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It has been suggested in Ref. [A. E. Bondar and V. L. Chernyak, Phys. Lett. B 612, 215 (2005)] that the
disagreement between theoretical calculations and experimental observations for the rate for the process
e�e� ! J= � �c at the B factories might be resolved by using the light-cone method to take into
account the relative momentum of the heavy-quark and antiquark in the quarkonia. The light-cone result
for the production cross section in Ref. [A. E. Bondar and V. L. Chernyak, Phys. Lett. B 612, 215 (2005)]
is almost an order-of-magnitude larger than existing NRQCD factorization results. We investigate this
apparent theoretical discrepancy. We compute light-cone distribution functions by making use of
quarkonium wave functions from the Cornell potential model. Our light-cone distribution functions are
similar in shape to those of Ref. [A. E. Bondar and V. L. Chernyak, Phys. Lett. B 612, 215 (2005)] and
yield a similar cross section. However, when we subtract parts of the light-cone distribution functions that
correspond to corrections of relative-order �s in the NRQCD approach, we find that the cross section
decreases by about a factor of three. When we set certain renormalization factors Zi in the light-cone
calculation equal to unity, we find a further reduction in the cross section of about a factor of two. The
resulting light-cone cross section is similar in magnitude to the NRQCD factorization cross sections and
shows only a modest enhancement over the light-cone cross section in which the relative momentum of
the heavy-quark and antiquark is neglected.
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I. INTRODUCTION

One of the outstanding issues in quantum chromody-
namics (QCD) in recent years is the discrepancy between
the theoretical predictions and the experimental measure-
ments for the exclusive production of J= � �c in e�e�

collisions at the B factories. The cross section times the
branching ratio into at least two charged tracks has been
measured by the Belle collaboration to be 25:6� 2:8�
3:4 fb (Ref. [1,2]) and by the BABAR collaboration to be
17:6� 2:8�1:5

�2:1 fb (Ref. [3]). In contrast, calculations by
Braaten and Lee [4] and by Liu, He, and Chao [5] using the
nonrelativistic QCD (NRQCD) factorization approach [6]
at leading order in �s yield predictions of 3:78� 1:26 fb
and 5.5 fb, respectively.1 A similar disagreement between
NRQCD factorization and experiment holds for production
of �c0 and �c�2S� mesons in conjunction with a J= 
meson. A recent calculation of corrections of next-to-
leading order in �s leads to an enhancement of the theo-
retical prediction of about a factor 1.8 (Ref. [7]).
Nevertheless, a substantial discrepancy between theory
and experiment remains.

It has been suggested in several recent papers [8–11]
that predictions for the J= � �c production cross section

in the light-cone formalism might be in better agreement
with experiment. In the present paper, we focus on the
work of Bondar and Chernyak in Ref. [8], henceforth
referred to as BC. In BC, it is claimed that an enhancement
of the cross section occurs in the light-cone formalism
because the expressions for the cross section contain an
integration over the light-cone momentum. In contrast, in
the NRQCD factorization approach, cross sections are
computed as an expansion in the velocity v of the heavy
quark or antiquark in the quarkonium rest frame. In the
leading order in v, the relative momentum of the heavy
quark and antiquark are neglected, which is equivalent in
the light-cone formalism to approximating the light-cone
distribution amplitude (light-cone wave function) by a
delta function at a light-cone momentum fraction of 1=2.
Effects of the nonzero relative momentum of the heavy
quark and antiquark in NRQCD are taken into account
through terms of higher order in the v expansion.

The NRQCD factorization and light-cone formalisms
are both believed to be valid approximations to QCD for
the process e�e� ! J= � �c in the limit in which the
hard-scattering momentum transfer is much greater than
either the QCD scale �QCD or the charm-quark mass mc.

2

In NRQCD factorization, one makes the further assump-
tion that the cross section can be written as an expansion in
powers of v. Since the light-cone and NRQCD factoriza-*Visiting faculty, Physics Department, Ohio State University,

Columbus, OH 43210, USA
1The differences in the predictions arise from different choices

for �s and the charmonium wave functions at the origin and
from the inclusion of QED effects in the calculation of Ref. [4].

2For a discussion of the current status of proofs of NRQCD
factorization, see Refs. [12–15].
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tion approaches are both first-principles methods, their
predictions should be in reasonable agreement unless, as
is asserted in BC, the v expansion of NRQCD breaks down
for the process e�e� ! J= � �c.

In this paper we investigate several issues with regard to
the calculation in BC by making use of light-cone distri-
bution amplitudes that are derived from potential-model
quarkonium wave functions. We first compare the light-
cone distribution amplitude that we derive with the model
light-cone distribution amplitudes that are used in BC. We
find that they are quite similar in shape, but with signifi-
cantly different asymptotic behavior at large light-cone
momentum fraction, and that they lead to similar values
for the cross section for e�e� ! J= � �c. We then
argue that a part of the contribution to the cross section
that is computed in BC comes from the high-momentum
tail of the light-cone distribution amplitude. Such high-
momentum contributions are taken into account in
NRQCD through contributions to the cross section of
relative order �s and higher. Furthermore, since our
potential-model wave function is accurate only for mo-
menta that are much less than mc, it is not legitimate for us
to include the high-momentum contribution in our light-
cone calculation. When we subtract this contribution, we
find that the cross section is reduced by about a factor of
three. A further reduction of about a factor of two occurs
when we replace with unity certain renormalization factors
Zi that appear in the calculation in BC, but which have no
counterpart in a conventional NRQCD factorization calcu-
lation. With these modifications, the light-cone calculation
gives a cross section that is comparable to that of the
NRQCD factorization calculations.

The remainder of this paper is organized as follows. In
Sec. II, we describe the Cornell potential model that we
use. In Sec. III, we present the relationships of the required
light-cone distribution amplitudes to the Bethe-Salpeter
(BS) wave function, use the BS equation to compute the
BS wave function in terms of a potential-model wave
function, and give the correspondences between the terms
in the resulting BS wave function and the required light-
cone distribution amplitudes. Sec. IV contains the detailed
expressions for the light-cone distribution amplitudes in
terms of the potential-model wave function and a re-
arrangement of these expressions into forms that are ame-
nable to numerical calculation. In Sec. V, we identify the
high-momentum part of the light-cone distribution ampli-
tude that is properly treated as an order-�s correction to the
cross section. We also compute and compare the asymp-
totic forms of the light-cone distribution amplitude and the
high-momentum part in the high-momentum limit. In
Sec. VI, we present the expression for the cross section
in the light-cone formalism, give our numerical results for
the cross section at B-factory energies, and discuss the
implications of these results. Finally, in Sec. VII, we
summarize our findings.

II. POTENTIAL MODEL

In this section, we describe the calculation of the
potential-model wave function. We note that, if we knew
the heavy-quark potential exactly, then we could calculate
the heavy-quarkonium wave function in a potential model,
up to corrections of relative order v2 (Ref. [16]). We make
use of the Cornell potential model of Ref. [17]. The Cornell
potential provides a reasonably good fit to heavy-quark
potentials that are measured in lattice calculations.3

The Schrödinger equation for the radial wave function
for a quark-antiquark �Q �Q� pair with orbital-angular-
momentum quantum number ‘ in a central potential V�r� is

 

�
�

1

mr2

d
dr

�
r2 d
dr

�
�
‘�‘� 1�

mr2 � V�r�
�
R�r� � �BR�r�;

(1)

where �B is the binding energy, r is the distance between
the heavy quark and antiquark, and m is mass of the heavy
quark. Note that the reduced mass of the pair is � � m=2.

The Cornell potential [17] is given by

 V�r� � �
�
r
�
r

a2 ; (2)

where the parameters � and a determine the strength of
Coulomb and linear potentials, respectively. For a color-
singlet Q �Q pair, the Coulomb-strength parameter � can be
expressed in terms of an effective strong coupling �s as

 � � �sCF; (3)

where CF � 4=3. The parameter a is related to the string
tension � as

 � �
1

a2 : (4)

Following Ref. [17], we replace � and r by dimension-
less variables � and 	:
 

� � �ma���2=3��; (5a)

r �
�
m�

	 � a�ma���1=3�	: (5b)

Substituting the Cornell potential into Eq. (1), we can
rewrite the radial equation:

 

�
d2

d	2 �
‘�‘� 1�

	2 �
�
	
� 	� 


�
u�	� � 0; (6)

where the dimensionless function u�	� and dimensionless
energy eigenvalue 
 in Eq. (6) are related to their physical
counterparts as

3For a recent review that discusses heavy-quark potentials
from lattice measurements, see Ref. [18].
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R�r� �
�����
m

a2

r
u�	�
	

; (7a)

�B � m�ma���4=3�
: (7b)

The wave functions are normalized according to

 

Z 1
0
ju�	�j2d	 �

Z 1
0
jR�r�j2r2dr � 1: (8)

In Eq. (2.19) of Ref. [17], the wave function at the origin
is expressed in terms of the model parameters m and a as

 j �0�j2 �
m

4�a2 �1� �h	
�2i�; (9)

where the expectation value h	�2i is defined by

 h	�2i �
Z 1

0

�u�	��2

	2 d	: (10)

Numerical values of h	�2i for various values of � are given
in Table I of Ref. [17]. As we explain below, we fix the
value of j �0�j by using the leptonic decay width of the
J= . We need an additional constraint to fix both of the
parameters m and a for a given �. Following Ref. [17], we
use the mass splitting between the J= and the  �2S�.
Eq. (2.12) of Ref. [17] expresses the mass splitting as

 M �2S� �MJ= � m�ma���4=3��
20 � 
10�; (11)

where 
n0 is the eigenvalue for the radial equation (6) for
the principal quantum number n and the orbital-angular-
momentum quantum number ‘ � 0. The values for 
10 as a
function of � are given in Table I of Ref. [17]. We use
Eq. (A4) and Table II of Ref. [17] to determine 
20 for
various values of �:

 
20 � 4:0879� 0:5826�� 0:0302�2: (12)

Solving Eqs. (9) and (11), we can determine the model
parameters m and a:

 

m �

20 � 
10

M �2S� �MJ= 

�
4�j �0�j2

1� �h	�2i

�
2=3
; (13a)

a �
�


20 � 
10

M �2S� �MJ= 

�
1=2
�

4�j �0�j2

1� �h	�2i

�
�1=6

: (13b)

From Eqs. (3) and (5a), it can be seen that the effective
strong coupling �s for the bound-state potential as a func-
tion of � is given by

 �s �
�
CF
�ma��2=3: (14)

As we have mentioned, we determine j �0�j from the
leptonic decay width of the J= . NRQCD matrix elements
for J= that correspond to j �0�j2 are given in Table I of
Ref. [4]. These values are hOiS � 0:208 GeV3 for LO and
0:335 GeV3 for NLO, where the identifiers LO and NLO
indicate that the short-distance coefficient for the leptonic
decay rate of the J= has been computed to leading order
or next-to-leading order in the strong-coupling constant.
Expressing j �0�j in terms of these matrix elements, we
obtain

 j �0�j �

��������������
hOiJ= 

2Nc

s
�

�
0:18619 GeV3=2 �LO�
0:23629 GeV3=2 �NLO�:

(15)

In this paper, we use the LO value of j �0�j, which corre-
sponds to the formula

 ��J= ! ‘�‘�� �
4�e2

c�2

m2
c
j �0�j2; (16)

where ec � 2=3 is the fractional electric charge of the
charm quark. If one uses the NLO value of j �0�j, then
the average momentum-squared of the wave function is
reduced by about 10% (Ref. [19]). Therefore, we do not
expect that the use of the NLO value would change our
results qualitatively.

Using j �0�j � 0:18 619 GeV3=2, MJ= �

3:096 916 GeV, M �2S� � 3:686 093 GeV, Table I of
Ref. [17], and Eq. (12), we can compute m and a from
Eq. (13). The results for various values of � are shown in

TABLE I. Potential-model parameters and derived quantities as a function of the strength � of the Coulomb potential. The
definitions of the parameters and derived quantities are given in the text. The parameters are computed using the inputs j �0�j �
0:186 19 GeV3=2, MJ= � 3:096 916 GeV, and M �2S� � 3:686 093 GeV, as is described in the text.

� 0 0.2 0.4 0.6 0.7 0.8 1.0 1.2 1.4

1� �h	�2i 1. 1.249 88 1.557 68 1.934 98 2.153 69 2.394 80 2.951 90 3.622 72 4.425 24

10 2.338 11 2.167 32 1.988 50 1.801 07 1.703 94 1.604 41 1.397 88 1.180 84 0.952 64

20 4.087 90 3.970 17 3.850 03 3.727 47 3.665 28 3.602 49 3.475 10 3.345 29 3.213 07
m (GeV) 1.706 70 1.515 48 1.351 20 1.210 03 1.147 10 1.088 77 0.984 58 0.895 01 0.817 96
a (GeV�1) 1.979 32 2.085 20 2.198 05 2.318 33 2.381 39 2.446 48 2.582 95 2.728 16 2.882 53����
�
p

(GeV) 0.505 22 0.479 57 0.454 95 0.431 34 0.419 92 0.408 75 0.387 15 0.366 55 0.346 92
� (GeV2) 0.255 25 0.229 99 0.206 98 0.186 06 0.176 33 0.167 08 0.149 89 0.134 36 0.120 35
�s 0. 0.069 66 0.145 19 0.226 24 0.268 66 0.312 25 0.402 55 0.496 34 0.592 72
�C (GeV) 0. 0.070 37 0.130 79 0.182 50 0.205 45 0.226 64 0.264 23 0.296 15 0.323 22
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Table I, along with values for �s from Eq. (14), � from
Eq. (4), and �C, which is related to the binding energy for a
pure Coulomb potential and is defined by

 �C �
1
2m�sCF: (17)

Lattice measurements of the heavy-quark potential yield
values for effective coupling �s of 0.22 in the quenched
case and approximately 0.26 in the unquenched case [18].
A lattice measurement of the string tension K � �
(Ref. [20]) gives Ka2

L � 0:0114�2� at a lattice coupling

 � 6:5, where aL is the lattice spacing. Lattice calcula-
tions of the hadron spectrum at 
 � 6:5 yield values
for 1=aL of 3:962�127� GeV (Refs. [21,22]) and
3.811(59) GeV (Refs. [21,23]). These yield values of the
string tension of K � 0:1790� 0:0119 GeV and K �
0:1656� 0:0059 GeV, respectively. Comparing the results
of these lattice measurements with Table I, we conclude
that � � 0:7 is a reasonable choice for the value of the
potential-model parameter, and we use that value in our
analysis.

We express the radial equation (6) as a difference equa-
tion, and integrate it numerically. The result, for the choice
of parameters in Table I that corresponds to � � 0:7 is
shown in Fig. 1.

III. RELATIONSHIPS OF THE LIGHT-CONE
DISTRIBUTION AMPLITUDES TO THE
POTENTIAL-MODEL WAVE FUNCTION

A. Light-cone distribution amplitudes

In this subsection, we reproduce the expressions that are
given in BC for the light-cone distribution amplitudes in
terms of the BS wave functions.

For the J= with polarization �, the light-cone distribu-
tion amplitudes are defined by

 

hJ= �P; ��j �Q
�x�Q���x�j0i�	 �
fVMJ= 

4

Z 1

0
dz1eiP
x�z1�z2�

�
6�V?�z� � P6

� 
 x
P 
 x

~V�z� � ftv��	�
�����P�

MJ= 
VT�z�

� fav��	����	����5��P	x�VA�z�
�
�

: (18)

Here Q and �Q are the heavy quark and antiquark fields, respectively, �	 is the renormalization scale, ��� �
1
2 ���; ���,

and z1 � z and z2 � 1� z are the fractions of the meson momentum P� � P0 � P3 � q0 carried by the quark and
antiquark, respectively, at large P3. In deriving these expressions, the authors of BC neglect the quark transverse
momentum inside the heavy quarkonium in comparison with the quark mass. This is a further approximation that goes
beyond the standard light-cone formalism. As is pointed out in BC, the light-cone distribution amplitude ~V�z� may be
eliminated in favor of the standard leading-twist wave function VL�z� of a longitudinally polarized J= (Ref. [24]):

 hJ= ��0�P�j �Q�x���Q��x�j0i � fVP�
Z 1

0
dz1e

iP
x�z1�z2�VL�z�: (19)

Taking � to correspond to helicity � � 0 in Eq. (18) and using MJ= �
�
��0 ! P� for large P, one obtains

 VL�z� � V?�z� � ~V�z�: (20)

For the �c-meson, one has

 h�c�P�j �Q
�x�Q���x�j0i�	 � i
fPM�c

4

Z 1

0
dz1eiP
x�z1�z2�

�
P6 �5

M�c

PA�z� � f
p
p��	��5PP�z� � ftp��	����P�x�PT�z�

�
�

:

(21)

FIG. 1. The dimensionless wave function u�	� as a function of
the dimensionless variable 	. Input parameters are m �
1:14710 GeV, a � 2:38139 GeV�1, and � � 0:7. The wave
function at the origin is taken to be j �0�j � 0:18619 GeV3=2,
which is the value for the J= wave function at the origin that is
designated as LO in Ref. [4].
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B. Relationships to potential-model wave functions

In order to express the light-cone distribution amplitude
in terms of a potential-model wave function, we now derive
an approximate form for the BS wave function in terms of a
potential-model wave function. Here we make explicit use
of an expansion in the velocity v of the Q or �Q in the
quarkonium rest frame. Of course, such an expansion is
not valid at large Q �Q relative momenta. However, as we
will discuss in detail in Sec. V, we ultimately subtract
such large-momentum contributions in the cross section
calculation.

Consider a heavy Q �Q pair bound in a potential V. The
four-momenta for the pair can be written in terms of
quarkonium momentum P and their relative momentum
p as

 

pQ �
1
2P� p; (22a)

p �Q �
1
2P� p: (22b)

In the rest frame of the heavy quarkonium, P and p are
given by

 

P � �Mmeson; 0� � �2m� �B; 0�; (23a)

p � �p0;p�; (23b)

where �B is the binding energy of the quarkonium. Let
 �x� be the potential-model wave function satisfying the
time-independent Schrödinger equation:

 

�
�B �

p̂2

2�

�
 �x� � V�x� �x�; (24)

where � � m=2 is the reduced mass and p̂ is the momen-
tum operator. We specialize to the S-wave case. Then
 �x� �  �r�, where r � jxj.

We can form a trial BS wave function, accurate to
leading order in v, by appending spin wave functions
onto  . In the rest frame of the quarkonium, the spin-
singlet and spin-triplet wave functions are
 

��0�ab �
X
i;j

cij�1S0��
i
a ��jb �

1

2
���
2
p ��1� �0��5�ab

�
1

2
���
2
p

��
1�

P6
2m

�
�5

�
ab
; (25a)

��1�ab �
X
i;j

cij�
3S1��

i
a ��jb � �

1

2
���
2
p ��1� �0�6��ab

� �
1

2
���
2
p

��
1�

P6
2m

�
6�
�
ab
; (25b)

where � and �� are Dirac spinors for a static free quark and
antiquark, respectively. cij�1S0� and cij�3S1� are Clebsch-
Gordan coefficients of the spin-singlet and spin-triplet
states for the spin states i and j of Q and �Q, respectively,

and a and b are the Dirac indices. SU(3) color indices are
suppressed. In the last equalities of Eqs. (25), we have
written the expressions in a Lorentz-invariant form.4 Our
trial wave function is then  �r�����ab, where � takes on
the values 0 or 1. In momentum space, the trial BS wave
function is

 

~ �p�2���p0�����ab �
Z
d4xe�ip
x �r�����ab: (26)

The momentum-space form of the BS equation [28] is

 

~� BS
ab �p� �

Z d4q

�2��4
�SQF �p��aa0 �K�p� q��a0a00;b00b0

� � ~�BS�q��a00b00 �S
�Q
F �p��b0b; (27)

where SQF is the heavy-quark propagator. In our case, we
can take the interaction kernel K to be

 �K�p� q��a0a00;b00b0 � �0
a0a00 ��i

~V�p� q���0
b00b0 ; (28)

where

 

~V�p� q� �
Z
d3xei�p�q�
xV�r� (29)

is the Fourier transform of the nonrelativistic potential.
Then we can rewrite the BS equation as
 

~�BS
ab �p� �

Z d4q

�2��4
��p6 Q �m��0�aa0

p2
Q �m

2 � i�
�i ~V�p� q�� ~�BS

a0b0 �q�

�
��0�p6 �Q �m��b0b
p2

�Q
�m2 � i�

: (30)

Since we have neglected retardation effects, which are of
relative order v2, the interaction kernel (28) is independent
of �p� q�0. Consequently, the integration over q0 on the
right-hand side of Eq. (30) produces the equal-time BS
wave function. Integrating Eq. (30) over p0 to form the
equal-time wave function on the left-hand side, we obtain
the Salpeter equation [29]:
 

~�S
ab�p� �

Z dp0

2�

Z d3q

�2��3
��p6 Q �m��0�aa0

p2
Q �m

2 � i�
�i ~V�p� q��

� ~�S
a0b0 �q�

��0�p6 �Q �m��b0b
p2

�Q
�m2 � i�

; (31)

where

 

~� S
ab�p� �

Z dp0

2�
~�BS
ab �p� (32)

is the equal-time BS wave function, which is also known as
the Salpeter wave function.

4These Lorentz-invariant expressions were first given in
Refs. [25,26]. Exact expressions, correct to all orders in v
were given in Ref. [27].
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We can obtain a wave function that is accurate through
corrections of order v by substituting the trial wave func-
tion (26) into right-hand side of the Salpeter Eq. (31). The
result is

 

~� S
ab�p� �

Z dp0

2�

Z d3q

�2��3
�i ~V�p� q� ~ �q��

�
��p6 Q �m��

0���
0�p6 �Q �m��ab

�p2
Q �m

2 � i���p2
�Q
�m2 � i��

: (33)

Now we substitute Eq. (22) into Eq. (33) and carry out the
p0 integral on the right-hand side using residue theorem. If
we close the contour in the lower half-plane, then we
encounter two poles:
 

p0 �
������������������
m2 � p2

q
�Mmeson=2� i� 


1

2

�
p2

m
� �B

�
� i�;

(34a)

p0 �
������������������
m2 � p2

q
�Mmeson=2� i� 
 2m� i�: (34b)

The first pole corresponds to the positive-energy pole in the
quark propagator, and the second pole corresponds to the
negative-energy pole in the antiquark propagator. The
contribution from the residue at the second pole, is sup-
pressed as v2 � p2=m2 � j�Bj=m relative to the contribu-
tion from the residue at the first pole. Evaluating the latter,

we obtain

 

~� S
ab�p� 


Z d3q

�2��3
� ~V�p� q� ~ �q��

�
��p6 Q �m��

0���
0�p6 �Q �m��abjp0�0

4m2��B �
p2

2�� i��
;

(35)

where we have neglected corrections of relative order v2

by evaluating the numerator at p0 � 0. Making use of
momentum-space Schrödinger equation,

 

�
�B �

p2

2�

�
~ �p� �

Z d3q

�2��3
~V�p� q� ~ �q�; (36)

we find that
 

~�S
ab�p�


1

4m2 ��p6 Q�m��
0�aa0 ����a0b0 ��0�p6 �Q�m��b0b ~ �p�:

(37)

It is easy to see, by substituting this result into the right-
hand side of the Salpeter equation (31) and repeating the
preceding analysis, that this is a self-consistent solution of
the Salpeter equation through terms of relative order v.

Finally, returning to coordinate space, we can write the
equal-time BS wave functions as

 

h�c�P�j �QQ�x0 � 0�j0i 
 �
1

16
���
2
p
m3
�p6 Q �m��P6 � 2m��5�p6 �Q �m� �x�; (38a)

hJ= �P; ��j �QQ�x0 � 0�j0i 

1

16
���
2
p
m3
�p6 Q �m��P6 � 2m�6��p6 �Q �m� �x�: (38b)

As we have mentioned, p now has only spatial components. The interpretation of pj in coordinate space is �irj. Using
P 
 p � 0 and P 
 � � 0, we can rewrite the equal-time wave functions as
 

h�c�P�j �QQ�x0 � 0�j0i 

1

2
���
2
p

�
�5 �

1

2m
P6 �5 �

1

4m2 �p6 ; P6 ��
5

�
 �x�; (39a)

hJ= �P; ��j �QQ�x0 � 0�j0i 
 �
1

2
���
2
p

�
6��

1

2
��0; 6�� �

1

2m
fp6 ; 6�g �

i

2m2 ��
�	p
�P
���	�5

�
 �x�; (39b)

where we have retained only terms up to those linear in p,
and we have used
 

f��; ���g � �2����
�
�
5; (40a)

p6 P6 6�� P6 6�p6 � 2i��
�	p�P
���	�5: (40b)

By following a procedure similar to the one that we have
just presented, one can also obtain the BS wave functions
at equal light-cone time (x� � 0). In this case, one inte-
grates the Fourier transform of the BS equation (30) over
p�, rather than p0. The contribution at leading order in v
still comes from the residue of the positive-energy pole of
the heavy-quark propagator. Now, however, the mass-shell

condition

 �P=2� p�0 �
������������������
m2 � p2

q
(41a)

or, equivalently,

 �P=2� p���P=2� p�� � m2 � p2
? (41b)

is used to eliminate p�, rather than p0 in the residue.
Hence, one can obtain the equal-light-cone-time wave
functions from the equal-time wave functions by using
Eq. (41) to express p3 in terms of p�. We work out the
details of this transformation in Sec. IV.

Comparing the definitions of the light-cone distribution
amplitudes in Eqs. (18), (19), and (21) with the equal-time
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BS wave functions in Eqs. (39), we obtain the correspond-
ences

 

PA $  �r�; (42a)

PP $  �r�; (42b)

x�PT $ p� �r� 
 �p� �r�; (42c)

and

 

V? $  �r�; (43a)
~V $ 0; (43b)

VT $  �r�; (43c)

x�VA $ p� �r� 
 �p� �r�: (43d)

Using Eqs. (20) and (43b), we obtain

 VL $  �r�: (43e)

The meaning of these correspondences is that we take the
Fourier transform of the quantities on the right-hand sides,
use the mass-shell condition (41) to eliminate p3 in favor
of z � �P�=2� p��=P�, and integrate over p? to form
the light-cone distribution at zero transverse separation.
We will give the details of these steps in Sec. IV.

IV. LIGHT-CONE DISTRIBUTION AMPLITUDES

In this section, we compute the light-cone distribution
amplitudes in terms of the potential-model wave functions,
making use of the correspondences in Eqs. (42) and (43).

Let us consider first the cases in which a light-cone
distribution amplitude corresponds to  �r�, as for PA, PP,
V?, VT , and VL. We begin by taking the Fourier transform
of  �r�:

 

~ �p� �
Z
d3xeip
x �r�: (44)

From the definitions of the light-cone distribution ampli-
tudes in Eqs. (18), (19), and (21), we see that the light-cone
momentum fraction z is related to the momentum variable
p as

 2z� 1 �
2n 
 p
n 
 P

) z �
n 
 �P=2� p�

n 
 P
; (45)

where n � �0�; 1�; 0?� is a lightlike vector whose spatial
component is parallel to the three-momentum P of the
bound state. At the level of precision of this calculation,
there is some ambiguity in the definition of z, in that we can
discard terms of relative order v2. Hence, we can write in
the quarkonium rest frame

 z �
P�=2� p�

P�
�
P�=2� p�

P0 

P�=2� p�

P0 � 2p0

�
EQ � p

3

2EQ
; (46)

where we have made use of the mass-shell condition (41).
The quark energy EQ is defined as

 EQ �
���������������������
jpj2 �m2

c

q
: (47)

We take the last expression in Eq. (46) as our definition of
z. This definition is identical to that which is used in BC. It
has the desirable properties that 0 � z � 1 and that z$
1� z under the interchange of the quark and the antiquark.
In this definition, mc is the pole mass of the constituent
heavy quark. Note that we distinguishmc from the parame-
ter m that appears in the bound-state equation for our
potential-model wave function. For numerical calculations
in this paper we take mc � 1:4 GeV.

According to the definitions of the light-cone distribu-
tion amplitudes in Eqs. (18), (19), and (21), the light-cone
distribution amplitudes are given by the BS wave functions
at zero transverse spatial separation, as well as zero light-
cone-time separation. Therefore, in momentum space, we
obtain the light-cone distribution amplitudes by integrating
over the transverse momenta of the potential-model wave
functions. Carrying out this integration and making the
change of variables to the light-cone momentum fraction
z, we find that the light-cone distribution amplitude ��z� is
given by

 ��z� �
1

 �0�

Z d2p?
�2��3

@p3

@z
~ �p�; (48)

where the prefactor is introduced in order to respect the
conventional normalization condition

 

Z 1

0
dz��z� � 1: (49)

Hence, we have from Eqs. (42) and (43),

 PA�z� � PP�z� � V?�z� � VT�z� � ��z�: (50)

Now we can simplify the expression for the light-cone
distribution amplitude. The variables p3 and jpj can be
expressed in terms of z and p? � jp?j as
 

p3 �
z� 1

2�����������������
z�1� z�

p �������������������
p2
? �m

2
c

q
; (51a)

jpj �

��������������������������������������
p2
? � 4m2

c�z�
1
2�

2

4z�1� z�

s
: (51b)

The Jacobian in Eq. (48) is obtained from Eq. (51a) and
(51b):
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@p3

@z
�

�������������������
p2
? �m

2
c

q
4�z�1� z��3=2

�

���������������������
jpj2 �m2

c

p
2z�1� z�

: (52)

The angular integral in Eq. (44) is simple to evaluate.
Furthermore, for a fixed light-cone momentum fraction z,
we can make use of Eq. (51b) to re-express the integral
over the transverse momentum p? in Eq. (48) as an inte-
gral over the jpj:

 

Z 1
�1

d2p? � 8�z�1� z�
Z 1������

d�z�
p djpj jpj: (53)

Then, the expression for the light-cone distribution ampli-
tude reduces to
 

��z� �
2

� �0�

Z 1������
d�z�
p djpj

���������������������
jpj2 �m2

c

q

�
Z 1

0
dr �r�r sin�jpjr�: (54)

The lower bound of the jpj integral is a function of z:

 

���������
d�z�

p
� mc

jz� 1
2 j�����������������

z�1� z�
p ; (55)

which is the right-hand side of Eq. (51b) at p? � 0. The z
dependence of ��z� appears only in the lower bound

���������
d�z�

p
of the jpj integral in Eq. (54). The symmetry ��z� �
��1� z� is manifest. Furthermore, it is clear that the
maximum value of ��z� occurs at z � 1=2 and the mini-
mum value (zero) occurs at z � 0 or z � 1.

Now let us turn to the light-cone distribution amplitudes
PT and VA, whose correspondences with the equal-time BS
wave functions are given in Eqs. (42c) and (43d), respec-
tively. In each of these cases, the Fourier transform repla-
ces the factor x� on the left side of the correspondence with
a factor @=@p�. Consequently, the solution of the resulting
differential equation for PT or VA contains an integration
over p�. The expressions for PT and VA that follow from
these solutions are not normalizable because this integra-
tion and the factor p� on the right-hand side of each
correspondence lead to an ultraviolet divergence. Such
ultraviolet divergences are characteristic of amplitudes
involving corrections of higher order in v. They can be
rendered finite by treating them within an effective field
theory, such as NRQCD. Rather than introduce this com-
plication into the present discussion, we simply drop such
contributions to the cross section. That is, we drop the
contributions that arise from the light-cone distribution
amplitudes VA and PT . These contributions are suppressed
as v2, and, as we shall see, they have only about a 30%
affect on the cross section calculation for the model light-
cone distribution amplitudes that are used in BC. Hence,
these contributions do not have a significant effect on the
discussion of the order-of-magnitude discrepancy between

the calculation in BC and the NRQCD factorization
calculations.

A. Nonrelativistic approximation

In the nonrelativistic approximation, one neglects the
relative momenta of the heavy quarks in comparison with
mc. In the light-cone formalism, this amounts to taking
p? � 0? and z � 1=2. In this approximation, the Jacobian
in Eq. (52) reduces to

 

�
@p3

@z

�
approx

� 2mc: (56)

The corresponding approximate version of Eq. (54) is

 �approx�z� � z�1� z�
8mc

� �0�

Z 1
0
dr �r� cos�

���������
d�z�

p
r�:

(57)

The approximate Jacobian (56) was used in BC. For a
given potential-model wave function, it leads to a narrower
light-cone distribution amplitude than does the exact
Jacobian (52). Since, in this paper, we are generally work-
ing at leading- order in v, it is unnecessary (but not incon-
sistent) to include the corrections of higher order in v that
are contained in the exact Jacobian. However, it is conve-
nient to use the exact Jacobian because it preserves the
normalizations of the light-cone distributions, and we have
used it to derive all of the numerical results that are
presented in this paper. As a check, we have also carried
out numerical calculations using the approximate Jacobian
(56), and those calculations are qualitatively consistent
with the conclusions that we draw from the calculations
that are based on the exact Jacobian.

B. Expressions for the light-cone distribution
amplitudes for efficient numerical evaluation

The double integral in Eq. (54) is difficult to evaluate
numerically because of the oscillatory nature of the inner
integrand and because the integrand of the outer integral
decreases only slowly as jpj ! 1. We can improve the
numerical accuracy of the integrations by splitting the
integral into two pieces:

 ��z� � �a�z� ��b�z�; (58)

where
 

�a�z� �
2

� �0�

Z 1������
d�z�
p djpj jpj

Z 1
0
dr �r�r sin�jpjr�;

(59a)

�b�z� �
2

� �0�

Z 1������
d�z�
p djpj �

���������������������
jpj2 �m2

c

q
� jpj�

�
Z 1

0
dr �r�r sin�jpjr�: (59b)
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The integrand in�a�z� contains the leading behavior of the
integrand in Eq. (54), but is a simpler form in which the jpj
integration can be carried out analytically. The integral
�b�x� contains the remainder, whose integrand converges
more rapidly as jpj ! 1. We carry out the integration over
jpj in �a�z�, treating the divergent integration as a Fourier
transform whose result is defined in the distribution sense.
The result is

 �a�z� � 1�
2

� �0�

Z 1
0
dr �r�

� ���������
d�z�

p
cos�

���������
d�z�

p
r�

�
sin�

���������
d�z�

p
r�

r

�
: (60)

We use Eqs. (59b) and (60) to evaluate ��z� numerically.
It is useful, in checking the accuracy of numerical-

integration methods that we use, to know the values of
the light-cone distribution amplitudes for special cases in
which they can be computed analytically. The light-cone
distribution amplitudes �, �a, and �b are computed for
the case of a pure Coulomb potential in Appendix A. Their
asymptotic behaviors at z � 0 (or z � 1) are also given. In
addition, it is simple to compute the value of �a at z �
1=2. In this case d�z� � 0, and Eq. (60) reduces to

 �a�1=2� � 1: (61)

C. Light-cone distribution amplitudes

In Fig. 2, we show the light-cone distribution amplitude
that results from substituting our potential-model wave
function into Eqs. (59b) and (60) and carrying out the
integrations numerically, taking mc � 1:4 GeV. For com-
parison, we also show the model light-cone distribution
amplitude that is used in BC:

 �BC�z� � c�v2�z�1� z�
�

z�1� z�

1� 4z�1� z��1� v2�

�
1�v2

;

(62)

where v2 � 0:3 and c�0:3� 
 9:62. As can be seen, the
model light-cone distribution amplitude of BC is very
similar in shape to the light-cone distribution amplitude
that we have derived from a potential model. However,
there is a significant difference in the functional forms in
the tails at z � 0, 1. The asymptotic behavior of the BC
light-cone distribution amplitude at z � 0 is �BC�z� �
c�v2�z�2�v

2�. In contrast, the potential-model light-cone
distribution amplitude that we derive behaves at z � 0 as
��z� � 8�Cz1=2=��mc� [Eq. (A8)].

In Fig. 3, we show the light-cone distribution amplitude
�approx�z� that arises from Eq. (57), in which the nonrela-
tivistic approximation has been used for the light-cone-
fraction Jacobian. As can be seen from the figure, this
approximation leads to a narrower light-cone distribution
than does the exact expression.

FIG. 3. Comparison of the light-cone distribution amplitude
�approx�z� with ��z�. �approx�z� is computed from Eq. (57), in
which the nonrelativistic approximation is used for the light-
cone-fraction Jacobian. ��z� is computed from the exact ex-
pressions in Eqs. (59b) and (60).

FIG. 2. The light-cone distribution amplitude ��z� that is
derived from the potential model in this paper and the model
light-cone distribution amplitude �BC�z� that is used in BC. As is
explained in the text, ��z� is computed from the potential-model
wave function by carrying out the integrations in Eqs. (59b) and
(60) numerically, taking mc � 1:4 GeV. �BC�z� is given in
Eq. (62).
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V. PERTURBATIVE CORRECTION CONTAINED IN
THE LIGHT-CONE DISTRIBUTION AMPLITUDE

As can be seen from Eq. (51b), when ��z� is used in
computing the cross section, it yields contributions that
arise from both large and small Q �Q relative momentum p.
The large-p contributions are not treated correctly in a
potential model, which is inherently nonrelativistic. In
the NRQCD factorization approach, this difficulty is dealt
with by factoring the large-p contributions into short-
distance coefficients and the small-p contributions into
NRQCD matrix elements. The large-p contributions are
then computed in perturbation theory, which is presumed
to be valid, owing to asymptotic freedom.

In the light-cone calculation, we also wish to identify,
and ultimately remove, these large-p contributions. In
particular, we wish to remove that part of the large-p
contribution that, in the NRQCD approach, is computed
as an order-�s contribution to the cross section, i.e., an
order-�s contribution to the short-distance coefficient. Of
course, we could, in principle, remove contributions of
order �2

s and higher, as well. These contributions, presum-
ably, are less important than the order-�s contribution.

We begin by writing the production amplitude for the
heavy-quarkonium in a schematic form, which is depicted
in Fig. 4:

 M �
Z d4p

�2��4
2���p0� ~ �p�H�p�; (63)

where ~ �p� is the spatial part of the momentum-space
wave function for the meson andH�p� is the short-distance
production amplitude for the quark pair. Here we approxi-
mate the temporal part of the wave function with 2���p0�.
That is, we neglect deviations of the quark energy from m,
which are of relative order v2. In the rest frame of the
meson, p is the momentum of the charm quark and �p is
that for the antiquark. At this point, we could simply
impose a cutoff on the integration over p in order to
separate the large- and small-p contributions. However,
we wish to maintain consistency with dimensional regu-
larization, which is conventionally used to compute the
short-distance coefficients in perturbation theory in the
NRQCD method. Therefore, we use the method of regions
[30] to compute the large and small-p contributions. For
small p, we approximate H�p� by H�0�. Then, we obtain
the standard leading-order contribution to the cross sec-

tion:

 M 0 �
Z d3p

�2��3
~ �p�H�0� �  �0�H�0�: (64)

We subtract M0 from M. This removes a scaleless power
infrared divergence, which vanishes in dimensional regu-
larization. The remainder is infrared finite, and it is domi-
nated by large p. Therefore, we can use the Bethe-Salpeter
equation with the Coulomb-exchange kernel to write ~ �p�
approximately in a form in which one Coulomb loop is
exposed. The result, which is depicted in Fig. 5, is
 

M�M0 �
Z d4k

�2��4
2���k0� ~ �k�

�
Z dp0d3p

�2��4
��igsTa���igsTa�

�
i

�p� k�2
i

p0 � p2

2m� i�

�i

p0 � p2

2m� i�

� �H�p� �H�0��; (65)

where gs is the strong-coupling, and Ta is an SU(3) color
matrix. Note that we use the nonrelativistic expressions for
the Q and �Q propagators because we wish to identify the
contribution to the high-momentum tail of the light-cone
distribution that arises in the potential model. In the po-
tential model, the heavy quark and antiquark are treated in
the leading nonrelativistic approximation. Taking the
small-k approximation for the integrand of the k integra-
tion, we obtain the order-�s short-distance contribution to
M:

 �M �  �0�
Z dp0d3p

�2��4
��igsTa���igsTa�

i

p2 � i�

�
i

p0 � p2

2m� i�

�i

p0 � p2

2m� i�
�H�p� �H�0��:

(66)

We emphasize that �M is not arbitrary, but has a
precise definition in NRQCD: �M= �0� is the order-�s
short-distance coefficient of the NRQCD operator  �y in a
QCD-like theory in which the Q and �Q are treated in the
leading nonrelativistic approximations and the only inter-
actions are Coulomb-gluon ladder exchanges. That theory
is, of course, identical to the potential model. �M= �0� is

H
k p

− k − p

H
p = 0

FIG. 5 (color online). Diagrammatic representation of M�
M0, as given in Eq. (65). The circle labeled H represents the
hard part of the production amplitude, and the oval represents the
quarkonium wave function.

H

p

−p

FIG. 4 (color online). Diagrammatic representation of M, as
given in Eq. (63). The circle labeled H represents the hard part of
the production amplitude, and the oval represents the quark-
onium wave function.
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equal to the diagrams in Fig. 5, with the wave function
truncated and k set to zero. That equality is precisely the
NRQCD matching condition: The first diagram in Fig. 5 is
the order-�s correction to the on-shell hard-scattering in
the full theory, and the second diagram in Fig. 5 is the
order-�s correction to the NRQCD operator times the
leading-order short-distance coefficient. (We assume that
the on-shell matrix element of  �y, which multiplies
�M= �0�, is normalized to unity.)

The integral over p0 in Eq. (66) can be carried out by the
contour method. Here, we assume that any singularities in
H�p� are of order m away from the origin and, therefore
correspond to contributions that are suppressed as
p2=m2 � v2 relative to the leading contributions, which
come from the poles at p0 � �p2=�2m�. The result is then

 �M � 4��sCF �0�
Z d3p

�2��3
m

p4 �H�p� �H�0��

� 4��sCF �0�
Z d3p

�2��3
m

�p4��p
H�p�; (67a)

where

 H�p� � H�p�jp0�0: (67b)

Here, we have neglected deviations of p0 from 0 in H�p�,
with errors of relative order v2. The second equality in
Eq. (67a), defines the � distribution with respect to p. We
use the� distribution to write �M as a convolution of the
correction to the momentum-space wave function � ~ �p�
with the hard-scattering amplitude H�p�:

 �M �
Z d3p

�2��3
� ~ �p�H�p�; (68a)

where

 � ~ �p� � 4��sCF �0�
m

�p4��p
: (68b)

Therefore, we can remove contributions to the production
amplitude that correspond to the standard order-�s correc-
tions to the NRQCD short-distance coefficient by modify-
ing the momentum-space wave function according to
~ �p� ! ~ �p� � � ~ �p�.

Similarly, we modify the light-cone distribution ampli-
tude ��z� according to ��z� ! ��z� � ���z�. The defini-
tion of ���z� follows from the definition of ��z� in
Eq. (48):

 ���z� �
1

 �0�

Z d2p?
�2��3

@p3

@z
� ~ �p�

� 4�m�sCF
Z d2p?
�2��3

�
@p3

@z
1

p4

�
�z
; (69)

The � distribution with respect to z in the last line of
Eq. (69) is defined by

 

Z 1

0
dz�f�z���zH�z� �

Z 1

0
dz f�z��H�z� �H�1=2��: (70)

The evaluation of ���z� can be carried out in analogy with
the derivation of Eq. (54) from Eq. (48). The exact
Jacobian in Eq. (52) is substituted into Eq. (69) and the
p? integral can be written as an integral over jpj, as in
Eq. (53). Then, the expression for ���z� can be written as
a single integral:

 ���z� �
2m�sCF

�

Z 1������
d�z�
p djpj

� ���������������������
jpj2 �m2

c

p
p3

�
�z
: (71)

Using the identity

 

Z ��������������
x2 � 1
p

x3 dx � �
� ��������������
x2 � 1
p

2x2 �
1

4
log

��������������
x2 � 1
p

� 1��������������
x2 � 1
p

� 1

�
;

(72)

we obtain an analytic expression for ���z�:
 

���z� �
2�sCF
�

�
m
mc

��� �����������������
z�1� z�

p
4�z� 1

2�
2

�
�z

�
1

4

�
log

1� 2
�����������������
z�1� z�

p
1� 2

�����������������
z�1� z�

p �
�z

�
: (73)

We note that, because of the definition of �� as a �
distribution, �� has the property

 

Z 1

0
dz���z� � 0: (74)

That is, the effect of subtracting �� from � is to shift
contributions from z near 0 or 1 to z near 1=2 without
changing the overall normalization of the light-cone dis-
tribution amplitude.

As can be seen from Eq. (73), �� diverges near z � 1=2
as 1=�z� 1=2�2. When �� is multiplied by a function f�z�
and integrated over z, the leading linear divergence at z �
1=2 is canceled by the factor f�z� � f�1=2� that appears in
the integrand by virtue of the definition of the � distribu-
tion. The subleading logarithmic divergence cancels be-
cause the corresponding integrand is odd about the point
z � 1=2.

Since the Coulomb potential controls the behavior of the
wave function at large momenta (short distances), we
expect the asymptotic behavior of ���z� near z � 0 (or
z � 1) to be identical to that of ��z�. It is easy to see from
Eq. (73), that the asymptotic behavior of ���z� near z � 0
is

 ���z� �
8�C

�mc

���
z
p
; (75)
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where we have made use of Eq. (17). (The asymptotic
behavior near z � 1 can be obtained from Eq. (75) by
replacing z with 1� z.) As expected, the asymptotic be-
havior of ���z� in Eq. (75) is identical to that of ��z� in
Eq. (A8a).

In Figs. 6 and 7, we plot ���z�, along with ��z�. Since
�� is a � distribution [Eq. (73)], it contains a large
negative contribution at z � 1=2 that is not shown in
Fig. 6. As can be seen from Figs. 6 and 7, ���z� shows
the expected approach to ��z� at z � 0 and z � 1. In
Fig. 7, we show this behavior in more detail near z � 0.
The convergence of��z� and ���z� at the end points has a
significant consequence in the evaluation of the cross
section. As we have mentioned, we must subtract ���z�
from ��z� in order to remove contributions that are con-
ventionally calculated as part of the order-�s contributions
to the NRQCD short-distance coefficient. As we shall see,
the cancellation between ��z� and ���z� at the end points
results in great reduction in the cross section.

VI. LIGHT-CONE CROSS SECTION FOR
e�e� ! J= � �c AT B FACTORIES

In this section, we use the light-cone distribution ampli-
tude that we have derived from the potential model to
compute the cross section for e�e� ! J= � �c at the
B factories.

A. Light-cone cross section

We begin by recording the expression for the light-cone
cross section from BC. In order to compare with the results
of BC, we have tried to make use of the same approxima-
tions that were employed in that paper. (In some cases, it
was necessary to deduce the approximations that were
taken in BC by exploring the effects of various approx-
imations on the numerical results.) In this section, we make
use of the notation of BC. In particular, we use �MQ to
represent the heavy-quark mass, and we distinguish its
numerical value from those of the parameter m in the
potential model and the charm-quark pole mass mc.

The light-cone cross section is derived by standard
techniques [24,31] and is given in BC as

 ��e�e� ! J= � �c� �
��2e2

c

6

�
jpj

Ebeam

�
3
jFVP�s�j2;

(76)

where p is the three momentum of the J= in the e�e�

center-of-momentum (CM) frame and
���
s
p
� 2Ebeam is the

e�e� CM energy. The form factor FVP�s� is given by

 jFVP�s�j �
32�

9

��������fVfP �M

q4
0

��������I0; (77)

where �M � �3MJ= �M�c�=4 is spin-averaged S-wave
charmonium mass and fV and fP are the decay constants

FIG. 7. ���z� and ��z�, plotted over a restricted range in z.
���z� is given by Eq. (73) and ��z� is computed from the
potential-model wave function by carrying out the integrations in
Eqs. (59b) and (60) numerically.

FIG. 6. ���z� and ��z�, plotted over the full range of z. ���z�
is given by Eq. (73) and ��z� is computed from the potential-
model wave function by carrying out the integrations in
Eqs. (59b) and (60) numerically. Note that �� is actually a �
distribution, as is described in the text, and, therefore, it contains
a large negative contribution at z � 1=2 that is not shown in the
figure.
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of the J= and the �c, respectively. The quantities jpj and
q2

0 are given by
 

jpj �
�������������������������
E2

beam �
�M2

q
; (78a)

q2
0 � �Ebeam � jpj�

2: (78b)

I0 in Eq. (77) is defined by

 I0 �
Z 1

0
dx1

Z 1

0
dy1�s�k

2�
X5

i�1

fi�x; y�; (79)

where k is the momentum of the virtual gluon. The labeling
of the light-cone momentum fractions for the J= , x1,
x2 � 1� x1, and for the �c, y1, y2 � 1� y1, can be read
from Fig. 1 of BC. The integrands fi�x; y� in Eq. (79) are
given by

 

f1�x; y� �
ZtZpVT�x�PP�y�

d�x; y�s�x�
; (80a)

f2�x; y� � �
�M2
Q

�M2

Z�mZtVT�x�PA�y�
d�x; y�s�x�

; (80b)

f3�x; y� �
1

2

VL�x�PA�y�
d�x; y�

; (80c)

f4�x; y� �
1

2

�1� 2y1�

s�y�
V?�x�PA�y�
d�x; y�

; (80d)

f5�x; y� �
1

8

�
1� ZtZkm

4 �M2
Q

�M2

�
�1� y1�VA�x�PA�y�

d2�x; y�
: (80e)

The function d�x; y� in Eq. (80) originates from the gluon
propagator in Fig. 1 of BC and is defined by

 

d�x; y� �
k2

q2
0

�

�
x1 �

�
y1

��
y1 �

�
x1

�
; (81a)

� �
�
Zkm

�MQ

q0

�
2
: (81b)

The functions s�x� and s�y� in Eq. (80) are from the charm-
quark propagator in Fig. 1 of BC and are defined by

 

s�x� � x1 �
Z�m �M2

Q

y1y2q2
0

; (82a)

s�y� � y1 �
Z�m �M2

Q

x1x2q2
0

: (82b)

One might suppose that these expressions should contain
two factors of Zkm for each factor of �M2

Q, as is the case in the
corresponding expressions in Refs. [10,11]. Here, we wish
to compare directly with the results of BC, and so we use

the expressions that are given in that paper. The inclusion
of two factors of Zkm for each factor of �M2

Q in Eq. (82) has a
small numerical effect on the cross section, which we will
describe in Sec. VI C. Following BC, we also take

 

Ebeam �

���
s
p

2
; (83a)

jpj 
 Ebeam �
�M2

2Ebeam
; (83b)

q0 

������������������
s� 2 �M2

p
; (83c)

k2 
 x1y1q2
0 � 2 �M2

Q: (83d)

The various renormalization factors that appear in
Eqs. (80) and (82) are defined by

 

Zp �
�
�s�k

2�

�s� �M2
Q�

�
�3CF=b0

; (84a)

Zt �
�
�s�k

2�

�s� �M2
Q�

�
CF=b0

; (84b)

Zm��2� �

�
�s��

2�

�s� �M2
Q�

�
3CF=b0

; (84c)

Zkm � Zm��2 � k2�; (84d)

Z�m � Zm��
2 � �2�; (84e)

where b0 � 25=3. The running MS mass in Eqs. (84) is
given by

 

�MQ��2� � Zm��2� �MQ: (85)

Following BC, we take the strong-coupling �s to be given
approximately by

 �s��2� 

4�=b0

log��2=�200 MeV�2�
: (86)

In Eqs. (84), �2 is the square of the four-momentum of the
charm-quark propagator in Fig. 1 of BC. Again, we follow
BC and use the approximate expression

 �2 
 xq2
0 �

�M2
Q

�
1�

1

y�1� y�

�
: (87)

The renormalization factors Zi in Eq. (84) were intro-
duced in BC in order to account for the evolution of the
heavy-quark mass and tensor and pseudoscalar currents
from the scale �MQ to the scales of the hard interactions
in the production process. We note that such renormaliza-
tion factors do not appear in the NRQCD calculations of
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the cross section. As we shall see, they have a large
numerical effect on the cross section.

We use the following numerical values, which were
given in BC: s � 112 GeV2, fV � fP � 400 MeV, �MQ �
�Mc � 1:2 GeV. We also take MJ= � 3:096916 GeV and
M�c�2:98040 GeV, which imply that �M�3:06779 GeV.
We note that, in the light-cone formalism, fV is related to
the leptonic decay width of the J= as ��J= ! e�e�� �
�16��2=27�jfV j

2=MJ= . (See footnote 9 of BC.)
Therefore, the value of fV is independent of the shape of
light-cone distribution and, hence, is unaffected by the
treatment of the high-momentum tail of the light-cone
distribution. The value of fP is fixed by making use of
the fact that fP is equal to fV , up to corrections of relative
order v2, which are neglected.

B. Numerical results

Now we compute numerical values of the light-cone
cross section (76), using the light-cone distribution ampli-
tudes that we derived from the Cornell potential model.

As we have already mentioned, we drop contributions
that arise from the light-cone distribution amplitude VA, as
these are of higher order in v. That is, we set the term f5 in
Eq. (80) to zero. For the model light-cone distribution
amplitudes of BC, this has the effect of reducing the cross
section from the value ��e�e� ! J= � �c� 
 33 fb re-
ported in BC to ��e�e� ! J= � �c� 
 23:47 fb. Thus,
we do not expect the absence of this contribution to affect
the order-of-magnitude discrepancy between the light-
cone and NRQCD factorization results that we wish to
address here.

The remaining light-cone distribution amplitudes are
given in terms of the light-cone distribution amplitude
that is derived from the potential-model wave function
[Eq. (50)]. Hence, we take
 

VT�x� � VL�x� � V?�x� � ��x1�; (88a)

PP�y� � PA�y� � ��y1�; (88b)

where ��z� is defined in Eq. (54), and we use the equiva-
lent forms in Eqs. (59b) and (60) for the numerical evalu-
ation. Substituting these light-cone distribution amplitudes
into Eq. (80), we obtain the values for the cross section
��e�e� ! J= � �c� that are shown in the fourth row of
Table II and are denoted by �0. If we correct the light-cone
distribution amplitudes by subtracting the piece ��
[Eq. (73)] that corresponds to the order-�s correction to
the NRQCD short-distance coefficient, then we obtain the
results that are shown in the fifth row of Table II and are
denoted by �. Finally, if we replace the light-cone distri-
bution amplitudes ��z� by ��z� 1=2�, then we obtain the
results that are shown in the sixth row Table II and are
denoted by ��.

C. Discussion

As can be seen from Table II, if we take the values of Zi,
�s, and �Mc that were used in BC, then the value of the
unsubtracted cross section � that is obtained by using the
potential-model light-cone distribution amplitude does not
differ substantially from the value 23.47 fb that is obtained
by using the model light-cone distribution amplitudes of
BC (with the contribution of VA set to zero). This is not
surprising, since, as can be seen from Fig. 2, the potential-
model light-cone distribution amplitude does not differ
greatly in shape from the model light-cone distribution
amplitudes of BC.

However, once the light-cone distribution amplitudes
are corrected by subtracting the part �� that corresponds
to the order-�s correction to the NRQCD short-distance
coefficient, then the cross section is reduced signifi-
cantly—by a factor of approximately three if the values
of Zi, �s, and �Mc are those that were used in BC.

A further large reduction in the cross section occurs if
we set the renormalization factors Zi equal to unity. These
factors represent an attempt to resum large logarithms of
the heavy-quark virtuality in the production process di-
vided by �M2

c. However, it is not clear to us that these
factors, as employed in BC, correctly resum such loga-
rithms. The factors Zp and Zt are inserted in an attempt to
account for the evolution of the light-cone distributions
from the scale �M2

c to the scale of the heavy-quark virtuality.
However, these renormalization factors account correctly
only for the evolution of the first moments of those dis-
tributions. The factor Zm evolves the heavy-quark mass in
the heavy-quark propagator. However, some of the factors
of �MQ in Eqs. (81) and (82) should not be evolved because

TABLE II. Values for the cross section ��e�e� ! J= � �c�
computed using the light-cone distribution amplitudes that are
derived from a potential-model wave function. As is explained in
the text, �0 denotes the unsubtracted cross section, � denotes the
cross section in which contributions that correspond to order-�s
correction to the NRQCD short-distance coefficient have been
removed from the light-cone distribution amplitudes, and ��
denotes the cross section in which the light-cone distribution
amplitudes have been replaced by � functions. The notation
‘‘BC’’ indicates that the values of the renormalization constants
Zi or �s are those that were used in BC. The value �Mc �
1:2 GeV was used in BC; the values �Mc � 1:4 GeV and �s �
0:21 were used in Ref. [4]. The notation ‘‘BC’’ indicates that, in
Eq. (82), we have inserted two factors of Zkm for each factor of
�M2
Q, as is described in the text below Eq. (82).

Z BC BC 1 1 1
�s BC BC BC 0.21 0.21
�Mc (GeV) 1.2 1.2 1.2 1.2 1.4

�0 (fb) 22.51 25.03 11.59 7.58 4.95
� (fb) 7.77 8.19 4.30 3.29 2.48
�� (fb) 5.39 5.59 3.04 2.48 1.95
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they do not arise from the propagator mass, but, rather,
from the approximation that the external heavy-quark lines
are taken to be on-shell with mass �MQ. Specifically, some
of the factors of �MQ that appear in the quantities d�x; y�,
s�x�, and s�y� [Eqs. (81) and (82)] arise in this way.

After we have set the renormalization factors Zi equal to
unity, the cross section is reduced to 4.3 fb, which is
comparable to the values 3:78� 1:26 fb (Ref. [4]) and
5.5 fb (Ref. [5]) that were obtained in the NRQCD facto-
rization calculations in leading order in �s. For purposes of
comparison with the results of Ref. [4], we show in the last
two columns of Table II the effects of taking the values of
�Mc and �s that were used in that paper. It should be noted

in making this comparison that the NLO value of the wave
function at the origin that was used in Ref. [4] corresponds
to fV 
 489 MeV. Use of this value for fV (rather than
400 MeV) would enhance the cross section by about a
factor 2.2.

In BC, it is claimed that a large enhancement of the cross
section occurs in the light-cone calculation because it takes
into account the finite width of the quarkonium wave
function. However, we see from Table II that once the
�� part of the light-cone distribution amplitudes has
been subtracted, the cross section does not differ greatly
from that which is obtained by using �-function light-cone
distribution amplitudes. We conclude that any large en-
hancement that arises from the finite width of the quark-
onium wave function must be coming from the region that
corresponds to the order-�s corrections to the NRQCD
short-distance coefficient, i.e. the region of large heavy-
quark momentum ( * mc). Within our potential-model
calculation, it is essential to remove this region, as it is
not treated reliably under the nonrelativistic approxima-
tions that go into that model. In comparing with NRQCD
factorization calculations, it is necessary to identify the
contribution from this region, even if one makes use of
light-cone distribution amplitudes with the correct high-
momentum behavior, because otherwise its contributions
would be double counted in the NRQCD factorization
corrections of order �s to the production cross section.
We note that the order-�s corrections to the production
cross section are indeed large [7].

The absence of a large enhancement of � relative to ��
is somewhat surprising, since it is known that, in the
NRQCD factorization approach, there are large corrections
of order v2 (Ref. [4]) that account partially for the effects
of the finite width of the quarkonium wave function.
However, the order-v2 corrections arise from several
sources: the dependence of the amplitude on the Q �Q
relative momentum and the difference between the char-
monium mass and 2mc in the phase space and in the
relativistic normalizations of the states. Of these correc-
tions, only the first type is sensitive to the finite width of
the quarkonium wave function. It is 3:87hv2i relative to
the lowest-order cross section [4]. Here, hv2i �

hP 1i=�m
2
chO1i�, where the matrix elements are taken in

the J= or �c state, and the NRQCD operators O1 and P 1

are defined in Ref. [6]. (Their matrix elements are propor-
tional to the square of the wave function at the origin and
the wave function at the origin times the second derivative
of the wave function at the origin, respectively.) Taking
hP 1i=hO1i � 0:50� 0:09� 0:15 GeV2 (Ref. [19]) and
mc � 1:4 GeV, we see that the order-v2 corrections that
arise from the dependence of the amplitude on the Q �Q
relative momentum are approximately 99% of the lowest-
order cross section. The difference between � and �� is
only approximately 29%. However, it should be remem-
bered that the light-cone formalism omits contributions
that arise from the transverse part of the Q �Q relative
momentum. (Note, though, that the transverse-momentum
contributions are suppressed by a factor v2M2

meson=E2
beam

relative to the longitudinal-momentum contributions.) We
also point out that, in dropping terms that are proportional
to the light-cone distribution amplitude VA, we have omit-
ted corrections of order v2 that, in the case of the model
light-cone distributions of BC, amount to about a 30%
correction relative to the cross section computed without
them. In order to be more quantitative about the effects of
these omissions, we have calculated the order-v2 correc-
tion that is associated with the finite widths of the light-
cone distributions by expanding the light-cone cross sec-
tion around z � 1=2. The result is a relative correction
2:1hv2i 
 54%. Presumably, the remaining small differ-
ence between this correction and ��� ���=� of about
54%–29% � 25% arises from corrections of still higher
orders in v and from the fact that we have computed ��
only at leading order in �s.

VII. SUMMARY

The discrepancy between theoretical predictions in the
NRQCD factorization approach and experimental mea-
surements of the rate for the process e�e� ! J= � �c
at the B factories presents a significant challenge to our
understanding of the physics of quarkonia and, perhaps, to
our understanding of QCD. In Ref. [8] (BC), it was sug-
gested that the solution to this problem may lie in using the
light-cone formalism to take into account the effects of the
relative momenta of the heavy quarks and antiquarks in the
quarkonia. The cross section calculated in BC is about a
factor 6–10 times larger than the cross sections calculated
at leading order in the NRQCD factorization approach
[4,5]. Both the NRQCD factorization approach and the
light-cone method are believed to approximate QCD in
the limit in which the hard-scattering momentum transfer
is much larger than the heavy-quark mass or �QCD.
Therefore, the apparent discrepancy between the two ap-
proaches presents a further, purely theoretical, puzzle. In
this paper, we attempt to address this theoretical issue on
several fronts.
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First, we use a potential model to construct light-cone
quarkonium distribution amplitudes that are a good ap-
proximation to the true light-cone distribution amplitudes
of QCD. If one knows the static heavy-quark potential
sufficiently accurately, then the potential-model allows
one to determine the quarkonium wave function up to
corrections of relative order v2, where v is the heavy-quark
(or antiquark) velocity in the quarkonium rest frame. (v2 

0:3 for charmonium). We make use of the Cornell potential
[17], which, for an appropriate choice of parameters, yields
a good fit to the lattice data for the heavy-quark potential—
thus giving us confidence in the connection of the potential
model to QCD. We use the Bethe-Salpeter equation to
relate the potential-model wave functions to the definitions
of the light-cone distributions, which are written in terms
of the Bethe-Salpeter wave function. Then, we use on-shell
kinematics for the heavy quarks to relate momentum var-
iables to light-cone variables. The latter approximation is
valid up to corrections of relative order v2. Finally, we
integrate out the relative Q �Q transverse momentum in the
Bethe-Salpeter wave functions to form the light-cone dis-
tribution amplitudes. The light-cone distribution ampli-
tudes that we derive agree reasonably well in shape with
the model light-cone distribution amplitudes of BC. The
calculated cross section changes very little if we replace
the light-cone distribution amplitudes of BC with ours.
Thus, we conclude that the distribution amplitudes them-
selves are not the source of the theoretical discrepancy.

A part of the light-cone result for the production cross
section arises from the region of large Q �Q relative mo-
mentum ( * mc). This region is not treated accurately in
our inherently nonrelativistic potential model. Further-
more, it consists of contributions that are part of the
order-�s correction to the hard-scattering coefficient in
the NRQCD factorization approach. Hence, it is necessary
to identify these contributions in order to avoid double-
counting the order-�s correction in making comparisons
between the light-cone approach and the NRQCD factori-
zation approach. After we subtract these contributions
from the light-cone calculation, the production cross sec-
tion is reduced by about a factor of three.

The light-cone cross section in BC contains renormal-
ization factors Zi for the heavy-quark mass and the pseu-
doscalar and tensor pointlike vertices. If we set them to
unity, a further reduction in the cross section of about a
factor of two occurs. These renormalization factors have
no counterpart in a conventional NRQCD factorization
calculation. They represent an attempt to resum large
logarithms of the heavy-quark virtuality in the production
process divided by the square of the heavy-quark mass.
However, as we have explained in Sec. VI C, we are not
convinced that these renormalization factors, as employed
in BC, resum such logarithms correctly. It is important to
understand whether a correct resummation yields a signifi-
cant enhancement to the cross section and, if so, to incor-

porate it into NRQCD factorization calculations, as well as
into light-cone calculations.

Once the factors Zi have been set equal to unity, the
subtracted light-cone cross section is comparable in size
with the NRQCD factorization cross sections, and it differs
by only about 29% from the light-cone cross section that
is obtained by replacing the light-cone distribution
amplitudes with zero-width distribution amplitudes (�
functions).5

We conclude that there is no conflict between the light-
cone and NRQCD factorization results. Further, it seems
that enhancements to the cross section that arise from
making use of a light-cone wave function of finite width
are rather modest and are not sufficient to remove the
discrepancy between theory and experiment. That discrep-
ancy remains an important puzzle. At this point, the most
promising avenue for its resolution seems to be the inclu-
sion of corrections of higher order in �s (Ref. [7]) and v.
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APPENDIX A: LIGHT-CONE DISTRIBUTION
AMPLITUDES FOR THE PURE COULOMB

POTENTIAL AND ASYMPTOTIC BEHAVIOR
AT z � 0, 1

In this Appendix, we compute analytically the light-
cone distribution amplitudes �, �a, and �b for the special
case of a pure Coulomb potential. We also determine their
asymptotic behaviors at z � 0 (or z � 1). These analytic
results are useful in checking the accuracy of the
numerical-integration methods that we use in the more
general case of the Cornell potential.

5Even in the case of �-function light-cone distribution ampli-
tudes, there are small differences between the light-cone and
NRQCD factorization cross sections. Some of these differences
arise from different choices for the quarkonium wave functions
at the origin, �s, and the charm-quark mass and from the
inclusion of quantum-electrodynamic corrections in Ref. [4].
Other differences, presumably, are due to the fact that the
light-cone and NRQCD factorization cross sections become
equal only in the limit of infinite hard-scattering momentum
transfer.

GEOFFREY T. BODWIN, DAEKYOUNG KANG, AND JUNGIL LEE PHYSICAL REVIEW D 74, 114028 (2006)

114028-16



We drop the linear potential in the radial equation (6). In
this pure Coulomb case, as is well known, Eq. (6) can be
solved analytically. For the ground state, the wave function
u�	� and eigenvalue 
 are

 u�	� �

������
�3

2

s
	e���=2�	; (A1)

 
10 � �
�2

4
: (A2)

Applying the relations in Eqs. (3), (5a), (5b), and (7), we
obtain

 

R�r� � 2�3=2
C e��Cr; (A3a)

�B � �
�2

C

m
: (A3b)

From Eq. (A3a), it follows that

 � �r��Coulomb �  �0�e��Cr; (A4)

where the wave function at the origin is given by

 j �0�j �

������
�3

C

�

s
: (A5)

We next use Eq. (A4) to calculate the light-cone distri-
bution amplitude in the pure Coulomb case. Substituting
Eq. (A4) into Eq. (59) and integrating over r, we obtain

 

���z��Coulomb �
4�C

�

Z 1������
d�z�
p

jpj
���������������������
jpj2 �m2

c

p
�jpj2 � �2

C�
2 djpj; (A6a)

��a�z��Coulomb �
4�C

�

Z 1������
d�z�
p

jpj2

�jpj2 � �2
C�

2 djpj; (A6b)

where we have used � � �a ��b. Carrying out the in-
tegration over jpj in Eqs. (A6), we have

 

���z��Coulomb �
2�C

�

� ���������������������
d�z� �m2

c

p
d�z� � �2

C

�
sinh�1

�������������
m2
c��2

C

d�z���2
C

r
�������������������
m2
c � �2

C

q �
;

(A7a)

��a�z��Coulomb �
2

�

�
�C

���������
d�z�

p
d�z� � �2

C

� arctan
�
�C���������
d�z�

p ��
: (A7b)

Note that Eq. (A7b) can also be obtained by substituting
the wave function in Eq. (A4) into Eq. (60) and integrating
over r.

We can use our results in the pure Coulomb case to
compute the asymptotic behavior of the light-cone distri-
bution amplitudes at z � 0 (or z � 1). At z � 0, the cor-
responding longitudinal momentum is infinite [Eq. (51a)],
and only the short-distance behavior of  �r� is important.
That short-distance behavior is governed by the Coulomb
potential.6 Taking the limit z! 0 in Eqs. (A7a) and (A7b)
and using�b � ���a, we find the asymptotic behaviors

 

��z� ��a�z� �
8�C
�mc

z1=2; (A8a)

�b�z� �
16�C
3�mc

z3=2: (A8b)

The asymptotic forms in Eqs. (A8) provide good tests of
the convergence in the high-momentum region of the
numerical integrations that we use to compute ��z� and
�a�z�.
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