�
�11 � c

�1�
11 � appears at �a3. The RScl-‘‘covariant’’

form, up to �a3, is then
 

D�1�
1 �Q

2�pt � a� a2
�0c
�1�
11 � � a

3
�2
0c
�1�
22 � �1c

�1�
11 �

� a4
�3
0c
�1�
33 � �O��4

0a
5�: (49)

We now iteratively repeat the procedure: we insert expan-
sion (46) into expansion (49) and, after some algebra and
using relations (47), obtain
 

D�1�
1 �Q

2�pt � a� � a2
�
�0c

�1�
�11� � a

3
�
�2

0c
�1�
�22 � �1c

�1�
�11�

� a4
�
�3

0c
�1�
�33 �

5
2�0�1�c

�1�
�22 � c

�1�
22 �

� �2�c
�1�
�11 � c

�1�
11 �� �O��4

0a
5�: (50)

The new terms appearing at�a5
� here require the following

VARIOUS VERSIONS OF ANALYTIC QCD . . . PHYSICAL REVIEW D 74, 114030 (2006)

114030-9



restoration of the RScl ‘‘covariance’’ up to order �a5:
 

D�1��Q2�pt � a� a2
�0c
�1�
11 � � a

3
�2
0c
�1�
22 � �1c

�1�
11 �

� a4

�
�3

0c
�1�
33 �

5

2
�0�1c

�1�
22 � �2c

�1�
11

�
�O��4

0a
5�: (51)

This procedure can be continued to any required order.
Expression (51) is now the RScl-covariant leading-�0 part
of the full perturbation expansion (40). This means that it
keeps its form (51) under any change of RScl 
2.
Variations of a � a�
2� and of ckk � ckk�
2� under the
RScl variation are governed by the RScl invariance of the
entire observable D and of its perturbation expansion (40),
as reflected by relations (46) and (47). The additional terms
appearing in expansion (51), in comparison with the origi-
nal leading-�0 series (45), are subleading in �0 and rep-
resent effects beyond one loop involving diagonal
coefficients c�1�kk . As shown in Appendix B, the covariant
leading-�0 expansion (51) is the expansion of the leading
skeleton (LS) term in an assumed skeleton expansion of the
observable D.

Now we subtract the LS expansion (51) from expansion
(40), and the difference now involves only subleading-�0

terms
 


D�Q2�pt �D�1��Q2�pt� � k2

�
a2 �

X
n�1

an�2d�2�n

�

�k2 � c�1�10 �; (52)

where the coefficients d�2�n have a structure similar to that of
dn’s (42)

 d�2�n �
Xn
k��1

c�2�nk�
k
0 �n � 1; 2; . . .�: (53)

Coefficients c�2�ij are related to the original coefficients c�1�ij
by relations

 c�1�10 c
�2�
1j � c�1�2j � b1jc

�1�
11 ; �j � 1; 0;�1�;

c�1�10 c
�2�
2j � c�1�3j �

5
2b1;j�1c

�1�
22 � b2jc

�1�
11 ;

�j � 2; 1; 0;�1�;

(54)

and coefficients bkj are those of the expansion of �k
coefficients (41) in powers of �0 (including the case k �
1). Specifically, we have bk;�1 � 0 �k � 1; 2; . . .�. For k �
1, we have b11 � 19=4 and b10 � �107=16, both numbers
being RSch independent. Now we repeat the previous
construction, but now for the (canonically normalized)
rest �1=k2��D�D�1�� of Eq. (52) instead of D (40). Its
RScl-covariant leading-�0 part D�2� then turns out to give
 

k2D
�2��Q2�pt � k2fa2 � a3
�0c

�2�
11 �

� a4
�2
0c
�2�
22 � �1c

�2�
11 � �O��3

0a
5�g: (55)

Subtracting this from the rest (52), we obtain

 
D�Q2�pt �D�1��Q2�pt � k2D
�2��Q2�pt�

� k3

�
a3 �

X
n�1

an�3d�3�n

�
; (56)

 k3 � c�1�10

�
c�2�10 �

1

�0
c�2�1;�1

�
; (57)

 d�3�1 � �0�c
�2�
21 � b11c

�2�
11 �=c

�2�
10 � k4=k3; (58)

where k4=k3 is a number ��0
0 which will be given explic-

itly below. The (RScl-covariant) leading-�0 part D�3� of
the canonically normalized expression �1=k3�


�D�D�1� � k2D
�2�� gives

 k3D
�3��Q2�pt � k3fa

3 � a4
�0c
�3�
11 � �O��2

0a
5�g; (59)

 c�2�10 c
�3�
11 � �c

�2�
21 � b11c

�2�
11 �: (60)

Defining

 D �4��Q2�pt � a4 �O��0a
5�; (61)

and following the procedure pattern, we subtract expres-
sion (59) from expression (56) and obtain
 

D�Q2�pt �D�1��Q2�pt � k2D
�2��Q2�pt � k3D

�3��Q2�pt

� k4D
�4��Q2�pt �O��0

0a
5�; (62)

where perturbation expansions for D�j�’s are given by (51),
(55), (59), and (61); coefficients k2 and k3 are given by
Eqs. (52) and (57); coefficients c�1�ij , c�2�ij , c�3�ij are given by
Eqs. (42), (54), and (60); and an explicit expression for the
coefficient k4 is

 k4 � c�1�10

�
c�2�20 � b10c

�2�
11 �

c�2�1;�1

c�2�10

�c�2�21 � b11c
�2�
11 �

�
1

�0
c�2�2;�1

�
: (63)

It is straightforward to check that all the coefficients k2, k3,
k4 are RScl independent [as are the subseries D�j��Q2�].
Thus, identity (62), obtained by our construction, repre-
sents identity (43) to order n � 4. This construction can be
continued to any order.

In practice, we know only all the leading-�0 parts of the
coefficients dj of observable D�Q2� Eq. (40), i.e., all the

coefficients c�1�jj ; and in addition, we usually know only
one, two, or three full coefficients (d1, d2, and possibly d3).
This implies that the first term D�1� on the RHS of identity
(62) is known to all orders, while the other terms (D�2�,
D�3�, and possibly D�4�) are known only in their truncated
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version. This means that the rest term in Eq. (62) is, in such
a case, O��3

0a
5�, not O��0

0a
5�.

The perturbation expansion D�1�
pt of the ‘‘leading-

skeleton’’ (LS) term can be written in a resummed form
[31,32]

 D �1��Q2�pt �
Z 1

0

dt
t
FE
D�t�a�te

CQ2�; (64)

where FE
D�t� is the LS-characteristic function4 which often

can be written in a closed explicit form [31]. In principle,
FE
D�t� can be obtained for any spacelike observable whose

leading-�0 parts (c�1�kk ) of all coefficients are known. The
value of C in (64) depends on the value of the reference
scale � used in the RGE running; in our convention, as
mentioned before, we use � � �� which corresponds to
C � �C � �5=3.

At this point, we will turn to the question of the RSch
dependence of the (truncated) perturbation series (62). The
RSch independence of the series (40) implies specific
transformation rules of the expansion coefficients dj under
the change of �j’s (j � 2) [29]:

 d1 � �d1; d2 � �d2 �
1

�0
��2 � ��2�;

d3 � �d3 � 2 �d1
1

�0
��2 � ��2� �

1

2�0
��3 � ��3�; . . . ;

(65)

where the bars denote the values with MS RSch parameters
�k � �bk �

P �bkj�
j
0, and unchanged RScl. This implies, in

view of relations (42), (54), and (60), specific transforma-
tion rules for c�s�nk coefficients. We will consider that the first
term in skeleton-motivated expansion (62) has a known
characteristic function, cf. Eq. (64), and that at most the
first three nonleading coefficients of the perturbation ex-
pansion (40) of observable D are known: �d1, �d2, and �d3 —
in MS RSch and at RScl 
2 � Q2. Since each term in
expansion (62) is RScl independent, we can reexpand each
D�j��Q2�pt (j � 2) in powers of a�Q2

j �, i.e., at different
chosen RScl’s Qj, in a chosen common RSch ��2; �3; . . .�.
The resulting subseries, however, will now be truncated
since dj’s for j � 4 are not known. This leads to the
following form of the skeleton-motivated expansion (62):

 D �Q2�pt �D�Q2��TPS� �O��3
0a

5�; (66)

 

D�Q2��TPS� �D�1��Q2� � t�2�2 a
2�Q2

2� �
X3

j�2

t�j�3 a
3�Q2

j �

�
X4

j�2

t�j�4 a
4�Q2

j �; (67)

where the coefficients t�j�i depend on the scale ratiosQ2
j=Q

2

and the RSch parameters �k (41), and are written explicitly
in Appendix A in terms of the coefficients �c�1�ij , the latter
comprising via Eq. (42) the coefficients �dn of the original
perturbation series (40) in MS RSch and at the RScl 
2 �
Q2.

We now turn to the question of analytization of the
perturbation series (67), within a given anQCD model
with known analytic couplings Ak, Eqs. (6) and (28)–
(37). For the first (LS) term, the natural analytization
procedure is to replace the perturbative coupling
a�teCQ2� by its anQCD counterpart A1�te

CQ2�:5

 D �1��Q2�an �D�LS��Q2� �
Z 1

0

dt
t
FE
D�t�A1�te

CQ2�:

(68)

In contrast to expression (64) which is an ill-defined in-
tegral due to the Landau singularities of a, expression (68)
is a well-defined integral in any given anQCD [unless
A1�Q

2� diverges too strongly when Q2 ! 0]. We can
adopt the viewpoint that any anQCD model is defined:
(a) by a specific expression for A1�Q

2�, and (b) by pre-
scription (68) for calculation of the LS terms of any space-
like observable. The analytization of the other terms in
Eq, (67), after the choice of an anQCD model, i.e., of
A1�Q2�, can be performed in different ways. For example,
the replacements ak�Q2

j �� Ak
1�Q

2
j �;A

k�2
1 �Q2

j �A2�Q2
j �;

. . . ;Ak�Q
2
j � all appear equally natural at first, since the

perturbative parts of these expressions are all the same to
the order considered—cf. relations (32) and (33).
However, construction of the higher order couplings Ak
(k � 2) on the basis of the anQCD coupling A1, as
presented in Sec. III, suggests that it is the replacement

 
~ak�Q
2
j �� ~Ak�Q

2
j � )�a

k�Q2
j �� Ak�Q

2
j �; �k � 1�

(69)

that appears to be the most natural from the point of view of
the requirement of the RScl and RSch invariance of the
observables. Namely, Ak�
2;�2; . . .�’s fulfill, to the order
considered, the same evolution equations under the
changes of the RScl and of RSch as ak�
2;�2; . . .�’s
when the replacements (69) are performed everywhere.
Further, the LS analytization (68) of the first term D�1�

pt

of (67) is also equivalent to the term-by-term analytization

4The superscript E means ‘‘Euclidean,’’ since the scales in-
volved (Q2, teCQ2) are spacelike.

5A different approach to considering the perturbative LS term
(64) was developed by the authors of Ref. [33]. They present a
novel version of the leading-�0 renormalon calculus, and con-
sider that an OPE-term exists whose Q2 dependence is the same
as that of the renormalon ambiguity of the perturbative LS term
and that the ambiguity cancels in the sum (‘‘PT� NP’’). This
sum can be presented in the LS form (64) with the perturbative
coupling a�teCQ2� there replaced by a modified (but nonana-
lytic) coupling with one parameter. Since they work in the OPE
framework, the latter parameter is observable-dependent.
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(69) of the perturbation expansion of D�1�
pt , as is explicitly

shown in Appendix B. The analytization (69) of the TPS
(67), which results in the ‘‘truncated analytic series’’
(TAS),

 D �Q2� �D�Q2��TAS� �O��3
0A5�; (70)

 

D�Q2��TAS� �D�LS��Q2� � t�2�2 A2�Q2
2� �

X3

j�2

t�j�3 A3�Q2
j �

�
X4

j�2

t�j�4 A4�Q2
j �; (71)

has, as a consequence, the suppression of the RScl and
RSch dependence just as is known for the corresponding
TPS in pQCD, but with ak � Ak:

 

@D�Q2��TAS�

@ lnQ2
j

� O��5�j
0 A5� �j � 2; 3; 4�; (72)

 

@D�Q2��TAS�

@�k
� O��3�k

0 A5� �k � 2; 3�: (73)

We are allowed, in principle, to vary in the TAS series (71)
three different RScl’s Qj and 3� 4 RSch parameters b2j

and b3j appearing in �2 and �3. One may want to have, for
given chosen RScl’s Qj, such a RSch that effectively only

the first coefficient t�2�2 in the beyond-the-LS contribution is
nonzero. This implies various conditions involving the
other five t�j�i ’s [Eqs. (A4)–(A8)]:

 t�2�3 � t�3�3 � 0;
X4

j�2

t�j�4 � 0; (74)

 )D�Q2� �D�LS��Q2� � t�2�2 A2�Q2
2� �O��3

0A5�:

(75)

Specifically, if we choose for all three D�j��Q2;
2 �

Q2
j ��TAS� �j � 2; 3; 4� the same RScl

 Q2
2 � Q2

3 � Q2
4 � Q2 exp�C�; (76)

the corresponding �k � bkj�
j
0 �k � 2; 3� have the follow-

ing 	bkj � bkj � �bkj:

 	b22 � �c�1�10 � �c
�2�
11 � 2C�; (77)

 	b21 � �c�1�10 �c�2�10 ; 	b20 � 0; (78)

 

1
2	b33 � �c�1�10 �c�2�22 � 3�c�1�10 C� �c

�2�
11 � C� � 	b223� �c�1�11 � C�;

(79)

 

1
2	b32 � �c�1�10 �c�2�21 � C�3�c�1�10 �c�2�10 � 2b11 �c�1�10 � � 	b222 �c�1�10

� 	b213� �c�1�11 � C�; (80)

 

1
2	b31 � �c�1�10 �c�2�20 � C2b10 �c�1�10 � 	b212 �c�1�10

� 	b203� �c�1�11 � C�; (81)

 

1
2	b30 � �	b202 �c�1�10 �� 0�: (82)

Here, �c�k�ij � c�k�ij �

2 � Q2; MS�. Results (77)–(82) are

obtained by using explicit expressions (A4)–(A8) obtained
in Appendix A, applying to them conditions (74) for the
RScl choice (76). Specifically, result (77) is obtained by the
requirement t�2�3 � 0; results (78) from the requirement
t�3�3 � 0, being zero both the coefficient at �0

0 and at
1=�0, respectively; results (79)–(82) are obtained from
requirement

P
t�j�4 � 0, being zero all the coefficients at

the �0 powers �2
0, �1

0, �0
0, 1=�0, respectively.

Our evaluation method (71), with the choice of the
scheme described above [Eqs. (75)–(77) and (80)–(82)],
emphasizes in the beyond-the-LS parts the role of the
analytic couplings Ak�
2� (k � 2) constructed in
Sec. III from the couplings ~An�


2�, Eq. (28) [see
Eqs. (37)]. The couplings Ak�


2� (k � 2) were con-
structed in such a way as to have, at perturbative level,
their equivalence with an�
2�. However, the construction
in Sec. III strongly suggests that the couplings ~An�


2�
(n � 2) are more basic since they are constructed as de-
rivatives of A1�


2� which is the basic quantity in any
anQCD model. Further, the skeleton-expansion arguments
presented in Appendix B show that ~An�


2� are the basic
elements for the expansion of each term in the skeleton
expansion. Therefore, a more natural choice for RSch
��2; �3� in the evaluation method (71), with RScl’s (76),
would be such that the resulting TAS expression is

 D �Q2� �D�Q2��TAS� �O��3
0

~A5�; (83)

 D �Q2��TAS� �D�LS��Q2� � ~t2 ~A2�Q2eC�: (84)

To obtain the �k’s �k � 2; 3� necessary for this result, we
first reexpress all Ak’s (k � 2) in TAS (71) in terms of
~An’s, Eqs. (37). Keeping the RScl’s according to (76), this

implies that, in a general RSch ��2; �3� expression (71)
can be reexpressed as
 

D�Q2��TAS� �D�LS��Q2� � ~t2 ~A2�Q2eC�

� ~t3 ~A3�Q
2eC� � ~t4 ~A4�Q

2eC�; (85)

where the coefficients ~ti are certain combinations of t�k�s ,
and are written explicitly in Appendix A, Eqs. (A16)–
(A21). Requiring the form (84), i.e.,

 

~t 3 � ~t4 � 0; (86)
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implies, by Eqs. (A16)–(A21), that the corresponding
�k � bkj�

j
0 �k � 2; 3� have the following 	bkj � bkj �

�bkj:

 	b22 � �c�1�10 � �c
�2�
11 � 2C�; (87)

 	b21 � �c�1�10 �c�2�10 � b11 �c�1�10 ; 	b20 � �b10 �c�1�10 ; (88)

 

1
2	b33 � �c�1�10 �c�2�22 � 3�c�1�10 C� �c

�2�
11 � C� � 	b223� �c�1�11 � C�;

(89)

 

1
2	b32 � �c�1�10 �c�2�21 �

5
2b11 �c�1�10 �c�2�11 � �c�1�10

�b22

� 3C �c�1�10 � �c
�2�
10 � b11� � 	b22��3�c�1�10 �

5
2b11�

� 	b213� �c�1�11 � C�; (90)

 

1
2	b31 � �c�1�10 �c�2�20 �

5
2b10 �c�1�10 �c�2�11 �

5
2b11 �c�1�10 �c�2�10

� �c�1�10 �
5
2b

2
11 �

�b21 � 3b10C� � 	b22
5
2b10

� 	b21��3�c�1�10 �
5
2b11� � 	b203� �c�1�11 � C�; (91)

 

1
2	b30 � �

5
2b10 �c�1�10 �c�2�10 � 5b10b11 �c�1�10 �

�b20 �c�1�10

� 5
2b10	b21 � 	b20��3�c�1�10 �

5
2b11�: (92)

In these expressions, �b2j are the coefficients b2j in MS:
�b22 � 325=96, �b21 � 243=32, �b20 � �37 117=1536 (and
b11 � 19=4, b10 � �107=16). We will apply, as a rule, our
evaluation approach in the RSch (87)–(92), i.e., where the
resulting formula is (83) and (84), and will use the RScl’s
(76) with C � �C � �5=3. The RSch evidently depends on
the observable. Our starting point will be this RSch for the
massless Adler function D�Q2� � dv�Q2�, where the
STPS is known to a large degree of accuracy up to �a4

(up to�a3 it is known exactly)—we will call this RSch A
(‘‘A’’ for Adler).6 If an observable is known in STPS only
up to�a3, only formulas (87) and (88) are to be applied, as
~t4 is not known; in that case, in Eq. (83) the unknown rest
term is O��2

0
~A4�. For example, Bjorken polarized sum

rule db�Q2� is such an observable.
In Appendix B, a different method of evaluation is

presented, which would be an evaluation of the skeleton
expansion itself if such an expansion existed in the con-
sidered RSch. The RSch dependence of that method is
numerically stronger, which may be a reflection of the
fact that this expansion, if it exists, is valid only in a

specific (‘‘skeleton’’) RSch that is hitherto unknown
[34,35].

V. NUMERICAL RESULTS

In this section, we take the position that the anQCD
models M1 and M2, introduced in Sec. II, the form of
A1�Q

2� there, Eqs. (15) and (18), is achieved in the
aforementioned ‘‘optimal’’ RSch (87)–(92) for the mass-
less Adler function dv�Q

2�—RSch A. We must keep in
mind that models M1 and M2 change the form of A1�Q2�
when the RSch ��2; �3; . . .� is changed.7

We will calculate numerically various low-energy QCD
observables in the anQCD models MA, M1, and M2, with
nf � 3, by using the skeleton-motivated evaluation
method presented in the previous section, Eq. (85). One
such quantity is the massless Adler function dv�Q2� whose
pQCD expansion coefficients d1 and d2 (in MS RSch and
at RScl 
2 � Q2) are known exactly [36,37], and d3 has
been estimated as a polynomial in nf to a high degree of
accuracy [38] (see Appendix D for explicit expressions of
d1, d2, d3). The normalization of dv is taken according to
Eq. (40) when nf � 3. The additional light-by-light con-
tributions [37] do not contribute when nf � 3. Further, the
LS characteristic function FE

v�t� for dv�Q2�was obtained in
Ref. [31], and is given in Appendix C in Eqs. (C6) and
(C7). Evaluation method (85) can thus be applied by
including terms � ~A4 in the case of the massless Adler
function (for a different approach to evaluating Adler
function, see Ref. [39]). The optimal RSch for the massless
Adler function dv�Q2� is then obtained by requiring dis-
appearance of � ~A3 and � ~A4 terms, Eq. (86), where we
choose RScl according to (76) with C � �C � �5=3. We
call this RSch Adler (A), and it can be obtained from MS
RSch by applying relations (87)–(92), resulting in

 ��A�2 � �23:6074� 16:0248�0 � 8:04784�2
0;

��A�3 � 127:38� 35:8577�0 � 12:8734�2
0 � 1:349 26�3

0:

(93)

The values for nf � 3 are �2 � �18:9211 and �3 �

�33:8404 (in MS RSch, at nf � 3, the values are
10.0599 and 47.2281, respectively). In RSch A, the eval-
uated massless dv�Q2� is thus

 dv�Q
2�TAS �

Z 1
0

dt
t
FE
v�t�A1�te

�CQ2;��A�2 ; ��A�3 �

�
1

12
~A2�e

�CQ2�; (94)
6The difference between this RSch A and the RSch A0 (77)–

(82) for the Adler function is small. For example, for nf � 3, the
values are ��A�2 � �18:92, ��A

0�
2 � �18:59; ��A�3 � �33:84,

��A
0 �

3 � �32:72. In Ref. [12], we used RSch A0 (77)–(82)
[with RScl’s (76) with C � �C � �5=3], and denoted there this
approach as ‘‘v2’’.

7When �j’s (j � 2) change, the change of A1�Q2� in general
cannot be described just by running of the parameters of the
model with �j’s, since new terms appear that depend on those
parameters.
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and the difference between the (massless) true dv�Q2� and
dv�Q2�TAS is formally O��3

0
~A5�.

The (V � A-channel) semihadronic � decay rate ratio r�
is one of the best measured low-energy QCD quantities, its
massless part for nonstrange hadron production has the
value r��4S � 0; mq � 0� � 0:204	 0:005 [8,9]
[cf. Appendix E, Eq. (E6)]. The heavy quarks (c and b)
do not contribute, since r� is a Minkowskian observable,
and the � particle cannot decay to charmed mesons because
their masses are larger than m�.

8 Our evaluation approach
for r��4S � 0; mq � 0� uses the aforementioned evalu-
ation (94) of the (massless) Adler function dv�Q2� which
is then inserted in the contour integral (C8). The LS part
can then be written in the form (C9) with the timelike LS
characteristic function (C10) and (C11). The beyond-the-
LS (bLS) contribution is the contour integral

 r��4S � 0; mq � 0��bLS�

�
1

2�

Z ��
��

d��1� ei��3�1� ei��



1

12
~A2�e

�Cm2
�e
i��: (95)

Yet another low-energy QCD observable that we will
consider is the Bjorken polarized sum rule (BjPSR)
db�Q2�. Its LS-characteristic function is obtained in
Appendix C, on the basis of the known leading-�0 coef-
ficients [40] using the technique of Ref. [31]. The full
perturbation coefficients d1 and d2 for the massless
db�Q2�, in MS RSch and at RScl 
2 � Q2, were obtained
in Refs. [41] (see Appendix D for explicit expressions for
d1 and d2). For the coefficient d3, only the leading-nf part
( / n3

f) is known exactly [40]; based on this, estimates of
d3 as a polynomial in �0 were performed in Ref. [42] using
naive non-Abelianization (NNA) nf � �6�0 [43]. For the
evaluation of (the massless part of) db�Q2� we will not use
estimates of the full d3, i.e., we will use method (85) with
terms up to ~t3 ~A3 included, in any chosen RSch and with
RScl’s (76) with C � �C � �5=3. The formal difference
between the evaluated and the true value is then O��2

0
~A4�.

The experimental values of db�Q2� at lowQ2 are much less
precise than those of r��4S � 0�. At Q2 � 2 and 1 GeV2,
they are db�2 GeV2� � 0:16	 0:11 and db�1 GeV2� �
0:17	 0:07 [44] (for an application, cf. Ref. [45]). The
contributions of massive quarks (mc, mb) are
j	db�Q

2;mq � 0�j< 10�3 for Q2 � 2 GeV2 [46], thus
negligible. We recall that both dv and db are massless
observables which are normalized here according to the
convention (40) for nf � 3. Although the uncertainty of
the measured values of db�Q2� is significantly lower at
Q2 � 1 GeV2 than at Q2 � 2 GeV2, we will use both

central values. We expect the theoretical predictions of
our evaluations in general to be more reliable at higher
momenta Q2 > 1 GeV2.

Now we will fix the parameters of models M1 and M2.
Model M1 (11)–(16) has three independent parameters cf,
cr, c0 (and �� � 0:4 GeV as in MA). Requiring the repro-
duction of the aforementioned experimental central values
r��4S � 0; mq � 0� � 0:204, db�2 GeV2� � 0:16, and
db�1 GeV2� � 0:17, we obtain a solution for the three
parameters, with the following values: cf � 1:08, cr �
0:45, c0 � 2:94. We will use these parameter values in
M1 (in RSch A). In general, the predicted values of ob-
servables do not change a lot when c0 is varied in the
regime�1; they change more when cr and/or cf are varied.
The experimental values of various higher-energy QCD
observables D�Q2�;R�s� �Q2; s * 10 GeV2� should be
well reproduced in M1, because condition (16) ensures
that M1 and MA merge at higher energies Q2, s� ��2,
and it has been demonstrated that MA with ���nf�3� �

0:4 GeV () ���nf�5� � 0:26 GeV) reproduces well those

values [3]. We note that model MA (with �� � 0:4 GeV)
predicts r��4S � 0; mq � 0� � 0:14, which is signifi-
cantly too low.

Model M2 (17) and (18) has two free parameters cv and
cp, both assumed to be �1. Requiring reproduction of the
central value of r��4S � 0; mq � 0� � 0:204, and requir-
ing jcpj, jcvj � 0:1, it turns out that the model then always
predicts values db�2 GeV2�> 0:19. Requiring the minimal
possible value db�2 GeV2� � 0:19 gives us the parameter
values cv � 0:1 and cp � 3:4. We will use these parameter
values in M2 (in RSch A).

In Table I we present results of calculations of r��4S �
0; mq � 0� and db�Q

2 � 2 GeV2� with our evaluation
method (85), in the aforementioned RSch A (93) and
(94) and at loop level � 4 and 3, in various anQCD mod-
els: M1, M2, and MA. When loop level � 4 (and kmax �
6), we used in the calculation of r��4S � 0; mq � 0� the
estimated N3LO perturbation coefficient d3 of Ref. [38] for
the Adler function (cf. Appendix D), as mentioned earlier.
In the case of db�Q2 � 2 GeV2�, when loop level � 3 or 4,
evaluation formula (85) was used in RSch A by inclusion
of terms up to ~A3 only, as the N3LO coefficient d3 is not
known there. We note that MA (with ���nf�3� � 0:4 GeV),

with light quark masses mu;md;ms �
�� �mu;md;ms �

0�, does not reproduce the well-measured experimental
value r��4S � 0; mq � 0� � 0:204	 0:005, as already
mentioned in the Introduction. This fact led us to suggest
alternative versions of anQCD (e.g., M1, M2).

Now that the parameters of the presented anQCD mod-
els have been fixed, we can present various results of these
models, evaluated with the method (85). In Fig. 4(a) we
present curves for the massless Adler function dv�Q

2�
(with nf � 3) as functions of energy Q, in models M1,

8The contributions of heavy quarks in Euclidean observables
D�Q2�, such as the Adler function, can be more important, even
though Q2 <m2

c—see the discussion later in this section.
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M2, and MA. The RSch used is RSch A (93) and (94).
Loop level is 4, i.e., we include the value ��A�3 in our
calculation for ��pt�

1 , with kmax � 6 [cf. Eq. (2)], and use
the estimated N3LO perturbation coefficient d3 of Ref. [38]
(cf. Appendix D). The light-by-light contributions, which
have a different topology of diagrams and should probably
be resummed separately (cf. Ref. [11]), appear for the first
time at �a3 and are proportional to the square of the sum
of the quark charges �

P
Qf�

2 [37]. This sum is zero in the
case nf � 3 considered here. Figure 4(b) represents the
results for the full Adler function, i.e., the V-channel heavy
quark corrections 	dv�Q2;mc;mb� have been added there.
For the calculation of the latter, we follow the procedure of
Ref. [47], including the a2-contributions [note that
dv�Q2� � �1=2�D�Q2� � 1, where D is defined in [47]].
The first seven coefficients of the low-momentum Taylor
expansion for the heavy quark a2-contributions are calcu-
lated in Ref. [48]. Through a conformal mapping together
with Padé improvement, as proposed in Ref. [49], an
approximant is obtained. The approximant reproduces the
low-momentum behavior and fits very well the large-
momentum expansion [50] for this quantity up to energies
Q2 � 16m2

q (see also Fig. 4 of Ref. [47]). Thus, this

method can be safely used for the q � c, b quarks in the
energy range we are interested in.9 In the heavy quark
contributions, we simply replaced a�Q2� and a2�Q2� by
A1�Q

2� and A2�Q
2� (using � � �� � 0:4 GeV). The

indicated 	 uncertainties in the full Adler function curves
are those c quark contributions which are proportional to
A2. In Figs. 4(a) and 4(b) we included the STPS’s [trun-
cated forms of Eq. (40)] in MS RSch and with RScl 
2 �
Q2. In Fig. 4(b) we included experimental values, for
comparison. The experimental values of dv�Q2� are taken
from Ref. [47] where the integral expression for dv�Q2� in
terms of the e�e� QCD ratio Re�e��s� is evaluated. All the
values of Re�e��s� are needed—from the two-pion thresh-
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FIG. 4. Adler function as predicted by pQCD, and by our approach in several analytic QCD models (see the text): (a) the massless
part (nf � 3); (b) the full quantity, with the contribution of massive quarks included.

TABLE I. Results of evaluation of the semihadronic tau decay ratio r��4S � 0; mq � 0� and of BjPSR db�Q
2 � 2GeV2�, in various

anQCD models, using evaluation method (85) in RSch A (93). The basis for calculation of ��pt�
1 ��� is expansion (2) at loop level � 4

(i.e., when ��A�3 included) and with kmax � 6. In parentheses are the results at loop level � 3 and kmax � 5 (in that case, the d3-term of
the Adler function is not included). Presented are the results of the full evaluation (leading skeleton and beyond: LS� bLS), Eq. (85),
and for r��4S � 0; mq � 0� also the results of LS. The experimental values are r��4S � 0; mq � 0� � 0:204	 0:005, db�Q2 �

2 GeV2� � 0:16	 0:11, and db�Q2 � 1 GeV2� � 0:17	 0:07. See the text for further details.

r��4S � 0; mq � 0� r��4S � 0; mq � 0� [LS] db�Q2 � 2 GeV2� db�Q2 � 1 GeV2�

MA 0.141 (0.142) 0.139 (0.141) 0.137 (0.138) 0.155 (0.155)
M1 0.204 (0.205) 0.197 (0.198) 0.160 (0.161) 0.170 (0.171)
M2 0.204 (0.206) 0.203 (0.204) 0.189 (0.190) 0.219 (0.220)

9Some contributions from heavy quarks are not considered
here as we base our analysis on the expressions of Ref. [48]. The
relevant diagrams are shown in Fig. 2 of Ref. [48]; the contri-
butions with internal heavy and external light quarks are not
included. These type of (a2 )-contributions have been obtained
for the Re�e��s� function in Refs. [51–53]. We checked that these
contributions, when translated into the corresponding contribu-
tions for dv�Q2� via the usual integral transformation relating R
and dv, result in a2-contributions which are an order of magni-
tude smaller than the heavy quark a2-contributions included in
our curves.
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old to infinity. The evaluation is based on the data compi-
lation of Ref. [54]. The pQCD result for Re�e��s� is used in
the integral where it can be trusted, and data in the rest of
the energy interval. Resonances are included separately. In
Fig. 4(b) we can see that various anQCD models predict at
low energies (Q< 1:2 GeV) values which are significantly
closer to the experimental values than STPS’s. Further,
STPS’s lose any predictability at Q< 1:2 GeV, mainly
because of the vicinity of the unphysical Landau pole in
the pQCD coupling a�Q2�.

In Fig. 5(a), we present results of calculation of BjPSR
db�Q2� at low energies in model M1, at loop level � 3
(and kmax � 5), in two different RSch’s: RSch A (93), and
RSch B which is the ‘‘optimal’’ RSch for db�Q2�, i.e., ��B�2
is obtained from the requirement ~t3 � 0 for db, Eqs. (87)
and (88)

 ��B�2 � �30:2949� 10:4415�0 � 7:445 82�2
0: (96)

At nf � 3 we have ��B�2 �nf � 3� � �16:0938. The ana-
lytic couplings in RSch B are obtained from those in RSch
A by applying the loop level � 3 RSch evolution
Eqs. (36). In addition, we present in Fig. 5(a) results
when the RScl in the beyond-the-LS terms �Q2

2; Q
2
3� is

increased from Q2 exp��5=3� to Q2 (note that coefficients
~t2 and ~t3 then change accordingly). We see that at low
energies Q< 2 GeV, the results in M1 change moderately
but not insignificantly under the variation of RSch and
RScl. For comparison, we included the curve obtained
from the skeleton evaluation (B21) in RSch A [with Q2

2 �
Q2

3 � Q2 exp��5=3�], assuming that the skeleton expan-
sion exists in RSch A (which is probably not true). We
include the present experimental data, with the crosses
representing the central values; the error bars extend in
general over the entire depicted range of values, most of
the experimental uncertainties are of the order of 	0:1.

The experimental data were deduced from Fig. 2 of
Ref. [44], with the neutron decay parameter value jgAj �
0:211 58	 0:000 48 taken from [55]. The present experi-
mental errors are too high to discriminate between various
evaluation methods. In Fig. 5(b) we compare the results for
of MA and M1. The RSch and RScl dependence of MA
results remains very weak in all the shown region.

In Fig. 6(a) we present the same type of curves for M2
model. We see that the RSch and RScl dependence in M2
remains quite weak down to low energies. In Fig. 6(b) we
compare the results of M2 and M1 models. Only the curves
in RSch A are presented in Fig. 6(b).

Up until now, we applied the (skeleton-motivated)
method (85) for the evaluation of QCD observables, in
various anQCD models for A1�


2�, with the higher-order
couplings ~Ak (k � 2) constructed by Eqs. (28) in a certain
RSch (usually RSch A) and equivalently the higher-order
couplings Ak by Eqs. (35) [Eqs. (37) if loop level � 4].
There remains a question of how this method of evaluation
compares with the APT evaluation approach of Milton
et al. and Shirkov [2,3]. We recall that the APT approach
was defined for the MA anQCD model, and it consists of
using the available next-to-leading order (NLO) and N2LO
STPS of an observable (40) and replacing there ak�Q2��
Ak�Q2��MA� (k � 1), where the higher-order MA cou-
plings Ak�Q

2��MA� were constructed according to formula
(19). In the N2LO STPS case [e.g., for db�Q2�], this reads

 D APT�Q
2� �A1�Q

2��MA� � d1A2�Q
2��MA�

� d2A3�Q
2��MA�: (97)

The RSch is usually taken to be MS, but could in principle
be any RSch. One of the differences between our and APT
evaluation method here is the construction of the higher-
order couplings Ak�Q2��MA� of the model MA, where
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comparison with our construction has been made in Figs. 1
and 2 in Sec. III. Another difference is that our evaluation
method (85) includes, in addition, the leading-�0 contri-
butions to all orders. We compare in Figs. 7(a) and 7(b) the
results of our method (85) and the APT method (97) for
BjPSR db�Q

2�, in MA model, in two different RSch’s: A
(93), and MS (relevant for �2 coefficient only). In
Figs. 7(a) and 7(b) the renormalization scale was taken to
be 
2 � Q2 exp��5=3� and 
2 � Q2, respectively, in
both beyond-the-LS terms of our approach
�/ ~A2; ~A3�, and in the APT approach. The RSch change
from RSch A to MS was performed in our approach
according to the loop level � 3 evolution equations (36),
while in the APT approach the corresponding values of �2

were inserted directly in (2) and thus in all ��pt�
k ’s. For

additional comparison, we included the skeleton evalu-

ation (in RSch A), Eq. (B21). We see in Figs. 7 that in
both our and APT evaluation approaches, in MA anQCD
model, the RSch and RScl dependence of db�Q2� is very
weak down to quite low energies. More detailed inspection
reveals that our evaluation approach (85) gives for db�Q2�
even somewhat less RScl-and RSch-dependent results than
APT approach.

VI. SUMMARY AND CONCLUSIONS

In this work we suggested various models of analytic
QCD (anQCD), i.e., models for construction of the anQCD
coupling A1�Q

2� which is an analytic analog of the per-
turbative QCD coupling a�Q2� � �s�Q

2�=�. The main
reason why we suggest alternatives to the minimal analytic
(MA) model, i.e., to the coupling A�MA�

1 �Q2� of Shirkov
and Solovtsov [1], is that it cannot correctly reproduce

 

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 1  1.5  2  2.5  3  3.5  4

d b
 (

Q
2 )

Q    [GeV]

loop-level = 3, kmax = 5

Λ= 0.4 GeV
⎯

MA, µ2=Q2 e-5/3

(a)

(A)
(bMS)

APT (A)
APT (bMS)

sk (A)

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 1  1.5  2  2.5  3  3.5  4

d b
 (

Q
2 )

Q    [GeV]

loop-level = 3, kmax = 5

Λ= 0.4 GeV
⎯

MA, µ2=Q2

(b)

(A)
(bMS)

APT (A)
APT (bMS)

FIG. 7. BjPSR db�Q2� in the MA anQCD, with our evaluation method (85) and that of Milton et al. and Shirkov [2,3] (APT), in RSch
A (93), and in MS; the RScl is chosen to be (a) 
2 � Q2 exp��5=3�, (b) 
2 � Q2. The vertical lines in (a) represent the experimental
data.

 

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 1  1.5  2  2.5  3  3.5  4

d
b 

(Q
2 )

Q    [GeV]

loop-level=3, kmax=5

model M2: cv=0.1, cp=3.4
⎯
Λ= 0.4 GeV

µ2=Q2 e-5/3

sk

LS

M2
(a)

LS (A)
LS (B)

µ2=Q2 (A)
µ2=Q2 (B)

(A)
(B)

sk (A)

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 1  1.5  2  2.5  3  3.5  4

d
b 

(Q
2 )

Q    [GeV]

loop-level = 3
kmax=5
⎯
Λ= 0.4 GeV, µ2=Q2 e-5/3

M1,M2

M2

M1
M2 LS

M1 LS

M1: c0=2.0, cr=0.26, cf=1.47
M2: cv=0.1, cp=3.4

(b)

M1 (A)
M1, µ2=Q2 (A)

M2 (A)
M2, µ2=Q2 (A)

M1 LS (A)
M2 LS (A)

FIG. 6. BjPSR db�Q2� in (a) model M2, and (b) comparison of M2 and M1; at various RScl’s (a),(b) and in various RSch’s (a). The
vertical lines in (a) represent the experimental data.

VARIOUS VERSIONS OF ANALYTIC QCD . . . PHYSICAL REVIEW D 74, 114030 (2006)

114030-17



simultaneously various higher-energy QCD observables on
the one hand and the low-energy observable r� (semiha-
dronic � decay rate ratio) on the other hand, unless large
masses of u, d, and s quarks are introduced [4]. The
described alternative models (M1 and M2) have A1�Q2�
with additional dimensionless parameters in it, which can
be adjusted in order to modify the behavior at low Q2.
Furthermore, we presented, for any anQCD model, an
algorithm which allows construction of higher-order ana-
lytic couplings Ak�Q

2� (k � 2) which are the analytic
analogs of ak�Q2�. In addition, we presented a method of
evaluation of Euclidean QCD observables in anQCD mod-
els, a method which is (partly) motivated by the so-called
skeleton-expansion structure but does not depend on the
existence of such a skeleton expansion. The evaluation
method sums up all the leading-�0 contributions (LS:
leading-skeleton) and adds those contributions beyond
the LS which are known by the knowledge of a first few
perturbation expansion coefficients of the considered ob-
servable. We tested this evaluation method, for three
anQCD models, in the case of the Adler function, semi-
hadronic � decay ratio, and the Bjorken polarized sum rule
(BjPSR) at low energies. The results show in general good
stability under variation of the renormalization scale and
scheme down to low energies Q� 1 GeV. We further
carried out comparison of our evaluation method with
that of Milton et al. (APT) [2–4], for the BjPSR, in the
MA model where the latter method can be applied. The two
methods give results which at low energies differ in general
by only a few percent for this observable.
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APPENDIX A: RELEVANT COEFFICIENTS OF
THE SKELETON-MOTIVATED EXPANSION

In this Appendix, we present explicit formulas for the
coefficients t�j�i appearing in the skeleton-motivated expan-
sion (67), which is a slightly reorganized form of expan-
sion (62). We consider the case when, in MS RSch
��k � �bk �

P �bkj�
j
0; k � 2� and at RScl 
2 � Q2, the

first three coefficients in expansion (40) are explicitly
known � �dj; j � 1; 2; 3�, and all the leading-�0 parts

�c�1�nn�n0 of coefficients �dn (n � 1) in expansion (42) are
known (we note that �c�1�n;�1 � 0 in MS). The RSch
��2; �3; . . .� is chosen and common to all terms D�j� (j �
1), and belongs to the class of RSch’s of Eq. (41). The
RScl’s used in the resulting truncated versions of D�j��Q2�
(j � 2) are Q2

j , they may be mutually different as each
D�j��Q2� (and kj) is RScl independent. For the RSch and

the RScl’s we will use notations

 	bkj � bkj � �bkj; (A1)

 Q2
j � Q2 exp�Cj�: (A2)

We then obtain for the coefficients t�j�i of expansion (67) the
following expressions, on the basis of relations (51)–(63),
as well as (41), (42), and (65):

 t�2�2 � �t�2�2 � �c�1�10 ; (A3)

 t�2�3 � �t�2�3 � �0	b22 � �02 �c�1�10 C2; (A4)

 t�3�3 � �t�3�3 � 	b21 �
1

�0
	b20; (A5)

 

t�2�4 � �t�2�4 � �b11�0 � b10���	b22 � 2�c�1�10 C2�

� �2
0��	b223 �c�1�11 �

1
2	b33 � 3�c�1�10 �c�2�11 C2 � 	b223C2

� 3�c�1�10 C
2
2�; (A6)

 

t�3�4 � �t�3�4 � �0

�
�	b222 �c�1�10 � 	b213 �c�1�11 �

1

2
	b32

� b11	b22

�
� 	b20� �c

�1�
10 �c�2�10 � 	b21�

�1

�
�c�1�10 �c�2�21

� 	b222 �c�1�10 � 	b213 �c�1�11 �
1

2
	b32

� b11 �c�1�10 �c�2�11 � b11	b22

�

� �0

�
�c�1�10 �c�2�10 � 	b21 �

1

�0
	b20

�
3C3; (A7)

 

t�4�4 � �t�4�4 �

�
�	b212 �c�1�10 �	b203 �c�1�11 �

1

2
	b31� b10	b22

�

�	b20� �c
�1�
10 �c�2�10 �	b21�

�1

�
�c�1�10 �c�2�21 �	b222 �c�1�10

�	b213 �c�1�11 �
1

2
	b32�b11 �c�1�10 �c�2�11 �b11	b22

�

�
1

�0

�
�	b202 �c�1�10 �

1

2
	b30

�
: (A8)

Here, �t�j�i are the values of the t�j�i in MS RSch and with
RScl 
2 � Q2:

 

�t �2�2 � �c�1�10 ; (A9)

 

�t �2�3 � �0 �c�1�10 �c�2�11 ; (A10)

 

�t �3�3 � �c�1�10 �c�2�10 ; (A11)

 

�t �2�4 � �b11�0 � b10� �c
�1�
10 �c�2�11 � �

2
0 �c�1�10 �c�2�22 ; (A12)
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�t �3�4 � �0 �c�1�10 � �c
�2�
21 � b11 �c�2�11 �; (A13)

 

�t �4�4 � �c�1�10 � �c
�2�
20 � b10 �c�2�11 �: (A14)

Coefficients �c�2�ij appearing in the above formulas can be

obtained directly from coefficients �c�1�k‘ by using relations
(54) in MS scheme (with RScl 
2 � Q2):

 �c �1�10 �c�2�1j � �c�1�2j � b1j �c�1�11 �j � 1; 0;�1�;

�c�1�10 �c�2�2j � �c�1�3j �
5
2b1;j�1 �c�1�22 � b2j �c�1�11

�j � 2; 1; 0;�1�:

(A15)

Formulas (A9)–(A15), with notations (A1) and (A2), allow
us to obtain all the coefficients t�j�i of the skeleton-
motivated expansion (67) in any chosen RSch and with
chosen RScl’s Q2

j , if we know in MS RSch at RScl 
2 �

Q2 all the leading-�0 parts �c�1�nn�n0 of the expansion coef-

ficients �dn �
Pn

0 �c�1�nk�
k
0 of observable D�Q2� Eq. (40), and

we know exactly the full coefficients �dj for j � 1, 2, 3, i.e.,

we know �c�1�jk for j � 1, 2, 3 and k � 0; . . . ; j. If, on the
other hand, we do not know �d3, the above formulas can be
applied for t�j�i for i � 2, 3 only.

When the beyond-the-LS contributions in our approach
(71) are expressed in terms of ~Ak’s, Eq. (85), with the
RScl choice (76) [Cj � C], coefficients ~ti can be expressed

in terms of the above coefficients t�k�s via relations (37)
between Ak’s and ~An’s. After some straightforward al-
gebra, we obtain

 

~t 2 �
�~t2 � �c�1�10 ; (A16)

 

~t 3 �
�~t3 � �0	b22 � �02 �c�1�10 C� 	b21 �

1

�0
	b20;

(A17)

 

~t4 � �~t4 � �2
0

�
�

1

2
	b33 � 	b223� �c�1�11 � C� � 3C �c�1�10 � �c

�2�
11 � C�

�
� �0

�
�

1

2
	b32 � 	b22

�
�3�c�1�10 �

5

2
b11

�
� 	b213 �c�1�11

� 3C �c�1�10 � �c
�2�
10 � b11�

�
�

�
�

1

2
	b31 �

5

2
b10	b22 � 	b21

�
�3�c�1�10 �

5

2
b11

�
� 3	b20� �c

�1�
11 � C� � 3b10 �c�1�10 C

�

�
1

�0

�
�

1

2
	b30 �

5

2
b10	b21 � 	b20

�
�3�c�1�10 �

5

2
b11

��
�

1

�2
0

5

2
b10	b20; (A18)

where �~ti are the values of ~ti in MS and with RScl 
2 � Q2:

 

�~t 2 � �c�1�10 ; (A19)

 

�~t 3 � �0 �c�1�10 �c�2�11 � �c�1�10 � �c
�2�
10 � b11� �

1

�0
�c�1�10b10; (A20)

 

�~t4 � �2
0 �c�1�10 �c�2�22 � �0 �c�1�10

�
�c�2�21 �

5

2
b11 �c�2�11 �

�b22

�
� �c�1�10

�
�c�2�20 �

5

2
b10 �c�2�11 �

5

2
b11 �c�2�10 �

5

2
b2

11 �
�b21

�

�
1

�0
�c�1�10

�
5b11b10 �

5

2
b10 �c�2�10 �

�b20

�
�

1

�2
0

5

2
�c�1�10b

2
10: (A21)

APPENDIX B: SKELETON EXPANSION

In this Appendix, we will construct an expression for
evaluation of QCD spacelike observables D�Q2� (for any
anQCD model) which will be derived directly from the
QCD skeleton expansion. Here we will take the position
that such an expansion exists in the class of schemes with
the QCD scale �2

C � �2
0 exp�C�, where �0 is the so-called

V-scheme scale and C is an arbitrary nf-independent con-
stant, and with �k of Eq. (41) where bkj are arbitrary
constants. In this context, choosing the MS scale parameter
C � �C � �5=3 (� � ��) for scaling the RScl 
2 repre-
sents no additional restriction. This expansion involves in

the integrands the characteristic functions FE
D�t1; . . . ; tn�,

which are considered nf-independent, and the (singular)
pQCD coupling a�
2�. We replace a�
2� by an anQCD
coupling A1�


2� in the skeleton integrals which makes
the integrals unambiguous:

 

D�Q2�skel: �
Z 1

0

dt
t
FE
D�t�A1�tQ2e�C�

�
X1
n�2

sDn�1

�Yn
j�1

Z 1
0

dtj
tj

A1�tjQ2e�C�

�


 FE
D�t1; . . . ; tn� (B1)
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 �D�LS��Q2� � sD1 D�NLS��Q2� � sD2 D�N2LS��Q2�

� sD3 D�N3LS��Q2� � � � � : (B2)

Here, FE
D�t1; . . . ; tn� are the characteristic functions and

have the normalizations

 

Z 1
0

dt
t
FE
D�t� � 1;

Z dt1
t1

dt2
t2
FE
D�t1; t2� � 1; . . . ;

(B3)

implying for the perturbative parts

 D ����Q2�pt � an�
1�O�a��; (B4)

where n� � 1 for � � LS, n� � 2 for � � NLS, etc. The
perturbative part of A1�


2� is a�
2� [A1�

2� � a�
2� �

NP, where NP involves nonanalytic in a � 0 functions of
a, cf. Eq. (31)]. We will use RGE evolution series (46) for
expansion of a�te�CQ2� around a�
2� � a
 

a�te�CQ2� � a�
X1
n�1

~an�1�n0�� lnT �n

� a� a2�0�� lnT �

� a3
�2
0ln2T � �1 lnT �

� a4
��3
0ln3T �

5

2
�0�1ln2T

� �2 lnT � � � � � ; (B5)

where T � tQ2eC=
2, and ~an are defined in Eq. (29).
Using expansion (B5) in the leading-skeleton (LS) term
in Eq. (B1), this term can be shown to have the following

expansion for its perturbative part:
 

D�LS��Q2�pt � a� a2�0h� lnT i�1�

� a3
�2
0h�� lnT �2i�1� � �1h� lnT i�1��

� a4

�
�3

0h�� lnT �3i�1�

�
5

2
�1�0h�� lnT �2i�1� � �2h� lnT i�1�

�
�O��4

0a
5�; (B6)

where we adhere to notations summarized in the following:

 T �
tQ2e�C


2 ; a � a�
2�; (B7)

 hf�t1; . . . ; tn�i�n� �
Yn
j�1

Z 1
0

dtj
tj
FE
D�t1; . . . ; tn�f�t1; . . . ; tn�:

(B8)

Requiring that the perturbative part of the LS term absorb
all the leading-�0 parts of D�Q2�pt [see Eqs. (40)–(42)]
implies that

 h�� lnT �ni�1� � c�1�nn �n � 0; 1; 2; . . .�: (B9)

This, in conjunction with expansion (B6), implies that
D�LS��Q2�pt is precisely D�1��Q2�pt of construction in
Sec. IV, Eq. (51), i.e., we really have for D�1��Q2�pt the
resummed form (64). Taylor expansion of A1�te

�CQ2�
around Q2 is completely analogous to expansion (B5):

 A 1�te
�CQ2� �A1 �

X1
n�1

~An�1�n0�� lnT �n

�A1 �A2�0�� lnT � �A3
�
2
0ln2T � �1 lnT � �A4
��

3
0ln3T �

5

2
�0�1ln2T � �2 lnT � � � � � ;

(B10)

where ~Ak �
~Ak�


2� and Ak �Ak�

2�. In the last identity we used the fact that ~An’s appear on the left-hand side of

RGE’s (26), which are analogous to pQCD RGE’s with ~an’s on the left-hand side [analogy valid up to terms O� ~Anm
�

where nm � loop level] when the correspondence ak $Ak is made. Equation (B10) implies for the (full analytic) LS
term of the skeleton expansion (B1) a nonpower analytic expansion
 

D�LS��Q2� �
Z 1

0

dt
t
FE
D�t�A�tQ

2e�C� �A1 �
X1
n�1

~An�1�n0h�� lnT �ni�1�

�A1 �A2�0h� lnT i�1� �A3
�2
0h�� lnT �2i�1� � �1h� lnT i�1��

�A4

�
�3

0h�� lnT �3i�1� �
5

2
�1�0h�� lnT �2i�1� � �2h� lnT i�1�

�
�O�A5�; (B11)

which is just the analytized analog [according to the rule
(69)] of perturbation expansion (51) and (B6).

Now we will investigate the beyond-the-LS contribu-
tions of the skeleton expansion (B1). In view of normal-
ization conditions (B4), it follows immediately that

 sD1 � c�1�10 ; (B12)

which is just the coefficient k2 (52) in the approach of
Sec. IV. In analogy with the LS part, we now require that
D�NLS��Q2�pt be such as to absorb all the leading-�0 parts
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of the difference �1=sD1 �
D�Q
2� �D�LS��Q2��pt. In a com-

pletely analogous way as before, we can show that this is
equivalent to
 

��1�nhlnnT 1 � lnn�1T 1 lnT 2 � � � � � lnnT 2i�2� � c�2�nn

�n � 1; 2 . . .�; (B13)

where T j � tjQ2e�C=
2, and coefficients c�2�nn are defined
in Eqs. (52)–(54). These coefficients are known if the
perturbative coefficients dj (40) are known. The (non-
power) expansion in Ak �Ak�
2� of the next-to-leading
skeleton (NLS) term is then

 sD1 D�NLS��Q2� � c�1�10 fA
2
1 �A1A2�0c

�2�
11

�A1A3
�2
0c
�2�
22 � �1c

�2�
11 � (B14)

 

� 
A2
2 �A1A3��2

0hlnT 1 lnT 2i�2�

�O�A1A4;A2A3; . . .�g: (B15)

The last term in brackets has a coefficient /

hlnT 1 lnT 2i�2� which cannot be obtained on the basis of
the perturbative coefficients dj (40). The perturbative part

of this last term is zero. We know c�1�10 if we know the NLO
coefficient d1 of the perturbation expansion (40) of ob-
servable D�Q2�; for the knowledge of c�2�11 we need, in
addition, the knowledge of d2, and for c�2�22 the knowledge
of d3.

We now continue analogously one step further. In view
of the normalization conditions (B4), it follows immedi-
ately

 sD2 � c�1�10

�
c�2�10 �

1

�0
c�2�1;�1

�
; (B16)

which is identical to the coefficient k3 (57) in the approach
of Sec. IV. We require that the third (N2LS) term
sD2 D�N2LS��Q2� in skeleton expansion (B2) satisfy the con-
dition: D�N2LS��Q2�pt be such as to absorb all the
leading-�0 parts of the difference �1=sD2 �
D�Q

2� �

D�LS��Q2� � sD1 D�NLS��Q2��pt. This then implies

 h� lnT 1 � lnT 2 � lnT 3i�3� � c�3�11 ; (B17)

where c�3�11 is given in Eq. (60); and similarly for higher
terms (c�3�22 , etc.). The (nonpower) expansion in Ak �
Ak�
2� of the N2LS term is then

 sD2 D�N2LS��Q2� � sD2 fA
3
1 �A2

1A2�0c
�3�
11

�O�A2
1A3;A1A

2
2; . . .�g: (B18)

We know the quantity sD2 if we know the coefficients d1

and d2 in the perturbation expansion (40) of observable
D�Q2�; for the knowledge of c�3�11 we need, in addition, the
knowledge of d3.

Normalization conditions (B4) now imply that the coef-
ficient sD3 of the N3LS term in the skeleton expansion (B1)
and (B2) is

 sD3 � c�1�10

�
c�2�20 � b10c

�2�
11 �

c�2�1;�1

c�2�10

�c�2�21 � b11c
�2�
11 �

�
1

�0
c�2�2;�1

�
; (B19)

which is identical to the coefficient k4 (63) in the approach
of Sec. IV. The (nonpower) expansion in Ak �Ak�
2�
of the N3LS term is then

 sD3 D�N3LS��Q2� � sD3 A4
1 �O�A3

1A2;A
2
1A3; . . .�:

(B20)

We know the quantity sD3 if we know the coefficients d1,
d2, and d3 in the perturbation expansion (40) of observable
D�Q2�.

Finally, we can combine the LS term (68), whose char-
acteristic function is usually known, with all the beyond-
the-LS terms written hitherto (B14)–(B20) which are
known if d1, d2 and d3 are known; since each of these
terms is RScl independent, we can use in the most general
case various (spacelike) RScl’s Q2

j � Q2 exp�Cj� as
Eq. (A2) (j � 2, 3, 4 for the NLS, N3LS and N3LS terms,
respectively). This then results in

 D �D�LS��Q2� � t�2�2 
A1�Q2
2��

2 � ft�2�3 A1�Q2
2�A2�Q2

2� � t
�3�
3 
A1�Q2

3��
3g � ft�2�4 A1�Q2

2�A3�Q2
2�

� t�3�4 
A1�Q2
3��

2A2�Q2
3� � t

�4�
4 
A1�Q2

4��
4g � f
A2�Q2

2��
2 �A1�Q2

2�A3�Q2
2�gc

�1�
10�

2
0hlnT 1 lnT 2i�2�

�O�A5
1;A

3
1A2; . . .�; (B21)

where the coefficients t�i�
�j� are precisely those given in

Appendix A, Eqs. (A3)–(A14). Therefore, the evaluation
method presented in the present Appendix, which is a
representation of an assumed skeleton expansion (B1)
and (B2), reduces to the evaluation method presented in
Sec. IV when the following replacements are made:

 
A1�
2��k1
A2�
2��k2 � � � 
As�
2��ks

� Ak1�2k2����sks�

2�: (B22)

In the present method, the coefficient at the last term in
brackets in expression (B21) can be evaluated only if
certain assumptions about the NLS characteristic function
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FE
D�t1; t2� are made. For simplicity, we will make the

factorization assumption

 FE
D�t1; t2� � wE

D�t1�w
E
D�t2� ) hlnT 1 lnT 2i�2� �

1
4�c
�2�
11 �

2;

(B23)

where the last identity is obtained on the basis of identity
(B13) for n � 1.

Similarly as the skeleton-motivated evaluation method
(70) and (71), the skeleton evaluation method (B21) can be
performed in principle at any chosen RScl’s Qj and in any
RSch of the class (41). This method was denoted as ‘‘v1’’
in Ref. [12]. However, skeleton method (B21) makes sense
only if the skeleton expansion (B2) really exists. If the
latter exists, it probably does so only in a specific (skel-
eton) scheme [34,35]. In contrast, the skeleton-motivated
evaluation method (70) and (71) does not rely on the
existence of the skeleton expansion.

APPENDIX C: LEADING-SKELETON
CHARACTERISTIC FUNCTIONS IN THE

SPACELIKE AND TIMELIKE FORM

In this Appendix we summarize the knowledge of the LS
characteristic functions for the spacelike observables
D�Q2�. In the spacelike formulation (68), which involves
the spacelike coupling A1, the characteristic function can
be obtained from the knowledge of the leading-�0 coef-
ficients c�1�nn —cf. Eqs. (40) and (42), following the formal-
ism of Neubert [31].

For example, in the case of the Bjorken polarized sum
rule (BjPSR) db�Q2�, the leading-�0 coefficients were
obtained in Ref. [40]. In MS RSch and at RScl 
2 �

Q2 exp� �C� (we use � � �� throughout, i.e., C � �C �
�5=3), they are

 c�1�nn � n!
�

8

9
�

4

9
��1�n �

5

18

1

2n
�

1

18

1

2n
��1�n

�
�n � 0; 1; . . .�:

(C1)

This implies that the (leading-�0) Borel transform is

 Ŝ b�u;Q2;
2 � Q2e�C� �
X1
n�0

1

n!
c�1�nnun

�
1

3

�3� u�

�1� u2��1� u2=4�
: (C2)

The renormalon poles are at u � 	1, 	2. The LS charac-
teristic function appearing in (68) is then obtained by the
general formula

 FE
D��� �

1

2�i

Z u0�i1

u0�i1
duŜD�u��

u; (C3)

where u0 is any real number closer to the origin than the
leading renormalon (� 1< u0 < 1). We can choose u0 �
0 and introduce a new integration variable r � �iu. The
integral, with Ŝ�u� of Eq. (C2), then reduces to

 FE
b��� �

2

3�

Z �1
�1

dreir ln� �3� ir�
�r� i��r� i��r� 2i��r� 2i�

;

(C4)

which can be calculated by the use of the Cauchy theorem
in the complex r-plane: when � > 1, we close the path with
a large semicircle in the upper half plane; when � < 1, in
the lower half plane. This gives us the result

 FE
b��� �

(
8
9 ��1�

5
8 �� � � 1

4
9� �1�

1
4�� � � 1

g; (C5)

which we already used in Ref. [12].
The LS characteristic function for the Adler function

dv�Q2� was obtained in Ref. [31], on the basis of the
large-�0 expansion of the Borel transform of dv obtained
in Refs. [56,57]
 

FE
v�t� � 2CFt

��
7

4
� lnt

�
t� �1� t��PolyLog2��t�

� lnt ln�1� t��
�

�t � 1� (C6)

 

� 2CF

�
t�1� lnt� �

�
3

4
�

1

2
lnt
�

� t�1� t��PolyLog2��1=t� � lnt ln�1� 1=t��
�

�t � 1�; (C7)

where CF � �N2
c � 1�=�2Nc� � 4=3.

The semihadronic � decay ratio r� is a timelike observ-
able. The LS term of r� can be obtained from the LS term
of the Adler function on the basis of the relation
 

r���S � 0; mq � 0� �
1

2�

Z ��
��

d��1� ei��3�1� ei��


 dv�Q2 � m2
�ei��: (C8)

This implies for the LS term of r���S � 0; mq � 0�

 r���S � 0; mq � 0��LS� �
Z 1

0

dt
t
FM
r �t�A1�te

Cm2
��;

(C9)

where A1 is the timelike coupling appearing in Eqs. (7)–
(10), and superscript M in the characteristic function
means that it is Minkowskian (timelike). The latter was
obtained in Ref. [32]10

10We use a different normalization, so an additional factor of
t=4 appears, in comparison to [32].
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FM
r �t� � 4CFt

�
4�

73

12
t�

23

24
t2 �

259

432
t3 � 2 PolyLog3��t� � 3
�3� �

�
17

6
t�

1

3
t2 � PolyLog2��t�

�
lnt

�

�
3

4
t2 �

1

6
t3
�
ln2t�

�
11

6
� 3t�

3

2
t2 �

1

3
t3
�
�lnt ln�1� t� � PolyLog2��t��

�
�t � 1�; (C10)

 

FM
r �t� � 4CF

�
�

575

216
t�

37

48
�

17

12
t2 �

1

3
t3 � 2t PolyLog3��1=t� �

�
85

36
t�

1

4
�

4

3
t2 �

1

3
t3 � t PolyLog2��1=t�

�
lnt

�

�
11

6
t� 3�

3

2
t3 �

1

3
t4
�
�lnt ln�1� 1=t� � PolyLog2��1=t��

�
�t � 1�: (C11)

Here, PolyLog3 is the polylogarithm function of nth order
(using notation of [13]).

The LS part of any spacelike observable D�Q2� can be
written in two equivalent forms—the form involving the
spacelike coupling A1, Eq. (68), and the form involving
the timelike A1 of Eqs. (7)–(10):

 D �LS��Q2� �
Z 1

0

dt
t
FE
D�t�A1�teCQ2�

�
Z 1

0

dt
t
FM
D �t�A1�te

CQ2�; (C12)

where the superscript M stands for the ‘‘Minkowskian’’
(timelike) formulation, and the two characteristic functions
are related via relations

 FM
D �t� � ��

d
d lnt

FD�t� � t
Z 1

0

dt0

�t0 � t�2
FE
D�t

0� (C13)

 

FE
D�t� � ImFD��t� i"� where

FD�t� �
1

�

Z 1
0

d�
��� t�

FE
D���:

(C14)

Identity (C14) is a direct consequence of the definition of
FD there. On the other hand, relation (C12) is a direct

consequence of identity (C13) and of the following identity
in the complex �-plane (where � � k2 is square of a four-
vector):

 

Z
C1�C2

d�
�

A1�K
2 � ��eC�
FD��=Q

2� �FD�0�� � 0;

(C15)

where function FD is defined by identity (C14), and the
path C1 � C2 is depicted in Fig. 8. In the �-plane, the only
singularities of the integrand in Eq. (C15) are the cut of
A1���� along the positive semiaxis, and the cut of
[FD��=Q

2� �FD�0�] along the negative semiaxis.
Identity (C15) thus follows from the Cauchy theorem.

When applying relation (C13) to the characteristic func-
tion (C5) of BjPSR, we obtain for the timelike character-
istic function of that observable

 

FM
b �t� � t

�
�

10

9
�

1

3t
�

2

9t2
�

2

9
�5t� 4� lnt

�
2

9

�
5t� 4�

2

t2
�

1

t3

�
ln�1� t�

�
; (C16)

which agrees with the corresponding expression in
Ref. [58] after identifying in their Eq. (4.57): _F 3��; N �
1� � ��3=2�FM

b �t�, and � � t � 
2=Q2 (Ref. [58] uses
apparently C � 0).

APPENDIX D: EXPLICIT EXPRESSIONS FOR
VARIOUS COEFFICIENTS

Expansion (2) is solution of the perturbative RGE
Eq. (1). If the conventional (‘‘MS’’) reference scale ��
[14,15] is adopted, and RGE (1) is iteratively solved for
large Q2= ��2 [ ln�Q2= ��2� � 1] in an arbitrary RSch
��2; �3; . . .�, this results in expansion (2) with coefficients
Kk‘ given in Eqs. (3) for k � 3, and for k � 4, 5, 6 given
below (notations: cj � �j=�0):

 

C

C1

2

σ− plane

FIG. 8. The path of integration of integral (C15) in the com-
plex �-plane: �> 0 semiaxis is the cut of A1���e

C� factor,
and �< 0 is the cut of the [FD��=Q2� �FD�0�] factor in the
integral.
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For k � 4:

 

K40 � �
1

2

�
c3

1

�4
0

��
1�

c3

c3
1

�
;

K41 � �

�
c3

1

�4
0

��
�2� 3

c2

c2
1

�
;

K42 �
5

2

�
c3

1

�4
0

�
;

K43 � �

�
c3

1

�4
0

�
:

(D1)

For k � 5:

 

K50 �
1

6�5
0

�7c4
1 � 18c2

1c2 � 10c2
2 � c1c3 � 2c4�;

K51 �
c1

�5
0

�4c3
1 � 3c1c2 � 2c3�;

K52 � �
3

2�5
0

�c4
1 � 4c2

1c2�;

K53 � �
13c4

1

3�5
0

;

K54 �
c4

1

�5
0

:

(D2)

For k � 6:

 

K60 �
1

12�6
0

�17c5
1� 18c3

1c2� c1c2
2� 23c2

1c3� 24c2c3

� 2c1c4� 3c5�;

K61 �
1

6�6
0

��11c5
1� 72c3

1c2� 50c1c2
2� 7c2

1c3� 10c1c4�;

K62 �
1

2�6
0

��23c5
1� 27c3

1c2� 10c2
1c3�;

K63 �
1

6�6
0

��11c5
1� 60c3

1c2�;

K64 �
77c5

1

12�6
0

;

K65 ��
c5

1

�6
0

:

(D3)

In practical calculations, we use: (a) at loop level � 3:
c3 � c4 � c5 � 0 and we include in expansion (2) terms
Kk‘ up to kmax � 5; (b) at loop level � 4: c4 � c5 � 0 and
we include terms up to kmax � 6.

The perturbation coefficients dj �j � 1; 2� of the pertur-
bation expansion for the massless Adler function dv�Q2�,
cf. Eq. (40), in MS RSch and at RScl 
2 � Q2, are known
exactly, Refs. [36,37], respectively,

 d�Adl:�
1 � 1

12� 0:691 772�0;

d�Adl:�
2 � �27:849� 8:226 12�0 � 3:103 45�2

0:
(D4)

The N3LO coefficient d3, in the aforementioned RSch and
RScl, was obtained in an approximate form in Ref. [38]
[Eqs. (20) and (12) in [38]]:

 d�Adl:�
3 � 46:1992� 131:04�0 � 49:5237�2

0

� 2:180 04�3
0; (D5)

where the coefficients at �3
0 and at �2

0 are known exactly
([15,56,57]), and the other two coefficients were estimated
in Ref. [38] by using the methods of the principle of
minimal sensitivity [29], and of the effective charge
[59,60].

The light-by-light contributions are not included in the
coefficients (D4) and (D5). They have a different topology
of diagrams and should probably be resummed separately
(cf. Ref. [11]), and they appear for the first time at �a3

[37]. They are proportional to the sum of the charges
P
Qf.

This sum is zero in the case nf � 3 considered here.
Coefficients d1 and d2 for BjPSR db�Q2�, in the afore-

mentioned RSch and RScl, were obtained in Ref. [41] and
are

 d�Bj:�
1 � �11

12� 2�0;

d�Bj:�
2 � �35:7644� 10:5048�0 � 6:388 89�2

0:
(D6)

In the coefficient d�Bj:�
3 , only the leading-nf part ( / n3

f) is
known exactly [40] (, the leading-�0 part, / �3

0). On this
basis, the authors of Ref. [42] obtained estimates of d�Bj:�

3 as
a polynomial in �0 by using NNA [43]: nf � �6�0.
Several relations between BjPSR, Bjorken unpolarized
sum rule, and Gross-Llewellyn Smith sum rule were found
out and investigated in Ref. [61].

APPENDIX E: MASSLESS PART OF THE
STRANGELESS TAU DECAY RATIO

In this Appendix we extract the measured value of the
massless part of the QCD-canonical strangeless ratio
r��4S � 0; mq � 0� for the semihadronic decay, on the
basis of the results of the final ALEPH data analysis
[8,9].11 This quantity is related to the ALEPH-measured
[8,9] �V � A�-decay ratio

 R��4S � 0� �
���� ! �� hadrons ����

���� ! ��e
� ��e����

� R��4S � 0�

(E1)

11For an extraction of r��4S � 0; mq � 0� based on the older
set of measured results [7], see, for example, Ref. [62].
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 �
�1� Be � B
�

Be
� R��4S � 0� � 3:482	 0:014:

(E2)

These values were obtained in Ref. [9] from the measured
leptonic branching ratio Be � B��� ! ��e

� ��e� �
�17:810	 0:039�% (ALEPH [8]), from B
 � B��� !
��
� ��
� � �17:332	 0:049�% (world average [9]), and
from the strangeness-changing branching ratio BS �
�2:85	 0:11�% (ALEPH [8]). The relation between the
canonic massless quantity r��4S � 0; mq � 0� and quan-
tity (E1) and (E2) is
 

r��4S � 0; mq � 0� � r��4S � 0; mq�

� 	r��4S � 0; mu;d � 0� (E3)

 

�
R��4S � 0�

3jVudj
2�1� 	EW�

� �1� 	0EW�

� 	r��4S � 0; mu;d � 0�: (E4)

Here, r��4S � 0; mq � 0� is QCD canonical, i.e., its
pQCD expansion is r��4S � 0; mq � 0�pt � a�O�a2�;
the Cabibbo-Kobayashi-Maskawa matrix element jVudj
has the value largely dominated by 0� ! 0� nuclear beta
decays [63]

 jVudj � 0:9738	 0:0003; (E5)

the electroweak (EW) correction parameter is 1� 	EW �
1:0198	 0:0006 [8,9]; the residual EW correction pa-
rameter is 	0EW � 0:0010 [64]; the �V � A�-channel cor-
rections 	r��4S � 0; mu;d � 0� due to the nonzero quark
masses are [9,65] the sum of the D � 2-, 4-, 6-, and 8-
dimensional corrections �	�D�ud;V � 	

�D�
ud;A�=2 and their value

is [9] either 	r��4S � 0; mu;d � 0� � ��5:2	 1:7� 

10�3 if the gluon condensate contribution is included,
and ��5:0	 1:7� 
 10�3 if the gluon condensate contri-
bution is not included (using for the gluon condensate the
ALEPH value haGGi � ��0:5	 0:3� 
 10�2 [8,9]).

Inserting all the aforementioned values in relation (E4)
and taking into account the value (E2), we extract the
experimental prediction for r��4S � 0; mq � 0� based
on the most recent ALEPH data

 r��4S � 0; mq � 0�exp � 0:204	 0:005; (E6)

where the uncertainties have been added in quadrature. The
uncertainty in Eq. (E6) is dominated by the experimental
uncertainty 	R� � 	0:014 (E2). The value (E6) remains
unaffected up to the displayed digits when we either in-
clude or exclude from the above quantity the gluon con-
densate contribution.
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and T. Teubner, Eur. Phys. J. C 2, 137 (1998).
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