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We calculate, in a model, the beam spin asymmetry in semi-inclusive jet production in deep inelastic
scattering. This twist-3, T-odd observable is nonzero due to final state strong interactions. With reasonable
choices for the parameters, one finds an asymmetry of several percent, about the size seen experimentally.
We present the result both as an explicit asymmetry calculation and as a model calculation of the new
transverse-momentum dependent distribution function g?.
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I. INTRODUCTION

Semi-inclusive deep inelastic scattering (SIDIS) pro-
vides a way to reach a more detailed understanding of
the structure of a hadronic target [1–3]. The information
gained can be codified into transverse momentum depen-
dent distribution functions (TMD’s), which in leading twist
are related to quark probability distributions. Single-spin
asymmetries provide a method to isolate and measure
specific TMD’s [4,5], often those of higher twist. Experi-
mentally, both beam and target spin asymmetries have
been observed [6,7].

This paper is concerned with calculations of beam
single-spin asymmetries in semi-inclusive production of a
quark jet. A beam spin asymmetry can be viewed in a
number of ways. At the simplest level, finding a beam
spin asymmetry means defining ‘‘up’’ and ‘‘down,’’ say
by taking a cross product of the incoming electron spin ~Se
with the virtual photon three-momentum ~q, and then seeing
if the outgoing hadron or jet is more likely to emerge with
transverse momentum up or down relative to the electron
scattering plane as just defined. Going further, a jet is a
collimated spray of hadrons, where all the final-hadrons in
the jet are summed and their phase space integrated, and
we represent the jet momentum by the quark momentum
~pq. A more formal observable that corresponds to the beam

spin asymmetry is ~Se � ~q � ~pq. Nonzero beam spin asym-
metry means a nonzero average, weighted by the cross
section, value of this observable. One can define an azimu-
thal angle � as the angle between the electron scattering
plane and the plane defined by the photon and quark
momenta. The observable has a sin� dependence, so that
a nonzero beam spin asymmetry requires a term in the
differential cross section proportional to sin�, and the
relative size of this term is the measure of the beam spin
asymmetry that we shall use in the body of this paper.1

The electron interacts with the hadrons by photon ex-
change, so one may ask how the photon obtains the spin
information and carries it across. The detail is that longi-
tudinally polarized electrons, which we consider here, give
rise to photons that have a vector polarization ~S�, and that
this vector polarization is not parallel to the photon mo-
mentum although it is in the electron scattering plane.
(Virtual photons emitted by unpolarized electrons have
only tensor polarization.) An alternative beam spin asym-
metry observable is ~S� � ~q � ~pq.

The observable ~Se � ~q � ~pq is odd under time-reversal
(T-odd). Hence the beam spin asymmetry is and must be
zero in a lowest order calculation. However, it is not zero in
higher orders, as hadronic final state interactions lead to a
relative phase between the longitudinal and transverse
amplitudes, and it is interference between these two am-
plitudes gives the beam spin asymmetry.

Single-spin asymmetries in semi-inclusive reactions
have their own history. Part of the history is common to
beam and target single-spin asymmetries, since both are
T-odd, though it developed first in the target spin asym-
metry context. Early on Sivers [8] pointed out that target
spin asymmetry could be used to measure a new distribu-
tion function for the proton. However, it was quickly
noticed that the asymmetry was T-odd and so it was first
thought that the asymmetry had to be zero [9]. So it
remained until Brodsky, Hwang, and Schmidt [10] dem-
onstrated explicitly in a model the statement already made
above, that because of final state interactions the T-odd
operators could give experimentally nonzero expectation
values. Shortly thereafter, this statement was confirmed
from other viewpoints [11,12]. The same simple model
has since been applied to a number of other target spin
dependent TMD’s [13].

The other part of the history impacted upon questions of
factorization in SIDIS. It is believed or hoped—and per-
haps proofs are becoming available [14,15] for leading
twist—that cross sections for SIDIS can be written as a
sum of terms, where each term is a convolution of a
distribution function that depends only on the target and
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sin2�

PHYSICAL REVIEW D 74, 114027 (2006)

1550-7998=2006=74(11)=114027(10) 114027-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.114027


a fragmentation function that depends only on the final
state. For jets observed in the final state, the fragmentation
function would be either absent or trivial. However, until
relatively recently, the lists of possible target TMD’s con-
tained none that could give a beam spin asymmetry when
the observed hadron was the whole quark jet [3,16]. A
problem arose when we, in an earlier note [17], and Metz
and Schlegel [18] directly calculated the beam spin asym-
metry and found a nonzero result without using any T-odd
fragmentation function. One could then speculate that
factorization did not work for this situation since there
was then no parton distribution associated with this asym-
metry. However, Bacchetta et al. [19] and Goeke et al.
[20], have made progress by uncovering an initial state
distribution function g?, which was originally dismissed
because it was T-odd, and which precisely gives a beam
spin asymmetry with an outgoing jet. Factorization for
observable matching g?, and twist-3 distributions, has
yet to be proved. (We might note that if specific hadrons
rather than a jet are observed, there are and were known
mechanisms to obtain a beam spin asymmetry [4,5,21,22].
Also, there were early perturbative QCD calculations in-
cluding gluon loop diagrams which showed beam asym-
metries of the order of a percent [23].)

The model we use [10,17,18,24] is a simple one where
the proton is represented as a bound state of a quark and a
scalar diquark, and where the hadronic final state interac-
tion is produced by a gluon exchange. The beam spin
asymmetry involves both longitudinal and transverse pho-
ton polarizations. The longitudinal matrix element (for
spin-1=2 quarks) is subleading for large Q. For reasons
of electromagnetic gauge invariance, we keep all Feynman
diagrams where the photon attaches to a charged particle.
Hence we have three diagrams, in general, in lowest order,
and there are also three diagrams in one-loop order that
have an imaginary part. The diagrams are shown below in
Figs. 1 and 2. For calculations where only the transverse

amplitudes are needed to leading order in 1=Q, such as the
unpolarized cross section or the target spin asymmetry
[10], only the diagrams where the photon interacts directly
with the quark are needed.

We show our calculations in Sec. II, with the results for
the beam spin asymmetry given both as explicit formulas,
for the limit that the masses and jet transverse momentum
are all smaller than the invariant momentum transfer Q,
and as plots for selected values of the parameters. Our
calculation of the beam single-spin asymmetry does not
depend on factorization theorems. Now, with modern
knowledge, finding a beam spin asymmetry does not dis-
prove factorization, and if factorization is correct for the
situation at hand, we can interpret the beam spin asymme-
try in terms of the distribution function g?. We do so in
Sec. III, and include a few further comments about facto-
rization. The beam spin asymmetry we discuss here has no
mention of hadronic spin, so one expects we could exhibit
a similar asymmetry in a model with scalar quarks. We
remark further about this in Sec. IV. Finally, we end with a
summary in Sec. V.

II. CALCULATIONS

We present calculations of the beam single-spin asym-
metry in a model where the nucleon is represented as a
bound state of a spin-1=2 quark q and a scalar diquark S,
and where the momentum of the quark in the final state is
measured. Physically, the latter means that the quark jet in
the final state is observed, and one measures its total
momentum, but not any detailed features that would give
information about, for example, the polarization of the
quark. The fundamentals of the model are the same as in
Ref. [10].

The process, with momenta and helicities shown, is

 e�l; he� � N�p; �� ! e�l0; he� � q�p1; �0� � S�p2�: (1)

 

FIG. 1. Lowest order graphs.

 

FIG. 2. One-loop graphs that have imaginary parts.
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We treat the electron as massless, so that electron helicity
he � �1=2 is conserved. The masses of the nucleon,
quark, and scalar diquark will be M, m, and mS, respec-
tively. The general matrix element is

 M �
4��

Q2 he�l
0; he�jj�je�l; he�i

� hq�p1; �0�S�p2�jJ�jN�p; ��i; (2)

where j� and J� represent electromagnetic current opera-
tors for electrons and hadrons, respectively, and the last
matrix element will often be abbreviated J���; �0�.

The five-fold differential cross section for a polarized
electron but unpolarized hadron is

 

d�

�dE0ed�0e�
labd�CM

q
�
�2

Q4

E0e
Ee

pCM
q

128�3MW
L���he�W��;

(3)

where Ee and E0e are the electron energies in the target rest
frame (‘‘lab’’), q � l� l0, Q2 � �q2, W2 � �p� q�2,
and pCM

q is the quark three-momentum magnitude in the
hadronic center-of-mass. The lepton tensor is

 L���he� � he�l; he�jj�je�l0; he�ihe�l0; he�jj�je�l; he�i

� LS�� � �2he�L
A
��; (4)

where ‘‘S’’ or ‘‘A’’ indicate terms that are symmetric or
antisymmetric in the indices ��; ��. The hadron tensor is
here just

 W�� �
1

2

X
�;�0
�J���; �0��	J���; �0�: (5)

Experimenters measure a single-spin asymmetry defined
from

 d� / �1� �2he�A
sin�
LU sin��; (6)

whence

 Asin�
LU sin� �

LA��W��

hLS��W��i
: (7)

The pointed brackets indicate an averaging over the quark
azimuthal angle �. (Such an averaging was also done for
the unpolarized term in Eq. (6).)

After some modest effort, the last equation can be con-
verted to

 Asin�
LU sin� � �

���������������������
2	�1� 	�

p
ImWL2

	WLL �
1
2 �W11 �W22�

: (8)

The indices ‘‘L’’ on the hadronic tensor indicate contrac-
tion with the exchanged photon’s longitudinal polarization
vector 	L,

 WL2 � WLy � �	L��W�2; WLL � �	L��W���	L��:

(9)

Plain 	 is the photon polarization parameter, given by

 

1

	
� 1� 2

�
1�

�2

Q2

�
tan2 
e

2
; (10)

where � � Ee � E
0
e and 
e is the electron scattering angle

in the target rest frame. An alternative expression for 	
using

 y �
�
Ee

and � �
�2

Q2 (11)

is

 	 �
1� y� y2=�4��

1� y� y2=2� y2=�4��
: (12)

In the scaling limit (�! 1 with y fixed), �! 1.
For spin-1=2 quarks, the transverse amplitudes dominate

the longitudinal ones by a power of Q in the scaling limit,
and 	 goes to a constant in the same limit. Hence the
transverse terms are dominant in the denominator of
Eq. (8) above, and the asymmetry Asin�

LU falls like 1=Q at
high Q.

We need to make some comments about gauge invari-
ance. Such discussion was unnecessary in [10]. Those
authors calculated a target spin asymmetry which depends
only on amplitudes with transversely polarized photons,
which automatically conserve the electromagnetic current.
Beam spin asymmetry depends on an interference between
longitudinal and transverse photon amplitudes, and longi-
tudinal amplitudes are gauge sensitive.

Gauge invariance requires that we allow the photon to
interact with all charged particles in the Feynman diagram.
For �	 � N ! q� S, this gives in lowest order the dia-
grams in Fig. 1. There is a ‘‘quark graph,’’ a ‘‘diquark
graph,’’ and a ‘‘proton pole graph.’’ In [10], only the quark
graph [(a,0)] was included. In the large Q limit and for
transverse photons, the other two graphs are smaller by at
least a factor 1=Q. For longitudinal photons, the additional
graphs are not suppressed.

In general, one has all three diagrams. Charge conser-
vation, eN � e1 � e2, ensures gauge invariance. (Charges
eN , e1, and e2, are for the nucleon, quark, and diquark,
respectively.)

We calculate in a Breit frame, and find it convenient to
adopt much of the notation of Ref. [18]. We use the
notation �? for the outgoing quark transverse momentum.
The external momenta, in light front coordinates (q� �
q0 � q3), are
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q � �q�; q�; q?� � ��Q;Q; 0?�;

p �
�
Q
x
;
xM2

Q
; 0?

�
;

p1 �

�
�2
? �m

2

Q
;Q�

x
Q

�
M2 �

�2
? �m

2
S

1� x

�
; ~�?

�
;

p2 �

�
Q

1� x
x
�

�2
? �m

2

Q
;
x
Q

�2
? �m

2
S

1� x
;� ~�?

�
:

(13)

The electron scattering plane defines the x̂-ẑ plane, with the
outgoing electron having a positive component in the x̂
direction. Momenta p and q are exact. In the high Q2 limit
x becomes the Björkén variable [xBj � Q2=2p � q]; mo-
menta p1;2 are accurate to O�1=Q�.

In the Breit frame and using gauge invariance, one can
show

 �	L��J
� � J�: (14)

The zero-loop diagrams give an amplitude J�
�0���; �

0�

which is the sum of

 J�
�a;0� �

�e1g

�p1 � q�
2 �m2

�u�p1; �0����p6 1 � q6 �m�u�p; ��;

J�
�b;0� � �

e2g

�p2 � q�2 �m2
S

�2p�2 � q
�� �u�p1; �

0�u�p; ��;

J�
�c;0� � �

eNg

W2 �M2 �u�p1; �
0��p6 � q6 �M���u�p; ��:

(15)

Thus

 

J2
�a;0���; �

0� �
e1g

~m2 � ~�2
?

1� x���
x
p

Q��������������������
m2 � ~�2

?

q fi���;�0 
�m� xM�j ~�?je
�i�� �mj ~�?je

i���

� iei����;��0 
m�m� xM�e
�i�� � j ~�?j

2ei���g; (16)

 J�
�a;0���; �

0� �
2e1g

~m2 � ~�2
?

1� x���
x
p

��������������������
m2 � ~�2

?

q
f��;�0 �m� xM� � ���;��0 j ~�?je

i��g; (17)

 J��b;0���; �
0� � e2g

2� x���
x
p

1��������������������
m2 � ~�2

?

q fm��;�0 � ���;��0 j ~�?je
i��g; (18)

 J�
�c;0���; �

0� � eNg
2���
x
p

1��������������������
m2 � ~�2

?

q f�m��;�0 � ���;��0 j ~�?je
i��g: (19)

where,

 ~m 2 � x�1� x�
�
�M2 �

m2

x
�

m2
s

1� x

�
: (20)

Matrix elements J2
�b;0� and J2

�c;0� are subleading in 1=Q. Regarding J1
�a;0�, we only need to know that jJ1

�a;0���; �
0�j �

jJ2
�a;0���; �

0�j.
The calculated beam spin asymmetry, Eq. (8), is zero if we have only the lowest order amplitudes. To obtain a nonzero

beam spin asymmetry we need to include next-to-leading order amplitudes and obtain a nonzero phase relative to the
lowest order terms. The diagrams are shown in Fig. 2. Only one-loop diagrams that give an imaginary part are shown.

In the model, the final state interaction is mediated by a gluon that couples to a strong charge which is carried by the
quark (strong charge es) and diquark (strong charge ��es�) but not by the proton. One obtains the QCD equivalent by
letting e2

s ! CF�4��s� with CF � 4=3. The diagrams give

 J�
�a;1� � �ie1ge

2
s

Z d4k

16�4

�u�p1; �0��p6 1 � 2p6 2 � k6 ��k6 �m����k6 � q6 �m�u�p; ��


k2 �m2 � i	�
�k� q�2 �m2 � i	�
�p� q� k�2 �m2
S � i	�
�k� p1�

2 ��2 � i	�
;

J�
�b;1� � �ie2ge

2
s

Z d4k

16�4

�u�p1; �0��p6 1 � 2p6 2 � k��k6 �m�u�p; ���2p� � q� � 2k��


k2 �m2 � i	�
�p� k�2 �m2
S � i	�
�p� q� k�

2 �m2
S � i	�
�k� p1�

2 ��2 � i	�
;

J�
�c;1� � �ieNge

2
s

Z d4k

16�4

�u�p1; �0��p6 1 � 2p6 2 � k6 ��k6 �m��p6 � q6 �M���u�p; ��


k2 �m2 � i	�
�p� q�2 �M2 � i	�
�p� q� k�2 �m2
S � i	�
�k� p1�

2 ��2 � i	�
;

(21)
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where� in the denominator is a small gluon mass temporarily included. While present in the amplitudes, it will not appear
in the final answer for beam spin asymmetry ALU indicating that the considered observable is infrared-safe. The absorptive
part (the part that is imaginary relative to the lowest order) is obtained by substituting

 

1

k2 �m2 � i	

1

�p� q� k�2 �m2
S � i	

�
!

2i�2���k2 �m2�����p� q� k�2 �m2
S�; (22)

As a result, the 4-dimensional integration over the loop momentum in Eq. (21) is reduced to a 2-dimensional angular
integration, making the result also safe from ultraviolet divergence. In the numerical calculations, we found projections of
the electromagnetic current Eq. (21) on six independent helicity amplitudes of the process �	 � N ! q� S, and ALU was
expressed in terms of these helicity amplitudes. Two-dimensional integration with respect to polar and azimuthal angles of
the intermediate quark was done numerically with Mathematica in the �	 � N center-of-mass frame. Independence of ALU
on the gluon cut-off mass � was verified, and providing a cross-check of the numerical calculation. The plots of the
asymmetry ALU shown later in this paper were obtained using the procedure described in this paragraph.

We may also obtain approximate analytic formulas for the beam spin asymmetries in the limit where the masses and
transverse jet momentum are much smaller than the invariant momentum transfer Q, by keeping leading terms in a 1=Q
expansion. To begin, we have

 

AbsJ�
�a;1���; �

0� �
e1ge

2
s

8�2

x

Q4

Z
d2k?

�u�p1; �
0�p6 2�k6 �m��

��k6 � q6 �m�u�p; ��

� ~k2
? � ~m2��� ~k? � �?�

2 ��2�
;

AbsJ�
�b;1���; �

0� �
e2ge2

s

8�2

x2

1� x
1

Q4

Z
d2k?

�u�p1; �0�p6 2�k6 �m�u�p; ���2p� � q� � 2k��

�� ~k? � �?�
2 ��2�

;

AbsJ�
�c;1���; �

0� � �
eNge

2
s

8�2

x2

�1� x�2
1

Q4

Z
d2k?

�u�p1; �
0�p6 2�k6 �m��p6 � q6 �M��

�u�p; ��

�� ~k? � �?�
2 ��2�

:

(23)

The k? integrals have a finite upper limit because the quark and diquark in the intermediate state are now on-shell. Doing
the integrals yields

 

AbsJ2
�a;1���; �

0� �
e2
s

8�
J2
�a;0���; �

0�L�� �
e1ge2

s

8�� ~m2 � ~�2
?�

1� x���
x
p

Q��������������������
m2 � ~�2

?

q

�

�
i���;�0

�
�m� xM�j ~�?je

�i�� �
m ~m2

j ~�?j
ei��

�
� iei����;��0 
m�m� xM�e

�i�� � ~m2ei��
��
L�m;

(24)

 

AbsJ�
�a;1���; �

0� �
e2
s

8�
J�
�a;0���; �

0�L�� �
2e1ge

2
s

8�� ~m2 � ~�2
?�

1� x���
x
p

1��������������������
m2 � ~�2

?

q

�

�
��;�0 
�m� xM���m

2 � ~�2
?� � � ~m

2 � ~�2
?��L�m �m� ~m

2 � ~�2
?��LQ� � 1��

� ���;��0
��
��m2 � ~�2

?� �

�
1�

xmM

j ~�?j2

�
� ~m2 � ~�2

?�

�
L�m � � ~m2 � ~�2

?��LQ� � 1�
�
j ~�?jei��

�
; (25)

 Abs J��b;1���; �
0� �

e2
s

8�
J��b;0���; �

0�

�
L�� � LQ� �

2�1� x�
2� x

�
; (26)

 Abs J��c;1���; �
0� �

e2
s

8�
J��c;0���; �

0�fL�� � LQ� � 1g: (27)

or
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AbsJ�
�1� � AbsJ�

�a;1� �AbsJ�
�b;1� �AbsJ�

�c;1� �
e2
s

8�
J�
�0���;�

0�L���
ge2

s

8�� ~m2� ~�2
?�

1� x���
x
p

1�������������������
m2� ~�2

?

q

�

�
��;�0

�
2e1�m� xM��m

2� ~m2�L�m�
x

1� x
��2e1� e2�LQ�� 2�e1� e2��m� ~m

2� ~�2
?�

�

� ���;��0
�

2e1

�
~m2�m2� xmM

~m2� ~�2
?

j ~�?j
2

�
L�m�

x
1� x

��2e1� e2�LQ�� 2�e1� e2��� ~m
2� ~�2

?�

�
j ~�?je

i��
�
;

(28)

using charge conservation.
Here

 L�m � ln
~m2 � ~�2

?

~m2 ; L�� � ln
~m2 � ~�2

?

�2 ; LQ� � ln
Q2�1� x�

� ~m2 � ~�2
?�x

: (29)

The general result for the beam spin asymmetry is

 

Asin�
LU �

e2
s

4�

���������������������
2	�1� 	�

p ~m2 � ~�2
?

�m�Mx�2 � ~�2
?

j ~�?j
Q

�

�
1

~�2
?

�
M2x2 �m2 �

2e1 � xe2

2e1�1� x�
~m2

�
ln

~m2 � ~�2
?

~m2 �
2e1 � e2

2e1

x
1� x

ln
Q2�1� x�

� ~m2 � ~�2
?�x
�
e1 � e2

e1

x
1� x

�
: (30)

The asymmetry falls like 1=Q, as expected for a twist-3 observable.
For numerical work we need to make choices for the charges, and we will show results for several possibilities. Two

choices, will be for up-quark and down-quark jets from a proton, where e1 is the charge for the stated quark, eN � 1, and e2

is the remainder. Another protonlike choice has just the nucleon and quark diagrams, with eN � e1 and with the diquark
electrically neutral. The explicit asymmetry for this case is,

 

Asin�
LU �

e2
s

4�

���������������������
2	�1� 	�

p ~m2 � ~�2
?

�m�Mx�2 � ~�2
?

j ~�?j
Q

�

�
1

~�2
?

�
M2x2 �m2 �

1

1� x
~m2

�
ln

~m2 � ~�2
?

~m2 �
x

1� x
ln
Q2�1� x�

� ~m2 � ~�2
?�x
�

x
1� x

�
: (31)

A further case keeps just the quark and diquark diagrams. This case is neutronlike, since the nucleon is chosen
electrically neutral, and e2 � �e1. This is the prescription used by Metz and Schlegel [18] to ensure gauge invariance, and
it gives

 

Asin�
LU �

e2
s

4�

���������������������
2	�1� 	�

p ~m2 � ~�2
?

�m�Mx�2 � ~�2
?

j ~�?j
Q

�

�
1

~�2
?

�
M2x2 �m2 �

2� x
2�1� x�

~m2

�
ln

~m2 � ~�2
?

~m2 �
x

2�1� x�
ln
Q2�1� x�

� ~m2 � ~�2
?�x

�
: (32)

The result can be checked against [18] in the limit m! 0.
Finally, in our earlier note [17], we implemented gauge invariance using only the quark diagram [(a)], but modifing its

amplitude J� by subtracting out the scalar part [25],

 J� ! J� � q�
q � J

q2 : (33)

For comparison, we report the result from this ‘‘q� subtraction’’ method here. It is

ANDREI V. AFANASEV AND CARL E. CARLSON PHYSICAL REVIEW D 74, 114027 (2006)

114027-6



 

Asin�
LU �

e2
s

4�

���������������������
2	�1� 	�

p ~m2 � ~�2
?

�m�Mx�2 � ~�2
?

j ~�?j
Q

�

�
1

~�2
?

�
M2x2 �m2 �

1

2�1� x�
~m2

�
ln

~m2 � ~�2
?

~m2 �
1� 2x

2�1� x�
ln
Q2�1� x�

� ~m2 � ~�2
?�x
�

1� 2x
2�1� x�

�
: (34)

Numerical results are given in the form of plots of Asin�
LU

vs xbj for three different beam energies. For all the plots,
we use parameter values M � 939 MeV, m � 300 MeV,
mS � 800 MeV, and �s � 0:3. The quark transverse mo-
mentum j ~�?j is fixed at 0.4 GeV. Results for beam energies
of 4.25 GeV, 5.7 GeV, and 27.5 GeV, for quark jets of
different flavors and with different versions of the model,
are shown in Figs. 3–5. The dashed-double-dotted curve

(up to a corrected sign) matches results of our earlier report
[17]. For lower beam energies, we start the plots from
larger values of xBj to ensure the conditionQ2 >M2 holds.
The solid and dashed curves, respectively, describe the
asymmetry in electroproduction of up- and down-quark
jets if all three diagrams of Fig. 2 are included. If the
diquark is assumed to be not interacting with electromag-
netic probe, only the diagrams Fig. 2(a) and 2(c) contrib-
ute, and the corresponding curve is dashed-dotted. If the
nucleon target is electrically neutral, then the virtual pho-
ton couples only to the quark and an (oppositely-charged)
diquark; the asymmetry appears equal for both quark jet
flavors. This situation is described by a dotted curve in
Figs. 3–5.

The results on these plots are from the numerically
integrated results obtained as described just after
Eq. (22). The analytic forms valid for large Q are essen-
tially identical to these results for the Ee � 27:5 GeV case,
and are relatively 10–20% lower for the other two
energies.

Remembering that our calculations refer to quark jets
with no fragmentation into hadrons, we can see that both
the sign and the magnitude of the asymmetry ALU compare
favorably with experimental data from HERMES and JLab
CLAS. We also note that the experiment observed some-
what stronger supression of the asymmetry at larger xBj
compared to our model predictions.
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from Ref. [7]. Notation is as in Fig. 3.
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Fig. 3.
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III. THE DISTRIBUTION FUNCTION g?

The general expression for the beam spin asymmetry can
be summarized by the transverse momentum dependent
(TMD) distribution function g?�x; ~�2

?�, for the situation
that only the outgoing quark jet is observed and in the limit
of neglecting the quark mass. Until relatively recently, for
the quark jet case, the known lists of initial state quark
distribution functions contained none that could give a
beam spin asymmetry, although beam spin asymmetry
was known in cases that involved quark fragmentation
functions that gave information about quark spin correla-
tions. Now, with the work of Yuan [5], Bacchetta et al. [19],
and Goeke et al. [20], the distribution functions h?1 �x; p

2
T�

and g?�x; p2
T� have been uncovered, and they allow an

observable beam spin asymmetry without any real or im-
plied spin measurement in the final state. The asymmetry
due to h?1 is proportional to the quark mass, and we
consider in this Section only the massless quark case,
and for simplicity also let mS � M.

From Eqs. (15–17) of [19], suitably tuned for the present
case and using the sign convention from [20] (that is
opposite to [19]), one obtains

 Asin�
LU �

���������������������
2	�1� 	�

p j ~�?j
Q

xg?�x; ~�2
?�

f1�x; ~�
2
?�

: (35)

The TMD function f1�x; ~�
2
?� gives the probability distri-

bution of quarks in a hadron, and is related to the hadron
matrix by

 W11 � W22 � 2�2��32M�f1�x; ~�
2
?�: (36)

Thus, in the present model,

 f1�x; ~�
2
?� �

1

16�3

g2�1� x�2

� ~m2 � ~�2
?�

2
f�m� xM�2 � ~�2

?g;

(37)

(before m is set to zero). We obtain a value for g from the
normalization condition,

 Nq � 1 �
Z 1

0
dx
Z ~�2

?��2

~�2
?�0

d2�?f1�x; ~�
2
?�: (38)

The distribution f1 is calculated from lowest order dia-
grams, so that the momentum ~�? is identical to the trans-
verse momentum of the quark in the initial state. We pick a
cutoff pertinent to the process at hand, in particular, we
choose it equal to the maximum value of transverse mo-
mentum for a real quark in the final state,

 �2 � ~�2
?jmax � Q2 1� x

4x
: (39)

Thus,

 

g2

16�2
�

�
1

3
ln
�
Q2

4M2

�
�

31

18

�
�1
: (40)

The result for g? is
 

g?�x; ~�2
?� �

g2

16�3

CF�s�1� x�2

x� ~m2 � ~�2
?�

�

�
1

~�2
?

�
M2x2 �

2e1 � xe2

2e1�1� x�
~m2

�
ln

~m2 � ~�2
?

~m2

�
2e1 � e2

2e1

x
1� x

ln
Q2�1� x�

� ~m2 � ~�2
?�x

�
e1 � e2

e1

x
1� x

�
: (41)

The quantity in curly brackets is the same as Eq. (30),
except that the mass m is set to zero both there and in
Eq. (20). If desired, one may also substitute the contents of
the curly brackets for the special cases shown in Eqs. (31)
and (32), or (34).

Again, our calculation of the beam single-spin asymme-
try does not depend on factorization. Obtaining g? does
depend on the analyses of Refs. [19,20], and hence does
assume factorization. Factorization appears to have been
proved for some twist-2 transverse momentum dependent
distributions with transversely polarized targets [14,15].
For longitudinal polarization and for twist-3 distributions,
the question of factorization has been raised far in the past
[4] and continues to be discussed (e.g., [26]). Factorization
for these cases remains assumed rather than proved, and
this should be borne in mind.

There is a logQ2 term in g?, mirroring a similar term in
the result for the beam spin asymmetry. The possibility of

 

FIG. 6 (color online). The distribution function g?�x; ~�2
?� for

j ~�?j � 0:4 GeV. The two special cases are described in detail in
the text. A short summary is that the nucleon in the quark�
diqurk pole case is overall electrically neutral, and in the
quark� proton pole case has unit charge. In both cases all
flavors of quark in the final state are summed.
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such terms arises because the asymmetry and g? are non-
zero only when loop corrections are included. Loops,
however, do not always lead to logQ2 terms; it depends
on the details of the integrals. For contrast, there is the
twist-2 target spin asymmetry or Sivers effect, where the
integrals are insensitive to their upper limits in a similar
one-loop calculation [10] and consequently one finds no
logQ2 term. We interpret the logQ2 simply as g? possess-
ing a logarithmic scaling violation within this model. It is
not, as far as we can see, related to questions regarding
factorization.

A plot of g?�x; ~�2
?� is shown in Fig. 6 for j ~�?j �

0:4 GeV and varying x, for two of the special cases de-
scribed earlier. Except for the logarithmic Q2 dependence
induced in the normalization condition, the result is inde-
pendent of beam energy. (The range of x for which the
curve is plotted is fixed on the left by requiring Q2 to be
above M2 and on the right by requiring that W, the final
state hadronic mass, is above 2 GeV. This figure as shown
is for Ebeam � 27:5 GeV.)

IV. BEAM SPIN ASYMMETRY FOR SCALAR
QUARKS

The fact that there is a beam single-spin asymmetry for
an outgoing jet does not depend on the spin of the target or
of its constituents. We emphasize that here by calculating
Asin�
LU for hypothetical scalar quark bound states.
Some of the details are different, however. In particular,

for scalars the longitudinal amplitude dominates the trans-
verse one at high Q, in contrast to the spinor case. Also,
considering just the case that the diquark is neutral, only
the quark pole diagrams are needed for the cross section
and asymmetry calculation. To wit, using notation from
Fig. 1, we have

 J�
�a;0� � �

e1g

�p1 � q�2 �m2 �2p1 � q�
�;

J�
�c;0� � �

eNg

�p� q�2 �M2 �2p� q�
�:

(42)

Both graphs, with eN � e1, are needed to satisfy gauge
invariance. However, for the longitudinal amplitudes,

 J�
�a;0� �

e1g�1� x�

~m2 � ~�2
?

Q; J�
�c;0� � �

e1g�2� x�
�1� x�Q

; (43)

so that the proton pole graph contribution is subleading at
high Q. Similarly for the transverse amplitudes,

 

~J �a;0�? �
e1g�1� x�

~m2 � ~�2
?

~�?; ~J�c;0�? � ~0?: (44)

After also calculating the relevant one-loop graphs, the
beam single-spin asymmetry for semi-inclusive jet produc-
tion is

 Asin�
LU �

4�s
3

���������������������
2	�1� 	�

p
Q

	Q2 � 2 ~�2
?

~m2 � ~�2
?

j ~�?j
ln
�

~m2 � ~�2
?

~m2

�
;

(45)

for Q large compared to masses and to j ~�?j. For the
curious, evaluating the above scalar formula numerically
with the same values of masses and j ~�?j mentioned pre-
viously gives about the level of the (presumably spin-1=2
quark) data in Fig. 3 if we use a rather small � � 0:075.

V. DISCUSSION

We have calculated, in a definite model, the beam spin
asymmetry for semi-inclusive inelastic electron scattering.
Experimentally, beam spin asymmetry has been seen at
JLab/CLAS and at Hermes. Our particular calculation
considered beam spin dependent asymmetry in jet produc-
tion, where all the final-hadrons in the jet are summed and
their phase space integrated.

Beam spin asymmetry means an asymmetry in the di-
rection of an outgoing hadron relative to a direction set by
the polarization of the incoming beam. In the case at hand,
define an observable by first defining a normal from the
electron spin and the photon momentum, ~Se � ~q.
Representing the momentum of the jet by the momentum
pq of the quark, the beam spin asymmetry observable is
~Se � ~q � ~pq. If one defines a coordinate system, this ob-
servable is proportional to sin�, where � is the azimuthal
angle between the lepton scattering and jet production
planes. Having a beam spin asymmetry means that the
expectation value, weighted by the cross section, of this
observable is nonzero.

As a useful detail, the electron spin direction is commu-
nicated to the hadrons through the photon, and if the
electrons are polarized, the photon aquires a vector polar-
ization ~S� which is in the electron scattering plane but not
parallel to ~q. An alternative beam spin asymmetry observ-
able is ~S� � ~q � ~pq. The observable is odd under time
reversal. Further, this observable is reminiscent of the
single-spin asymmetry observable for a polarized proton
target, ~Sp � ~q � ~pq, which measures the Sivers function
[10,27] and which also was thought for some time to be
absent or zero because of time-reversal invariance.

The beam spin asymmetry is zero in a lowest order
calculation, as expected for a T-odd observable. It is not
zero in higher orders. Hadronic final state interactions lead
to a relative phase between the longitudinal and transverse
amplitudes, and interference between these two amplitudes
gives the beam spin asymmetry.

The model in which we calculated the beam spin asym-
metry is a simple one where the proton is represented as a
bound state of a quark and a scalar diquark, and where the
hadronic final state interaction is produced by a gluon
exchange. Gauge invariance requires that we include all
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diagrams where the photon couples to a charged hadron.
There are three diagrams in lowest order, and also three
relevant diagrams at one-loop order. Results for the beam
spin asymmetry Asin�

LU have been given in the body of the
paper both numerically in plots and as formulas for the
case when masses and transverse jet momentum are much
smaller than the invariant momentum transfer Q.

Quark spin not crucial to obtaining a beam spin asym-
metry. The qualitative effect persists in an equivalent
model with scalar quarks, although the numerical results
are not the same.

In modern times, the expression for the beam spin
asymmetry in jet production can in general be given in

terms of the initial state transverse momentum dependent
parton distribution called g?�x; k2

?�, where k? is the trans-
verse momentum of the struck quark relative to the parent
proton. The model thus gives an explicit result for g?,
which is shown in Eq. (41).
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