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Basing upon dual analytic models, we present arguments in favor of the parametrization of generalized
parton distributions (GPD) in the form��x=g0�

�1�x�~��t�, where ~��t� � ��t� � ��0� is the nonlinear part of
the Regge trajectory and g0 is a parameter. For linear trajectories it reduces to earlier proposals. We
compare the calculated moments of these GPD with the experimental data on form factors and find that
the effects from the nonlinearity of Regge trajectories are large. By Fourier-transforming the obtained
GPD, we access the spatial distribution of protons in the transverse plane. The relation between dual
amplitudes with Mandelstam analyticity and composite models in the infinite-momentum frame is
discussed, the integration variable in dual models being associated with the quark longitudinal momentum
fraction x in the nucleon.
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I. INTRODUCTION

Generalized parton distributions (GPD) [1–3] combine
our knowledge about the one-dimensional parton distribu-
tion in the longitudinal momentum with the impact-
parameter, or transverse distribution of matter in a hadron
or nucleus. It is an ambitious program to access the spatial
distribution of partons in the transverse plane and thus to
provide a 3-dimensional picture of the nucleon (nucleus)
[4–8]. This program involves various approaches, includ-
ing perturbative QCD, Regge poles, lattice calculations etc.
(see Ref. [9] for reviews). The main problem is that, while
the partonic subprocess can be calculated perturbatively,
the calculation of GPDs require nonperturbative methods.
GPDs enter in hard exclusive processes, such as deeply
virtual Compton scattering (DVCS); however, they cannot
be measured directly but instead appear in convolution
integrals, that cannot be easily converted. Hence the strat-
egy is to guess the GPD, based on various theoretical
constraints, and then compare it with the data. In the first
approximation, the GPD is proportional to the imaginary
part of a DVCS amplitude, therefore, as discussed in
Ref. [10], the knowledge (or experimental reconstruction)
of the DVCS amplitude may partly resolve the problem,
provided the phase of the DVCS amplitude is also known.
In other words, a GPD can be viewed as the imaginary part
of an antiquark-nucleon scattering amplitude, or a quark-
nucleon amplitude in the u channel.

Alternatively, one can extract [11,12], still in a model-
dependent way, the nontrivial interplay between the x and t
dependence of GPD from light-cone wave functions
 

H�x; � � 0; t� �
Z
d2k? ��x;k?� �x;k?�

� �1� x�q?�;

where  �x;k?� is a 2-particle wave function (see, e.g.,
Ref. [13]) and t � q?:

In two recent papers [14,15] various forms of GPD for
� � 0 were tested against the experimental data on the
related form factors. The agreement with the data in
Ref. [14] is impressive; in Ref. [15] the spatial distribution
of partons in the transverse plane was also calculated. We
pursue the approach of Refs. [14,15] by bringing more
arguments coming from duality in favor of the parametri-
zation for H�x; t� used in Ref. [14] and exploring how
analyticity and unitarity affect the t dependence of GPD,
the observable form factors and the calculated distribution
of partons in the longitudinal and transverse planes. The
effects are very large. Similarly to papers [14,15], we limit
ourselves the case of vanishing skewedness, � � 0.

Regge trajectories play a key role in this analyses.
Actually, there are two groups of trajectories in the prob-
lem: one, the �, ! etc. trajectories exchanged in the
valence quark distribution function H �x; t� (or, equiva-
lently, in the imaginary part of the �qp scattering ampli-
tude). Less evident are the characteristics of the
corresponding trajectory in ‘‘magnetic’’ densities E�x; t�
for they cannot be expressed in terms of any known parton
distribution. In Ref. [15] the � trajectory, ���t� � 0:48�
0:88t, was fitted to the masses of ��770� and �3�1690� and
�!�t� � 0:42� 0:95t to !�782� and !�1690�. In [14],
instead, the slopes of the trajectories in H �x; t� and
E�x; t� were fitted to the data on form factors and are equal
to 1:098 GeV2 and 1:158 GeV2, respectively. The relevant
intercepts are contained in the quark distributions, as dis-
cussed in Sec. V. The resulting GPDs and related observ-
ables are very sensitive to the above parameters (see Fig. 1
in Ref. [14]). Even more sensitive are they to any deviation
from linear trajectories, as shown in Sec. VI.

One can start either from trajectories fitted to resonances
and scattering data (parametrizations of nonlinear complex
mesonic trajectories fitting the spectra of resonances as
well scattering data exist in the literature [16,17]) or
treat them as ‘‘effective’’ ones, to be fitted to the data on
form factors. Our strategy here is to start from trajectories
close to those in [14] (fitted to form factors) and then*Email address: jenk@bitp.kiev.ua
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look for the effects coming from the deviations from
linearity.

The paper is organized as follows. In Sec. II, following
earlier publications, we show how dual models with
Mandelstam analyticity can be related to deep inelastic
scattering and GPD. Regge trajectories satisfying the ana-
lyticity and unitarity constrains are introduced in Secs. II
and III, where their role in the calculation of form factors is
also discussed. The relation between GPD and form factors
is discussed of Sec. IV. A particular model of GPD with its
t dependence determined by dual models with Mandelstam
analyticity, introduced in Sec. II, is discussed in Sec. V.
Numerical calculations (form factors and parton distribu-
tions) are presented in Sec. VI. Our (temporary) conclu-
sions and a discussion can be found in Sec. VII.

II. NON-LINEAR REGGE TRAJECTORIES IN
DUAL AND COMPOSITE MODELS

Dual Amplitudes with Mandelstam analyticity (DAMA)
were suggested (see Ref. [18] and earlier references
therein) as a way to solve the manifestly nonunitarity of
narrow-resonance dual models [19]. The �u; t� term of the
crossing-symmetric DAMA is

 D�u; t� �
Z 1

0
dx
�
x
g1

�
���t�1�x���1

�
1� x
g2

�
���ux��1

; (1)

where u and t are the Mandelstam variables, and g1, g2 are
parameters, g1, g2 > 1 In what follows we set, for sim-
plicity, g1 � g2 � g0. Similar expressions are valid for the
(st) and (su) terms. They are not unique since the integrand
of Eq. (1) can be multiplied by functions of the type
f�t�1� x��f�ux�: Furthermore, the powers in the integrand
can be shifted by integers determined by the quantum
numbers of a particular reaction and relevant exchanges.

The functions ��y; x��, y � s, t, u called in Ref. [18]
homotopies, map the physical Regge trajectories ��y� onto
linear functions a� by. Contrary to the narrow-resonance
( � linear trajectories) Veneziano amplitude [19], appli-
cable only to soft collisions of extended objects (strings),
and decreasing exponentially at any scattering angle,
DAMA does not only allow for, but even requires the use
of nonlinear Regge trajectories. It will be convenient to
write ��y� � ��0� � ~��y�, where ~��y� will denote the
nonlinear part of the trajectory.

For juj ! 1 and fixed t, DAMA is Regge-behaved

 D�u; t� ’ g2
0��g0u���t�	G�t� � . . .
;

where

 G�t� �
Z 1

0
dyy�yy���t��1;

provided [18]

 

�������� ��u����
u
p

lnu

��������u!1
� const;

which is equivalent to saying that the real part of the
trajectory is bounded.1 Compatibility with the wide-angle
scaling behavior of the amplitude, typical of pointlike
constituents, lowers this growth to a logarithm. Examples
will be presented below.

The pole structure of DAMA

 D�u; t� �
Xn
l�0

Cn�l�t�

	n� ��u�
l�1
; (2)

where Cn�l�t� is the residue, whose form is fixed by the
dual amplitude (see Ref. [18]), is similar to that of the
Veneziano model except that multiple poles appear on
daughter levels [18]. The pole term (2) in DAMA, com-
prising a whole sequence of resonances lying on a complex
trajectory ��u�, is a generalization of the Breit-Wigner
formula. Such a ‘‘reggeized’’ Breit-Wigner model has little
practical use in the case of linear trajectories, resulting in
an infinite sequence of poles, but it becomes a powerful
tool in case of complex trajectories with a limited real part
and hence a limited number of resonances.

The threshold behavior of DAMA satisfying the unitar-
ity constrains [22]

 D�u; t� �t!t0

������������
t� t0
p

	const� ln�1� t0=t�
;

is correlated with that of the trajectories [18],

 J��t� �t!t0 �t� t0�
��t0��1=2:

For a light threshold this is close to the square-root behav-
ior to be used below.

A simple model, compatible both with to the above
threshold behavior and with the Regge asymptotics (or
polynomial boundedness) of the amplitude, yet fitting the
data on resonances spectra, can be made of a sum of square
roots2 (the assignment of the signs is uniquely determined
by the requirement of positivity of the imaginary part etc.,
see Ref. [21]) [24]

 ��t� � ��0� �
X
i

�i�
������������
ti � t
p

�
����
ti
p
�: (3)

Linear trajectories appear as the limiting case of an infini-
tesimally heavy threshold t1 ! 1 in

 ��t� � �0 � �1�
������������
t1 � t
p

�
����
t1
p
�

with fixed forward slope of the trajectory �0 � �1

2
���
ti
p . The

limit of the infinitely rising linear trajectory is associated
with a hadronic string, while the finite value of ti can be
interpreted as a barrier where the string breaks (its tension

1
�0�t� vanishes as t! ti, producing new particles instead of
heavier resonances, see also Ref. [25]).

1This basic property of Regge trajectories was derived [20],
before the advent of DAMA. For a review of general properties
of Regge trajectories see Ref. [21]

2An alternative could be ��t� � � a�bt�������
t0�t
p [23].
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The number of thresholds is model-dependent: while the
lightest one gives the dominant contribution to the imagi-
nary part, those heavier promote the rise of the real part,
terminating at the heaviest threshold.

To illustrate the aforesaid, a toy model can be con-
structed from the sum of two thresholds

 ��s� � ��0� � �1�
������������
t1 � t
p

�
����
t1
p
� � �2�

������������
t2 � t
p

�
����
t2
p
�;

(4)

where
����
t1
p

is the lightest one allowed by quantum numbers,
i.e. the two-pion threshold with t1 � 4m2

� corresponding to
a loop diagram it the t channel [26]. The heavy threshold is
chosen phenomenologically: by setting t2 � 4M2 �
16 GeV2, we impose an upper bound on the highest mass
(slightly below 2 GeV) and spin (J � 5) resonance lying on
the given trajectory. The parameters �1 � 0:6 GeV�1 and
�2 � 5:5 GeV�1 here were chosen such as to match to
slope of the linear trajectory ��t� � 0:5� t, see Fig. 1.
Notice that M does not correspond to any physical reso-
nance; rather it is a parameter to be fitted [24] to the
resonances’ spectra, as well as to the scattering data [16].
The construction of Regge trajectories satisfying theoreti-
cal constraints on the threshold- and asymptotic behavior,
yet compatible with the experimental data, is a highly
nontrivial problem. Simple models, like (4), may be help-
ful as a guide in a semiquantitative analysis, as in Sec. VI.
In a more rigorous approach of Ref. [17] the real and
imaginary parts of the trajectories were related by a dis-
persion relation combined with the unitarity constraints on
the threshold behavior and fits to the resonances’ masses
and decay widths.

In the limit juj, jtj ! 1, u=t � const, DAMA (1) scales
iff its trajectories have logarithmic asymptotics. The sim-

plest trajectory that combines the nearly linear behavior at
small t with a square-root threshold and logarithmic
asymptotics is

 ��t� � ��0� � � ln
�
1� �

������������
t0 � t
p

1� �
����
t0
p

�
: (5)

More thresholds (introducing more parameters, however)
can be added. Asymptotically, ��t� ’t!1 �

�
2 ln��t�. The

asymptotic (scaling) limit of DAMA can be easily calcu-
lated [27] by the saddle-point method, the saddle point, for
asymptotically logarithmic trajectories, being located at

 x0 �
��u�

��u� � ��t�
� 1=2:

In this limit, the (ut) term of the amplitude (1) goes like
[27]

 D�u; t� � �ut��� ln�2g�=2: (6)

The power in Eq. (6) can be fixed by the quark counting
rules [28], by which

 ln�2g� � 2n� 1;

where n is the number of constituents in a collision. These
numbers should not be taken literally (more details can be
found in Ref. [29]) since they may have more relevance to
the leading, vacuum trajectory, while in GPD to be dis-
cussed below the main contribution comes from subleading
trajectories.

An interesting link between the fixed scattering scatter-
ing angle regime of DAMA and composite particle models

 

FIG. 1 (color online). Left panel: typical behavior of an analytic trajectory (4) [of its real, read (r) line, and imaginary, green (g) line,
parts] compared with a linear one, ��t� � 0:5� t. Right panel: Form factor modulus (16) saturated by a single � meson pole (blue
dotted line) and the � trajectory (4), red solid line. The form of the latter does not change when summation in Eq. (12) is extended to
whatever large j, see Sec. III.
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in the infinite-momentum frame [30] was established by
M. Schmidt in Ref. [31].3

In the model of Gunion, Brodsky, and Blankenbecler
(GBB) [30], the scattering amplitude corresponding to
graph shown in Fig. 2, is given by
 

A�u; t� �
Z 1

0

dx

x2�1� x�2
Z
d2k?� 1�k?�

�  2�k? � �1� x�q? � xr?�

�  3�k? � �1� x�q?� 4�k? � xr?�; (7)

where the transverse vectors r? and q? satisfy the con-
ditions r? 
 q? � 0, u � �r2

?, t � �q2
? in the infinite-

momentum frame

 p1 �

�
P�

m2

2P
; 0; P

�
;

 p2 �

�
P�

m2 � q2
?

2P
; q?; P

�
;

etc., P! �1, and  i are quark bound state wave func-
tions [30].

The form factor F�q2� and the DIS structure function
F2�x� in terms of the wave functions  are [31]

 F�q2� �
Z 1

0

dx
x�1� x�

Z
d2k? �k?� �k? � �1� x�q?�

and

 F2�x� �
Z
d2k?

 2�k?�
1� x

:

In the limit s � �u � r2
? and fixed t � �q2

?

 A�u; t� �
Z 1

0

dx

x2�1� x�2
g�r2
?; x�

�
Z
d2k?

 �k?� �k? � �1� x�q?�
x�1� x�

follows Ref. [31], where g�r2
?; x� �  �xr?�, while for

large u and fixed t one gets [31]

 A�u; t� �
Z 1

0

dx
x�1� x�

g�r2
?�x

���t�1�x��f�t�1� x��:

The parallels between dual (1) and composite models
offer at least three lessons:

(1) Apart from ‘‘soft’’ collisions of hadronic strings
[19], DAMA implicitly contains also the dynamics

of hard scattering of the constituents;
(2) the variables appearing in combinations like t�1�

x�, should be used in constructing t-dependent par-
ton distributions;

(3) Regge trajectories are nonlinear, complex functions
with well-defined constrains.

III. FORM FACTORS; ANALYTICITY AND
UNITARITY

In this section we present general properties of the form
factors with emphasis on their analytic properties and
connection with Regge trajectories, to be utilized in sub-
sequent sections.

There are various choices for the nucleon electromog-
netic form factors (ff), such as the Dirac and Pauli ff, Fp1 �t�,
Fn1�t� and Fp2 �t�, F

n
2�t�, the Sachs electric and magnetic ff,

FpE�t�, F
n
E�t�, and FpM�t�, F

n
M�t� or isoscalar and isovector

electric and magnetic ff, FsE�t�, F
v
E�t� and FsM�t�, F

v
M�t�,

where t � �Q2 is the squared momentum transfer of the
virtual photon [33].

The Dirac and Pauli form factors are obtained from a
decomposition of the matrix element of the electromag-
netic (e.m.) current in linearly independent covariants
made of four-momenta, � matrices and Dirac bispinors
as follows:
 

hNjJe:m:
� jNi � e �u�p0�

�
��F

N
1 �t�

�
i

2m
��	�p0 � p�	FN2 �t�

�
u�p�;

where m is the nucleon mass. Electric and magnetic ff, on
the other hand, are suitable in extracting them from the
experiment:

 

FIG. 2. Diagram for (ut) channel elastic scattering, corre-
sponding to Eq. (7)

3Schmidt [31] uses trajectories with a constant asymptotic
limit ln��t� ! const, relying on simple arguments of the
wide-angle Regge behavior in s��t�!const. Less trivial and more
relevant logarithmic trajectories, required by the fixed angle
behavior in DAMA, appeared later [27] (see also Ref. [32]).
Another difference between the ansätze used in Ref. [31] and
here is the appearance of the constant g0 (for more details on the
homotopies and the role of g0 see Ref. [18]).
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d�lab�e�N ! e�N�
d�

�
�2

e:m:cos2�
=2�

4E2sin4�
=2�

1

1� �2Em �sin2�
=2�

�

�G2
E �

t
4m2 G2

M

1� t
4m2

� 2
t

4m2 G
2
Mtan2�
=2�

�
;

where �e:m: � 1=137, E is the incident electron energy,
and
 

�e:m:
tot �e

�e� ! N �N� �
4��2

e:m:�
3t

�

�
jGm�t�j2 �

2m2

t
jGE�t�j2

�
;

� �

������������������
1�

4m2

t

s
;

or

 �e:m:
tot �p �p! e�e�� �

4��2
e:m:

3pc:m:

��
t
p 	jGM�t�j

2 �
2m2

t
jGE�t�j

2
;

where pc:m: is the proton momentum in the c.m. system.
The four independent sets of form factors are related by

 Gp
E�t� � Gs

E�t� �G
v
E�t� � Fp1 �t� � �

pFp2 �t�

� 	Fs1�t� � F
v
1 �t�
 � �

p	Fs2�t� � F
v
2 �t�
; (8)

 Gp
M�t� � Gv

M�t� �G
v
M�t� � Fp1 �t� � F

p
2 �t�

� 	Fs1�t� � F
v
1 �t�
 � 	F

s
2�t� � F

v
2 �t�
; (9)

 Gn
E�t� � Gs

E�t� �G
v
E�t� � Fn1 �t� � �

nFn2 �t�

� 	Fs1�t� � F
v
1 �t�
 � �

n	Fs2�t� � F
v
2 �t�
; (10)

 Gn
M�t� � Gs

M�t� �G
v
M�t� � Fn1 �t� � F

n
2 �t�

� 	Fs1�t� � F
v
1 �t�
 � 	F

s
2�t� � F

v
2 �t�
; (11)

where �p�n� � t
4m2

p�n�
. They satisfy the normalization con-

ditions

 Gp
E�0� � 1; Gp

M�0� � 1��p; Gn
R�0� � 0;

Gn
M�0� ��n; Gs

E�0� �G
v
E�0� �

1

2
;

Gs
M�0� �

1

2
�1��p��n�; Gv

M�0� �
1

2
�1��p��n�;

Fp1 �0� � 1; Fp2 �0� ��p; Fn1 �0�; Fn2 �0� ��n;

Fs1�0� � F
v
1 �0� �

1

2
; Fs2�0� �

1

2
��p��n�;

Fv2 �0� � ��p��n�;

where �p and �n are the proton and neutron anomalous
magnetic moments, respectively.

A basic ingredient of the existing models of form factors
[33] is the dominance of the � meson pole, resulting e.g.
for the isovector meson form factor to the expression

 Gv�t� �
g2
�

1� t=m2
�
;

where g� is a constant proportional to the product of ��
and �NN couplings. The next step is to include [34] other
vector mesons, as well as their excitations, such as the
isovector: ��770�, �0�1450�, �00�1700� and isoscalar reso-
nances !�782�, !0�1420�, !00�1600�, ��1020�, ��1680�
found in the Review of Particle Physics [35].

The use of the trajectories implies a single ‘‘dual’’
variable instead of the parameters of individual resonances.
The approach of Ref. [17] combines the concept of Regge
trajectories with analyticity, unitarity and resonance data
analysis. An economic way to account for the exciting
states is to use Regge trajectories, advocated in the present
paper and bringing us close to dual models. Soon after the
discovery of Veneziano’s dual model [19], attempts were
made [36] to apply it to form factors. Assuming an infinity
number of neutral vector mesons with the sequence of
squared masses m2�n� � m2

0 � nm
2
1, n � 0; 1; . . . the fol-

lowing expression proton magnetic form factor was de-
rived [36]

 

GMp
�t�

�p
�

�	1� ��t�
�	c� ��0�

�	1� ��0�
�	c� ��t�


;

where ��t� is the � trajectory and c � 3:27.
Unitarity constrains the threshold behavior of the Regge

trajectories [22] (see also Ref. [17] and references therein)
as well as that of the form factors [37]

 JF��t� �t!t0 �t� t0�
1�R��t0�J��t� � �t� t0�3=2;

where t0 � 4�2
�. Any finite width of the resonances re-

quires an imaginary part to be added, as, for example, was
done in Ref. [38]

 

GMp
�t�

�p
�

X
i��;!;�

ai�t�m
2
i � �i

�������������
b2
i � t

q
��1;

where �i are resonances’ widths and the fitted values of the
parameters bi are: b� � 0:28 GeV, b! � 0:42 GeV, b� �
0:99 GeV. This approach is close in spirit to that based on
dual analytic model, introduced in the previous section,
and illustrated in Figs. 1, showing the calculated modulus
of the form factor resulting from a single � pole contribu-
tion (dotted line) and from a sequence of poles generated
by trajectory (4)

 

GMp

�p
�

��������X
1

j�1

�0:5�j

�j� �����

��������: (12)
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This sum is similar to the pole decomposition of the dual
amplitude, namely, it is a sum of reggeized (implied by
duality) Breit-Wigner resonances [cf. (2)]. The upper limit
of summation includes the highest resonance lying on the �
trajectory (4), however the large-jtj behavior of the form
factor, Fig. 3, is not affected by higher spin values (here,
j > 5, up to infinity), from where the real part of the
trajectory does not contribute any more. The inclusion of
a large (infinite) number of poles appearing on the second
sheet is important in dual models [18]. The nonappearance
of higher resonances and the transition to a smooth con-
tinuum can result either from an upper bound on the real
part of the trajectory, as is DAMA [18], or from the rapid
rise of its imaginary part, making the resonances
unobservable.

Similarly to the Veneziano model, form factors were
derived [39] from DAMA (1):

 F�t�� �
Z 1

0
dxx���t�1�x���1� x��1�n; (13)

where n is an integer providing the correct (according to
quark counting rules) large-jtj behavior of the form factor.

Calculations of form factors from GPD, Sec. IV, V, and
VI, are more involved and less predictable, especially in
the case of complex Regge trajectories.

IV. GENERALIZED PARTON DISTRIBUTIONS
AND FORM FACTORS

Form factors are related to generalized parton distribu-
tions (GPD) by the standard sum rules [2,3]

 Fq1 �t� �
Z 1

�1
dxHq�x; �; t�;

Fq1 �t� �
Z 1

�1
dxHq�x; �; t�:

The integration region can be reduced to positive values
of x, 0< x< 1 by the following combination of nonfor-
ward parton densities [12,14]

 H q�x; t� � Hq�x; 0; t� �Hq��x; 0; t�;

Eq�x; t� � Eq�x; 0; t� � Eq��x; 0; t�;

providing

 Fq1�t� �
Z 1

0
dxH q�x; t�; (14)

 Fq2 �t� �
Z 1

0
dxEq�x; t�: (15)

The proton and neutron Dirac form factor are defined as

 Fp1 �t� � euFu1 �t� � edF
d
1 �t�;

Fn1 �t� � euF
d
1 �t� � edF

u
1�t�;

where eu � 2=3 and ed � �1=3 are the relevant quark
electric charges.

In the limit t! 0 the functions Hq�x; t� reduce to usual
valon quark densities in the proton:

 H u�x; t � 0� � uv�x�; H d�x; t � 0� � dv�x�;

with the integrals

 

FIG. 3 (color online). Left panel: Proton magnetic form factor relative to the dipole form factor (left upper panel) and the ratio of the
magnetic to electric form factors (left lower panel). The black thin curves correspond to the linear trajectory of Ref. [14], the red (r)
curve to the nonlinear trajectory (24) with g0 � 1, and the blue (b) curve to the same nonlinear trajectory but with g � 1:05. The data
for the proton magnetic form factor Gp

M are from [48] (open squares), [49] (open circles), [50] (solid stars), [51] (open stars), [52]
(solid circles), [53] (solid squares), and those for the ratio Gp

E=G
p
M are from Ref. [54] (solid circles), [55] (open triangles) and Ref. [56]

(solid triangles). Right panel: Ratio of the neutron magnetic form factor to the dipole form factor (right upper panel) and neutron
electric form factor (right lower panel) with curve conventions as on the left panel. The data for the neutron magnetic form factor Gn

M
are from Ref. [57] (open circles), [58] (solid circles), [59] (open triangles), [60] (solid triangles), [61] (solid squares) and Ref. [62]
(solid squares). The data for the neutron electric form factor are from MAMI [63] (triangles), NIKHEF [64] (solid squares), and JLab
[65] (solid circles) and Ref. [66] (open squares).
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Z 1

0
uv�x�dx � 2;

Z 1

0
dv�x�dx � 1

normalized to the number of u and d valence quarks in the
proton.

Contrary to H , the magnetic densities Eq�x; t � 0� �
Eq�x� cannot be directly expressed in term of the known
parton distributions, however their normalization integrals

 

Z 1

0
Eq�x�dx � kq

are constrained by the requirement that the values Fp2 �t �
0� and Fn2 �t � 0� are equal to the magnetic moments of the
proton and neutron, whence ku � 2kp � kn � 1:673 and
ku � kp � 2kn � �2:033 follows [14]. Explicit parame-
terizations for the forward and nonforward structure func-
tions as will be presented in the next section.

The Fourier-Bessel integral

 q�x; b� �
1

2�

Z 1
0
d

������
�t
p

J0�b
������
�t
p
�H �x; t� (16)

provides a mixed representation of longitudinal momen-
tum and transverse position in the infinite-momentum
frame [4,5].

V. MODELLING NON-FORWARD PARTON
DISTRIBUTIONS; CONNECTION WITH REGGE-

DUAL MODELS

The simplest model for the proton nonforward parton
density is a factorized form

 H �x; t� � qv�x�F1�t�; (17)

here qv�x� is the parton density and F1�t� is the proton form
factor. It trivially reproducesFp1 �t� and qv�x� in the forward
limit, but it conflicts both with Regge (R) behavior

 H R�x; t� � x���t�; (18)

valid at small x, and with a Gaussian (G) ansatz [12,40] for
nonforward parton densities within the light-cone formal-
ism

 H q
G�x; t� � qv�x�e��1�x�t=4x
2

;

where the scale 
2 characterizes the average transverse
momentum of the valence quarks in the nucleon. To satisfy
the Drell-Yan-West (DYW) relation [41,42] between the
x! 1 behavior of the structure functions and the
t-dependence of the elastic form factors the above expres-
sion should be modified like

 H q�x; t� � qv�x�x��
0�1�x�t; (19)

as first suggested in Ref. [5,43] (see also Ref. [14]), where
�0 is the slope of a Regge trajectory (other modifications of
the parton distributions as well as their relation to the light-
cone wave function of a composite system are discussed in

Ref. [4,5]). By noticing the similarity between this expres-
sion and the relevant factor in the integrand of Eq. (1), we
suggest the following parametrization for the t-dependent
GPD:

 H q
G�x; t� � qv�x��x=g0�

�~��t��1�x� � �x=g0�
���t��1�x�f�x�;

(20)

where ~��t� is the t-dependent part of the Regge trajectory,
g0 (x0 in Ref. [15]) is a parameter defined in Sec. II and
f�x� is the large-x factor of the parton distribution (see
below). For linear trajectories and g0 � 1, Eq. (20) reduces
to Eq. (19).

Regge behavior �x���0� of DIS structure functions and
relevant parton distributions at small x is well established
for small and moderate virtualities Q2; at higher Q2 it is
replaced by QCD evolution (see e.g. Ref. [44] and refer-
ences therein). The values of the ‘‘Regge-intercepts’’ in the
parton distributions may depend on the flavor of the rele-
vant quark. For example, in the global fits of MRST2002
[45]:

 uv�x� � 0:262x�0:69�1� x�3:50�1� 3:83x0:5 � 37:65x�;

(21)

 dv�x� � 0:061x�0:65�1� x�4:03�1� 49:65x0:5 � 8:65x�;

(22)

implying ��0� � 0:69 in the u-quark distribution and 0.65
in the d-quark distribution, which means slightly different
trajectories exchanged in the t-channel of the (fictive) �up
and �dp scattering amplitude, once the GPD is associated
with the imaginary part of the u-channel quark-proton
scattering amplitude. We use these expressions in our
calculations below.

The magnetic densities Eq�x; t� enter F2�t� and contain
new information about the nucleon structure, however they
cannot be directly expressed in terms of any known parton
distribution. Following Ref. [14], we write them in the
form Eq�x; t� � Eq�x�x��1�x��

0
Et, �0E � 1:158 GeV�2,

similar to H q�x; t� but with an extra large-x factor, i.e.

 E u�x� �
ku
Nu
�1� x��uuv�x� (23)

and

 E d�x� �
kd
Nd
�1� x��ddv�x�; (24)

with �u � 1:52 and �d � 0:31 fitted [14] to the data. The
remaining constants are fixed by normalization:

 Nu �
Z 1

0
dx�1� x�1:52uv�x� � 1:53;

Nd �
Z 1

0
dx�1� x�0:31dv�x� � 0:82;

whence ku � 1:673, kd � �2:033.
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VI. NUMERICAL ESTIMATES

Below we illustrate how the nonlinearity (complexity) of
the trajectories and the introduction of g0 > 1 affect the
behavior of the calculated form factors and quark distribu-
tions as functions of the impact parameter b and of the
Bjorken variable x.

We first explore the effects coming from nonlinear
Regge trajectories by calculating several observable form
factors and their ratios using the expressions for the
t-dependent GPD, Eq. (20). As a reference frame, we use
fits from the paper [14] nicely reproducing the data. In that
paper linear trajectories with the slopes �01 � 1:098 GeV2

in H �x; t� and �02 � 1:158 GeV2 in E�x; t� were used. The
relevant intercepts come from the parton distributions (21)
and (22), and they are equal to 0.69 and 0.65 in the u quark
and d quark distributions, respectively [45]. With these
parameters (and g0 � 1, matching the model of
Ref. [14]) one reproduces the results of Ref. [14], some
of them shown in Fig. 3 in thin black line. Next we explore
the effects coming from the nonlinearity of the Regge
trajectories, as well as from g0 > 1, both introduced in
Sec. II. By keeping the less known Eq�x; t� intact we vary
the trajectory in H u�x; t� and the value of g0. The effect
proves to be very large. For example, even a minor [with
respect e.g. to Eq. (4)] deviation from the linear trajectory,

 ~��t� � 1:026t� 0:02�
������������������
4m2

� � t
q

� 2m��; (25)

with the forward slope �0 � 1:098 GeV�2 matching the
linear trajectory fitted in Ref. [14] to the data, gives a
sizable effect, augmenting e.g. the ratio Gp

M=�
pGD, as

seen in Fig. 3 (red line). The effect from g0 > 1, combined
with the nonlinear trajectory, is shown in Fig. 3 (blue line).
In general, it compensates the rise due to the nonlinearity
of the trajectory, although the interplay of these two effects
is much more complicated. The use of analytic trajectories
and/or g0 > 1 in Eq�x; t�will make the situation much more
complicated but, at the same time, interesting. The use of a
‘‘realistic’’ trajectory like Eq. (4) changes the behavior of
the observables dramatically, requiring a complete re-
arrangement of the model or, at least, of its parameters.

Figure 4 shows the u quark impact-parameter distribu-
tion calculated from Eqs. (16) and (20) at three fixed values
of x � 0:1, 0.5 and 0.7 and for three representative trajec-
tories: linear, ~��t� � 1:098t [red (r) curves], ‘‘square root,’’
Eq. (4) [green (g) curves] and logarithmic, Eq. (5) with
� � 3, � � 0366 GeV�2 and t0 � 4m2

� [blue (b) curves].
The calculated distributions depend dramatically on the
form of the trajectories, especially near the endpoints x �
0 and 1. Even small variations in the trajectories result in a
strong response in the behavior of the b-distributions. In
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FIG. 4 (color online). Impact-parameter distribution of the u quark matter at x � 0:1 (left panel), x � 0:5 (middle) and x � 0:7
(right panel). The curves on the left panel correspond (from the top, for b � 0) to calculations with: ~��t� � 1:098t (red, solid line);
Eq. (4) (green, dotted line), and the logarithmic trajectory Eq. (5) with � � 0:3, � � 0:366 and t0 � 4m2

� (blue, dotted line). Curves
on the middle and right panel correspond to calculations with Eq. (4) (green, dotted line) and the above linear trajectory (red, solid
line). Those with the logarithmic trajectory (5) for x > 0:3 go off the common trend.
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FIG. 5 (color online). Longitudinal momentum distribution of the u quark matter calculated with a linear trajectory ~��t� � 1:098t
(left panel) and Eq. (4) (right panel). The curves (from the top, for x � 0:3) correspond to 	t � �0:7 GeV2; g0 � 1
 (red line), 	t �
�0:9 GeV2; g0 � 2
 (blue line), 	t � �0:7 GeV2; g0 � 5
 (green line), 	t � �3 GeV2; g0 � 1
 (pink line).

LÁSZLÓ JENKOVSZKY PHYSICAL REVIEW D 74, 114026 (2006)

114026-8



any case, all b-distributions calculated by means of
Eq. (16) remain positive in a wide span of b and for all
versions of the trajectories used, thus confirming the earlier
result of Ref. [5] concerning the physical interpretation of
the impact-parameter-dependent parton distribution q�x; b�
as a probability (density) distribution.

The role of the parameter g0, combined with the varia-
tion of the trajectories, can be seen also in Fig. 5, where the
u quark distribution is plotted against x for several fixed
values of t and of g0 and two typical trajectories: a linear
one, ~��t� � 1:098t, and (4). Here the dependence on the
form of the trajectories is less pronounced then in Fig. 4,
where integration in t is involved.

Given the available freedom in the choice of the trajec-
tories, the present calculations can serve only as an indi-
cation of the existing trends, rather than fits or predictions
to the data.

VII. CONCLUSIONS AND OUTLOOK

With this paper we wish to emphasize the important role
of the analytic properties of the strong interaction theory,
manifest here in the form of the Regge trajectories. The
wide-spread prejudice that the trajectories are linear has
different sources: (1) the masses of the resonances lie on
approximately linear trajectories; (2) the Veneziano and
string models [19] provide a theoretical basis in favor of
this behavior; (3) relevant calculations are simple. On the
other hand, the theory demands that the trajectories be
analytic functions of their arguments with threshold singu-
larities imposed by unitarity, and that the asymptotic be-
havior be compatible with the polynomial boundedness of
the amplitude. Trajectories satisfying these constraints and
fitting the data both for positive (particles spectra) and
negative (scattering data) values of their arguments are
known from the literature (see, e.g., Refs. [16,17]). In
this paper we show that they affect considerably the calcu-
lated GPD and their moments. More work is needed to
specify and quantify the role of various (parent and daugh-
ter) subleading trajectories (of poles and cuts).

Another message of this paper is that, in a certain
kinematical region, the integrand of the dual amplitude
with Mandelstam analyticity (DAMA) (1) can be identified
with a generalized parton distribution (GPD), the integra-
tion variable being associated with the parton longitudinal
momentum, as suggested in Ref. [46]. For fixed Q2 and s,
the integrand of DAMA (1) (a GPD?) has the form

 �x=g0�
�~��t�1�x���n��1� x�=g0�

m; (26)

where n and m are reaction-dependent constants. The first
factor in (26) is the small-x Regge-behaved term, while the
second one is the familiar large-x term.

There is, however, a problem connected with the large-x
behavior of the model, to be clarified. As shown in
Ref. [11], the derivative d

dtH �x; � � 0; t� at t � 0 should
vanish at least like �1� x�2 in order to have a finite
transverse size of the hadron configuration in the x! 1
limit. This requirement is not met by Eqs. (20) or (26),
unless g0 � 1. This may be an indication that Eqs. (20) and
(26) should be modified to admit higher powers of (1� x)
and/or that the condition g0 > 1 should be relaxed. Dual
amplitudes are compatible with both options and the afore-
mentioned condition can be satisfied by a modification of
the so-called homotopies (see Sec. II, and references cited
in Ref. [18]). We will address this interesting point in a
future paper.

An immediate observation is the similarity between the
moments of the GPD (form factors), Eq. (14) and expres-
sion (13), derived from DAMA. I wonder if this could
mean a bootstrap relation between the antiquark-hadron
scattering amplitude (GPD) and the hadron-hadron ampli-
tude resulting from integration (1) of a GPD? The appear-
ance of x in the exponents of the (modified) structure
functions, (or parton distributions) may have interesting
consequences by itself—both for theory and phenomenol-
ogy. In any case, a better understanding of the physical
meaning of the variables appearing in GPD, especially with
nonzero skewedness, � � 0, is needed.

The approach in this paper combines elements of the
analytic S-matrix theory, namely, Regge poles and duality,
known to be efficient for soft collisions at large distances,
with the small-distance partonic picture. The interface and
merge of these seemingly orthogonal approaches may
bring new ideas about the transition form perturbative to
nonperturbative physics. Much of this information is en-
coded in the form of the complex Regge trajectories.
Recently, explicit models for deeply virtual Compton scat-
tering amplitudes (DVCS) appeared in the literature [47].
Their imaginary part can provide additional information
about GPD.

In one perspective, one can think of extending the
asymptotic Regge pole model to the low-energy resonance
region by incorporating a dual amplitude, e.g., DAMA.
The crossing-symmetric properties of dual amplitudes will
make possible the inclusion of the t > 0 region in DVCS
and resulting GPD. It may also help to connect the high-
energy (Regge) region with the low-energy (resonance)
domain, where new data from JLab is expected.
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