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Hybrid mesons are exotic mesons in which the color field is not in its ground state. Their understanding
deserves interest from a theoretical point of view, because it is intimately related to nonperturbative
aspects of QCD. In this work, we analyze and compare two different descriptions of hybrid mesons,
namely, a two-body q �q system with an excited string, or a three-body q �qg system. In particular, we show
that the constituent gluon approach is equivalent to an effective excited string in the heavy hybrid sector.
Instead of a numerical resolution, we use the auxiliary field technique. It allows us to find simplified
analytical mass spectra and wave functions, and still leads to reliable qualitative predictions. We also
investigate the light hybrid sector, and found a mass for the lightest hybrid meson which is in satisfactory
agreement with lattice QCD and some effective models.
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I. INTRODUCTION

The study of hybrid mesons deserves much interest in
theoretical as well as in experimental particle physics.
From a theoretical point of view, these particles are inter-
preted as mesons in which the color field is in an excited
state. Numerous lattice QCD calculations have been de-
voted to the study of hybrid mesons, in particular, to the
energy levels of the gluonic field [1,2] and to the properties
of the 1�� state, which is the lightest hybrid with exotic
quantum numbers (see Refs. [3,4] for useful references).
On the experimental side, we can mention the recently
observed �1�1600� [5], �1�2000� [6] and Y�4260� [7],
which could be either hybrid mesons, or tetraquark states
[8].

Apart from lattice QCD, hybrid mesons have been
studied with effective models for a long time. For example,
we can quote the flux tube model [9], models with con-
stituent gluons [10,11], or the MIT bag model [12]. In
potential models, to which our paper is devoted, there are
two main approaches. In the first one, the quark and the
antiquark are linked by a string, or flux tube, which sim-
ulates the exchange of gluons responsible for the confine-
ment. If the string is in the ground state, it reduces to the
usual linear confinement potential for heavy quarks, and to
a more general flux tube model for light quarks, where the
dynamics of the string cannot be neglected [13]. In this
stringy picture, it is possible for the flux tube to fluctuate at
the quantum level, and thus to be in an excited state. These
string excitations are analog to the gluon field excitations
in full QCD. They have been studied, for example, in
Refs. [14,15]. In the second approach, it is assumed that
the hybrid meson is a three-body system, formed of a

quark, an antiquark, and a constituent gluon, which repre-
sents the gluonic excitation. Two fundamental strings then
link the gluon to the quark and to the antiquark. This
picture has been studied in Ref. [11], but also in more
recent works [16,17].

Nowadays, the spinless Salpeter Hamiltonian (SSH)
with a linear confinement is a widely used and successful
framework to compute hadron spectra in potential models
(see previous references). Since its kinetic operator is a
semirelativistic one, most of the results are numerically
obtained. However, the auxiliary field (AF) technique, also
known as the einbein field method, allows us to greatly
simplify the calculations [18,19]. In a previous work [17],
it is shown that the AF method leads to analytic solutions
for the eigenvalues and wave functions of the two-body
SSH. Even if they are approximations, these solutions are
qualitatively in agreement with well-known experimental
facts, the Regge trajectories, for example. The AF tech-
nique was also applied to the case of hybrid mesons with a
constituent gluon and two static quarks. This model is able
to reproduce some lattice results concerning the gluonic
energy levels and the heavy hybrid spectroscopy.
Moreover, it suggests a correspondence between the ex-
cited flux tube and the constituent gluon approaches [17].
The purpose of the present paper is now to apply the AF
technique to the full q �qg system, without demanding that
the quark and the antiquark are static, in order to obtain
formula which are valid for arbitrary quark mass.
Moreover, we will further investigate the links between
the excited string and the constituent gluon pictures.
Eventually, we will show that these approaches are equiva-
lent for heavy quarks. Our formalism will also allow us to
study whether this equivalence is modified in the light
quark sector or not.

Our paper is organized as follows. In Sec. II, we review
the main properties of the AF method by applying it to the
simple case of mesons. In Sec. III, we discuss the excited
flux tube model of hybrid mesons. Then, we analytically
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solve the q �qg three-body problem corresponding to hybrid
mesons with a constituent gluon in Sec. IV, and give some
physical results concerning their mass and structure. In
Sec. V, we derive the effective quark-antiquark potential
for the q �q system within a hybrid meson, and we discuss its
links to the excited string picture. Finally, we compare our
results to lattice QCD in Sec. VI, and draw some conclu-
sions in Sec. VII.

II. MESONS AND AUXILIARY FIELDS

A system made of two hadrons interacting through a
linear confinement can be described by the following SSH

 H �
������������������
p2 �m2

1

q
�

������������������
p2 �m2

2

q
� ar; (1)

where p2
1 � p

2
2 � p

2 since we work in the center of mass
frame. The linear confinement can be understood as the
static contribution of a straight string, or flux tube, of
tension a, linking the quark and the antiquark [13]. In order
to get rid of the square roots appearing in Hamiltonian (1),
let us now introduce three AF: Two for the quarks, denoted
�i, and one for the potential, �. Hamiltonian (1) then
becomes

 H��i; �� �
p2 �m2

1

2�1
�
�1

2
�
p2 �m2

2

2�2
�
�2

2
�
a2r2

2�
�
�
2
:

(2)

Although being formally simpler, H��i; �� is equivalent to
H up to the elimination of the AF thanks to the constraints
 

��i
H��i; �� � 0) �i0 �

������������������
p2 �m2

i

q
; (3a)

��H��i; �� � 0) �0 � ar: (3b)

It is worth mentioning that h�i0i can be seen as a dynami-
cal mass of the quark whose current mass ismi, while h�i is
in this case the static string energy [20]. Relations (3) show
that the AF are, strictly speaking, operators. However, the
calculations are considerably simplified if the AF are con-
sidered as real numbers, and finally eliminated by a mini-
mization of the masses [18]. The extremal values of�i and
�, considered as numbers, are logically close to the values
h�i0i and h�0i given by relations (3). This procedure leads
to a spectrum which is an upper bound of the ‘‘true
spectrum’’ (computed without AF), the differences being
about 10% [21].

Using the AF, Hamiltonian (1) turns out to be formally a
simple nonrelativistic harmonic oscillator (2). Its mass
spectrum and wave functions read

 M��i; �� � !�2n� ‘� 3=2� �
m2

1

2�1
�
m2

2

2�2

�
�1 ��2 � �

2
; (4)

  � �n;‘��1=2r�Ym‘ ��;’�; (5)

where

 ! �
���������������
a2= ~��

q
; � �

���������������
~�a2=�

q
; ~� �

�1�2

�1 ��2
;

(6)

and where�n;‘��1=2r� is a normalized radial eigenfunction
of the three dimensional harmonic oscillator.

In the special case of a light meson, one can set m1 �
m2 � 0. Then �1 � �2 � �, and one obtains after the
elimination of the AF [17]

 M2
ll � 8a�2n� ‘� 3=2�: (7)

At large angular momentum, it appears that the square
mass increases linearly with ‘. Thus, our solution qualita-
tively reproduces the Regge trajectories, which are the best
known experimental fact concerning the light meson spec-
troscopy. The Regge slope is here given by 8a instead of
2�a, which is the exact value of the Regge slope in the flux
tube model [13]. This is related to the AF technique itself
which gives good qualitative results, but overestimates the
masses. More precisely, the error on the exact value in-
creases with the number of AF introduced, as shown in
Ref. [17]. As a check of this point, we can mention that
with only one AF, the Regge slope can be computed to be
7a [22]. What can be done to cure this artifact of the AF
method is to rescale a: as we know that the exact Regge
slope is around 2��, with the standard value � �
0:2 GeV2, let us set a � 2��=8. Then, a mass formula
such as expression (7) is able to correctly reproduce the
experimental Regge slope of the mesons [13]. In the fol-
lowing, a rescaling of the string tension will be used to
improve the results given by the AF calculations.

An other interesting case is a system composed of a light
quark and of a heavy quark. One finds that, for such a
system [17],

 �Mhl �m2�
2 � 4a�2n� ‘� 3=2�: (8)

The Regge slope for a heavy-light meson is half of the one
for a light-light meson. As it was shown in Ref. [23], it is in
agreement with experimental observations. Again, the cor-
rect Regge slope in this case is not 4a but�a [23]. With the
same rescaling as above, a � ��=4, the approximate re-
sult (8) can be greatly improved.

Equation (8) can also be applied to a special type of
heavy hybrid mesons called hybrid gluelumps, that is a
pointlike heavy q �q pair with mass mq �q bound to a con-
stituent gluon. We have then

 �Mhyb �mq �q�
2 � 4	�2n� ‘� � 6	; (9)

where 	 is the string tension between the gluon and the q �q
pair. Note that n and ‘ are the quantum numbers of the
gluon, since the dynamics of the heavy q �q pair can be
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neglected. Such a Regge-like behavior for heavy hybrid
mesons has been obtained numerically in Ref. [24].

III. HYBRID MESONS AND THE EXCITED FLUX
TUBE

It is generally accepted that the static potential between
the quark and the antiquark in an usual meson is compat-
ible with a funnel potential,

 VF � ar�
4
S
3r

; (10)

where 
S is the strong coupling constant. The Coulomb
part comes from one-gluon exchange process, while the ar
part is a pure confinement: it corresponds to the (classical)
energy of a straight string linking the quark and the anti-
quark, and whose energy density is a. The description of
the confining interaction in terms of such a string is an
effective approach which can be derived from QCD [25].
Let us note that the spectrum obtained with potential (10) is
in good agreement with experimental data for the light and
heavy mesons [26]. Typical values for the parameters
fitting the lattice QCD data are a � 0:2 GeV2, and 
S �
0:2–0:3.

The non-Abelian nature of QCD makes possible for a
gluon to interact with other gluons. These kind of self-
interactions allow the gluonic field to be in an excited state,
like it is expected to be the case in hybrid mesons. These
excitations can be translated in a stringy language by
computing the energy spectrum of a quantum string, the
string fluctuations corresponding to the color field excita-
tions. The string energy, and consequently the potential
energy between the static quark and antiquark is then given
by [27]

 V�r� �
����������������������������������������
a2r2 � 2�aN � E2

p
; (11)

whereN is the string excitation number. Let us note that the
values of this number are constrained by the fact that the
quantity under the square root must be positive.

It is generally accepted in string theory that E2 �
�2�a�D� 2�=24, with D the dimension of space.
Together with D � 26, this value indeed ensures that the
Lorentz invariance is still present at the quantum level. It is
worth mentioning that we are here dealing with effective
models of QCD with D � 4: our string is not a fundamen-
tal object but an effective one arising from the exchanged
gluons. Consequently, it is clear that such an effective
model could be characterized by a nonstandard value of
E. Moreover, a potential model like the SSH is a priori
noncovariant since the potentials which are used are in-
stantaneous: the Lorentz invariance is already broken at the
classical level, so one does not need to restrict E to the
usual value. From an effective model point of view, the best
interpretation to give to E seems thus the one proposed in
Ref. [28], where it is shown that it represents the zero point
energy of the transverse string fluctuations. In a QCD

model, this could be the zero point energy of the gluonic
field. We will turn to this interpretation later, to see that it is
indeed compatible with our results. Let us note that for
large r, potential (11) is approximately equal to

 V�r� � ar�
�
r

�
NL �

E2

2�a

�
: (12)

In D � 4, the usual string theory states that E2=2�a �
�1=12: we recover in this limit the well-known universal
Lüscher term [15]. In formula (12), the minimal allowed
value for NL is zero. In this case, V�r� is expected to
reproduce the funnel potential and thus represents the
interaction of a quark and an antiquark in an ordinary
meson.

We can apply the auxiliary field formalism to compute a
hybrid meson spectrum in the same way as it was done in
the previous section for mesons. However, the potential to
use is now given by formula (11) instead of the usual ar.
Then, the hybrid masses are given by

 Mhyb��i; �� � M��i; �� �
2�aN � E2

2�
; (13)

withM��i; �� given by Eq. (4). Because of the new term, �
is more complex to eliminate. Nevertheless, we can readily
compute that, in the case of a heavy hybrid meson with the
quark and the antiquark of the same mass, we have
M��i; �� � 2m� �=2 (the dynamical contribution of the
quark and of the antiquark is neglected), and consequently,

 �Mhyb � 2m�2 � 2�aN � E2: (14)

This is a kind of Regge trajectory with respect to the string
excitation number N. It is interesting to notice that this
formula is analog to the result of Eq. (9) concerning the
heavy hybrid mesons, with mq �q � 2m, 	 � 2a and the
proper rescaling a � ��=4 (these values for mq �q and 	
will be justified in Sec. IV B). The quantum numbers of the
gluon, (2n� ‘), are replaced by N the string excitation
number, and the square zero point energy of the system,
6	, is now replaced by E2, the square zero point energy of
the string fluctuations. This correspondence is a first hint
that the description of heavy hybrid mesons in terms of a
constituent gluon or of an excited string possesses a similar
physical content, expressed in terms of two different de-
grees of freedom, namely, a gluon or a string excitation. We
will further investigate this correspondence in the
following.

IV. HYBRID MESONS WITH CONSTITUENT
GLUONS

A. The three-body problem

In this picture, it is assumed that the excitations of the
gluon field can be described by a constituent gluon inter-
acting with the quark-antiquark pair. This pair is thus in a
color octet in order for the hybrid meson to be a colorless
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object. Assuming the Casimir scaling hypothesis, which
seems to be confirmed by several models [29], it can be
shown that the confinement is no more a Y-junction like in
a baryon but two fundamental strings linking each quarks
to the gluon [24]. Neglecting all the short-range interac-
tions, the three-body SSH is thus

 H �
X

i�q; �q;g

������������������
p2
i �m

2
i

q
�
X
j�q; �q

ajxj � xgj; (15)

with mg � 0. Introducing the AF, we obtain, in analogy
with Hamiltonian (2),
 

H��i; �i� �
X

i�q; �q;g

�
p2
i �m

2
i

2�i
�
�i

2

�

�
X
j�q; �q

�a2�xj � xg�
2

2�j
�
�j
2

�
: (16)

We can then apply the procedure described in Ref. [30],
where we solved the three-body covariant oscillator quark
model by an appropriate change of variables.

First of all, we will replace the quark coordinates xi �
fxg; xq; x �qg by x0k � fR; r; yg, with the center of mass de-
fined as

 R �
�gxg ��qxq �� �qx �q

�t
: (17)

�t � �g ��q �� �q and fr; yg are two relative coordi-
nates. The change of coordinates is made via a matrix Q,
thanks to the relation xi � Qikx

0
k. Let us note that the

invariance of the Poisson brackets demands that pi �
�Q�1�Tikp

0
k, with p0i � fP;p;pyg. We define

 Q �
1 A B
1 C D
1 E F

0
@

1
A; (18)

and choose to impose the constraints

 D � F; C � E� 1; (19)

in order to have a clear physical meaning for r, that is
simply

 r � xq � x �q: (20)

Moreover, we ask that
 

A � �
�q

�g
C�

� �q

�g
E; (21a)

B � �
�q

�g
D�

� �q

�g
F; (21b)

E � �
�q

�q �� �q
; (21c)

F �
�g����������������������������

�t��q �� �q�
q : (21d)

Constraints (21a) and (21b) are consequences of the defi-
nition (17): they allow the vanishing of the terms in P � p
and P � py when Hamiltonian (16) is rewritten in the new
coordinates. Equation (21c) ensures that the cross product
p � py is equal to zero too. In the general case, these
constraints are not sufficient to eliminate the terms in r �
y. However, if mq � m �q � m, that is to say that �q �

� �q � � and �q � � �q � �, these terms vanish. In what
follows, we will thus restrict ourselves to the case of a
quark and an antiquark with the same mass. In the center of
mass frame, P � 0, the Hamiltonian (16) becomes
 

H��i; �� �
p2

2 ~�
�
p2
y

2�g
�

1

2
�rr

2 �
1

2
�gy

2 �
m2

�

���
�g

2
� �; (22)

with

 �r �
a2

2�
; �g �

a2��g � 2��

��
; (23)

and ~� � �=2. As in Ref. [30], our transformation leads to
a Hamiltonian were all variables are separated. Actually,
we have decoupled the three-body Hamiltonian (15) into a
sum of two Hamiltonians: one for the two-body quark-
antiquark system, the r dependent part, and one for the
gluon, the y dependent part. To confirm this point, let us
mention that the mass term appearing with p2 is the
reduced mass of the quark and the antiquark, and the one
appearing with p2

y is �g. This nice feature is due to our
choice of F, given by Eq. (21d). Moreover, A � 0 when
�q � � �q. This means that the gluon position is only given
by a function of y. But, this separation is only formal, since
the AF still have to be eliminated. This will make appear
the couplings between the three bodies.

Before doing this, we can remark that Hamiltonian (22)
is the sum of two harmonic oscillators. The mass spectrum
and wave functions are then easily obtained. They read
 

E��i; �� � !r�2n� ‘� 3=2� �!g�N � 3=2� �
m2

�

���
�g

2
� �; (24)

  �  q �q�r� �  g�y�

� �n;‘��
1=2
r r�Ym‘ ��; ’��ny;‘y��

1=2
y y�Y

my

‘y
��y; ’y�; (25)

and

 !r �
a�������
��
p ; !g � a

�������������������
�g � 2�

���g

s
; (26)

 �r � ~�!r; �g � �g!y: (27)

For later convenience, we also defined
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 N � 2ny � ‘y: (28)

The allowed values for N are 0; 1; . . . . It is worth noting
that the state N � 0 does not correspond to an ordinary
meson state [as in the case NL � 0 for the potential (12)],
but to the hybrid meson ground state.

Formulas (24) and (25) are a generalization of the results
of Ref. [17], since in this last work the quark and the
antiquark were assumed to be fixed and the dynamics of
the system was actually a one-body problem. Here, we deal
with the full three-body system. Using the well-known
properties of the harmonic oscillator, it is easy to compute
the quantities

 hr2i �
�2n� ‘� 3=2�

�r
; hy2i �

�N � 3=2�

�g
: (29)

They give information about the geometric configuration
of the three bodies. The elimination of the AF has now to
be performed by minimizing the energy (24) with respect
to them. This problem leads to rather complex expressions
in general, but can be simplified in the case of heavy and
light hybrids.

B. Heavy hybrid mesons

In this section, we will consider that m	
���
a
p

to obtain
simple analytical formula. In this case, the quark and the
antiquark are very heavy and we can set � � m. Formula
(24) then reduces to
 

E��g; �� �
a�������
m�
p �2n� ‘� 3=2� � a

���������
2

��g

s
�N � 3=2�

� 2m�
�g

2
� �: (30)

Neglecting the excitation energy of the q �q pair, we obtain

 E��g; �� � a

���������
2

��g

s
�N � 3=2� � 2m�

�g

2
� �: (31)

As E��g; �� is symmetric for the exchange �g $ 2�, we
can set

 �g � 2� (32)

to simplify the energy formula (31). The constraint
��E��� � 0 gives

 �0 �

����������������������������
a
2
�N � 3=2�

r
; (33)

 �E� 2m�2 � 8aN � 12a: (34)

This last mass formula is clearly analog to Eq. (9). The
string tension is here 2a because the total string results in
the superposition of the two fundamental strings linking
the gluon to the quark and to the antiquark, in the limit of a

pointlike q �q pair with mq �q � 2m (no interaction between
the quarks).

As it was argued in a previous study using special
relativity arguments [31], the geometrical configuration
of a heavy hybrid meson is most likely to be a quark and
an antiquark close to each other, with a gluon orbiting
around the pair. In our model, it is easy to compute that
in the ground state (n � ‘ �N � 0),

 hr2i �
35=4

a3=4
�������
2m
p < hy2i �

3

4a
: (35)

The quark-antiquark separation is smaller than the distance
between the gluon and the center of mass, in agreement
with results of Ref. [31]. This is the hybrid gluelump
picture that we already mentioned in Sec. II, and which
was studied in Ref. [24]. In this case, it is also showed in
Ref. [17] that the heavy hybrid masses are in agreement
with lattice QCD calculations.

Let us point out that the results of this section are strictly
valid in the limit m! 1, like in the case of static quarks
which are considered in lattice QCD. Indeed, even if we set
m � 5 GeV, that is a value slightly above the b quark
mass, relation (35) is not true. We have in this case hr2i �
hy2i.

C. Light hybrid mesons

One of the nice features of our formalism is that it is well
defined for vanishing quark masses. In this case we can
assume that � � �g, since the gluon, the quark and the
antiquark are massless particles. Mass formula (24) then
becomes
 

E��; �� �
a�������
��
p �2n� ‘� 3=2� � a

�������
3

��

s
�N � 3=2�

�
3

2
�� �: (36)

The symmetry of Eq. (36) allows us to use the relation

 3� � 2�: (37)

A numerical solution of mass formula (24) form � 0 gives
�=�g � 0:81 and 3�=2� � 0:93 for the ground state,
whatever the value of a, in quite good agreement with
our approximations. Let us note that they are mostly valid
when the excitation energies of the quarks and the gluon
are similar.

After the minimization of E with respect to � we obtain

 �0 �

����������������������������������������������������������������������������������
a
2

���
3

2

s
�2n� ‘� 3=2� �

3a

2
���
2
p �N � 3=2�

vuut
; (38)

 E2 � 4
���
6
p

a�2n� ‘� 3=2� � a

���
3
p
�N � 3=2��: (39)

This formula predicts that the light hybrid mesons should
exhibit Regge trajectories at large ‘ like the usual light
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mesons. The trajectories corresponding to different values
of N are parallel but differ in their intercept: two succes-
sive trajectories are separated by 25=23a.

Concerning the structure of these hybrid mesons, we can
compute that in the ground state

 hr2i �
3

2a

���
6
p

> hy2i �
3

2a
1���
2
p : (40)

The larger quantity is now clearly the quark-antiquark
separation. The light hybrid meson structure is thus rather
different from the heavy hybrid meson one. In particular,
the picture of a pointlike q �q pair is no longer valid.

We can use formula (39) and (40) to estimate the mass of
the lightest hybrid meson in our model. The ground state
mass is given by E0 � 6:337

���
a
p

GeV. In a first approxi-
mation, the total energy should be given by E � E0 � �E
with

 �E �
�

S
6r
�

3
S
2rqg

�
3
S
2r �qg

�
(41)

encoding the one-gluon exchange processes at the lowest
order [10]. Thanks to relations (21), we have

 x g � xq � �

�������������������
�t

�q �� �q

s
y�

r

2
: (42)

Assuming that jxg � xqj � jxg � x �qj thanks to the sym-
metry of our problem, Eq. (40) implies

 hr2
qgi � hr

2
�qgi �

hr2i

4
�

3hy2i

2
�

2:510

a
: (43)

Thus,

 �E �

S

6
��������
hr2i

p �
3
S����������
hr2
qgi

q : (44)

With the value 
S � 0:4, which was already successfully
used in the description of light mesons [32,33], we find
�E � �0:724

���
a
p

and E � 5:613
���
a
p

. We already pointed
out in Sec. II that the AF method gives qualitative results in
agreement with observations, but overestimates the
masses. The Regge slope is here 4

���
6
p
a. But we can expect

that, at large ‘, the contribution of the constituent gluon
can be neglected with respect to the contribution of the
quark-antiquark pair. Then, the exact slope should be given
by 2�a as in the meson case. As it is proposed in Sec. II,
we can thus rescale the string tension and define a �
2��=4

���
6
p

, with � � 0:2 GeV2 the physical string tension.
We finally obtain

 E � 4:495
����
�
p
� 2:010 GeV (45)

for the lightest hybrid meson.
It is worth mentioning that several approaches, such as

QCD in Coulomb gauge [34], flux tube model [35], and
lattice QCD [36], lead to the conclusion that the lightest

hybrid meson mass is around 2 GeV. Interestingly, this is
close to the recently observed �1�2000� exotic state [6].
However, we stress that, since our model neglects the spin
interactions, the energy (45) is only a rough estimation of
the lightest hybrid mass. As formula (39) does not involve
the spin quantum numbers, its ground state (n � ‘ �
N � 0) could have the following quantum numbers [37]

 JPC � 0��; 1��; 1��; 2��: (46)

These eight states are clearly degenerate in our approach.
Our estimation of the ground state mass should thus be
regarded as a spin-averaged mass of the multiplet (46). The
spin corrections are expected to contribute for at most 10%
of the total mass [37]. Consequently, they have to be taken
into account if one wants to make an accurate comparison
with either lattice or experimental data.

It is interesting to mention that, in the flux tube model,
the lowest hybrid states can have the following quantum
numbers [35]:

 JPC � 0�; 1��; 1�; 2�: (47)

The multiplets predicted by the flux tube model and the
constituent gluon approach are not identical: only six states
on eight are in correspondence. The inclusion of spin
interactions in both approaches would thus lead to different
results, but a detailed comparison of these differences is
out of the scope of this paper.

V. EFFECTIVE TWO-BODY POTENTIALS

After having studied the hybrid mesons as a three-body
system, we would like to connect this model with a two-
body description. More precisely, we would like to absorb
the gluonic degree of freedom into an effective potential
between the quark and the antiquark. To do this, we begin
by averaging the three-body Hamiltonian (22) on the gluon
wave function j gi. We assume that
 

Hq �q��i; �� � h gjH��i; ��j gi

�
p2 �m2

�
���

1

2
�rr

2 �!g�N � 3=2�

�
�g

2
� �: (48)

The first two terms are the kinetic part of a two-body SSH.
Consequently, the other terms are interpreted as the effec-
tive potential between the quark and the antiquark, i. e.

 Vq �q��i; �� �
1

2
�rr

2 �!g�N � 3=2� �
�g

2
� �: (49)

This potential being still dependent of the AF, we have to
carefully remove them. This will be done in the two special
cases we treated previously, namely, the light and heavy
hybrid mesons.
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A. Heavy hybrid mesons

When � � m, the potential (49) only depends on � and
�g. But, following relation (32), �g � 2�. This allows us
to eliminate the gluonic degree of freedom and replace it
by a stringy equivalent. Doing this, � becomes the AF
associated with an ‘‘effective’’ string linking the quark
and the antiquark. We have

 Hq �q��� � 2m�
p2

m
� Vq �q���; (50)

with

 Vq �q��� �
a2r2 � 4a�N � 3=2�

4�
� 2�: (51)

The condition ��Hq �q��� � 0 leads after replacement to

 Vq �q �
���
2
p ���������������������������������������������

a2r2 � 4a�N � 3=2�
q

: (52)

The
���
2
p

factor is clearly unphysical, since the asymptotic
form of Vq �q should be ar [14]. Actually, it is due to the AF
formalism itself, which overestimates the masses, and thus
the potential energies too. As we argued in Sec. II, a
rescaling of the string tension can be performed to find
the correct expression. If we define a � �=

���
2
p

, we have

 Vq �q �
�����������������������������������������������
�2r2 � 25=2�N � E2

h

q
; (53)

with

 E h � 23=4
�������
3�
p

: (54)

A remarkable feature has to be pointed out: The effective
potential (53) is formally equivalent to the one of the
excited flux tube picture (11). This draws a strong analogy
between the gluonic and the string fluctuation degrees of
freedom. The quantum numbers of the gluon, namely
N � 2ny � ‘y, are analog to the string excitation number
N. But the number N can always take the value 0 since Eh
is positive. Moreover, as E was interpreted as the zero point
energy of the transverse string fluctuations, we can inter-
pret Eh as the zero point energy of the string-gluon system.
Indeed, following relations (32) and (33), this zero point
energy, associated with the gluon and the two fundamental
strings, is given by

 2���gjN�0 � 2
������
3a
p

� 23=4
�������
3�
p

� Eh: (55)

This shows that a constituent gluon linked to a heavy
quark and a heavy antiquark by two fundamental strings is
equivalent to an excited string linking the quark and the
antiquark. This string is an effective one; its quantum
numbers and zero energy are those of the corresponding
gluonic field. Let us also remark that 25=2 � 5:66, which is
around the 2� factor obtained with string theory [see
formula (11)].

An estimation of the constituent gluon mass is here
given by �g � Eh=2. For the standard value � �
0:2 GeV2, we obtain 0.651 GeV. This value is close to
the usual ones used in potential models [24,30].

B. Light hybrid mesons

In the case of light hybrids, the situation is slightly more
complex. Equation (37) clearly suggest to replace �g by
2�=3. This can be done in analogy with the heavy hybrid
case. However, in the present case, the Hamiltonian is

 Hq �q��; �� � ��
p2

�
� Vq �q��; ��: (56)

Consequently, � remains present in the effective potential.
Strictly speaking, the effective potential always depends on
the q �q state, but this dependence drops for heavy quarks
since � � m. Vq �q��; �� reads

 Vq �q��; �� �
a2r2

4�
�
a
�

����������������
�� 3�
�

s
�N � 3=2� �

4�
3
: (57)

The elimination of � and � cannot then be performed
analytically. What can be done however is to find the
asymptotic expression of the effective potential. As Vq �q

has to grow like ar for large r, we have indeed

 Vq �q��; �� � V0��� �
a2r2

4�
�

4�
3
: (58)

The minimization of V0 with respect to � gives

 �0 �

���
3
p

4
ar; V0 �

2���
3
p ar: (59)

The scaling a �
���
3
p
�=2 provides the correct behavior in

�r.
The first correction to this potential is given by

 �V �
a
�

����������������
�� 3�
�

s
�N � 3=2�

�
2

r

�������������������
�r� 8�

2�

s
�N � 3=2�: (60)

This term is a kind of generalization of the Lüscher term
(12). The elimination of � from the Hamiltonian

 H0��� �
p2

�
��� V0 (61)

gives [22]

 �n‘ �
����
�
p

�
�n‘
3

�
3=4
; (62)

where �n‘ is an eigenvalue of the dimensionless operator
�q2 � jxj�. Approximated analytical formula for �n‘ can be
found in Refs. [22,38]. As � increases with n and ‘, �V
becomes in this limit very similar to the Lüscher term [15]:
�V � 4�N � 3=2�=r. We see that the light hybrid mesons
are complex systems, and that the corresponding effective
two-body potential is not so easily obtained than in the
heavy hybrid meson case. Such a study deserves numerical
computations that we leave for future works.
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VI. COMPARISON WITH LATTICE QCD

One of the observables in lattice QCD is the potential
energy between a static quark-antiquark pair. Such a pair
can be identified with the q �q pair in heavy hybrid mesons.
It appears that there are several levels of potential energy,
corresponding to different states of the gluon field [1].
These excited states of the gluonic field are labeled by
three quantum numbers. The first one is the excitation
number N. The second one is the magnitude of the projec-
tion � of the total gluon field momentum ~Jg � ~Lg � ~Sg on
the q �q axis. The capital Greek letters �;�;�; . . . are used
to indicate the states with j�j � 0; 1; 2; . . . respectively.
The combined operations of the parity and the C-parity is
also a symmetry. Its eigenvalue is denoted by �CP. States
with �CP � 1��1� are denoted by the subscripts g (u).
There is an additional label for the � states: � states which
are even (odd) under a reflection in a plane containing the
q �q axis are denoted by a superscript � (� ). Many differ-
ent states have been computed in Ref. [2]. Let us note that
the excitation number N used in Ref. [2] is linked to ours
by N �N � 1 and to the Lüscher number by N � NL.
Let us remind that in our model, the number N � 0
corresponds to a hybrid meson ground state, while the
number N � 0 corresponds to an ordinary meson.

We can compare the energy levels of lattice QCD with
those predicted by our model in the limit of heavy hybrid
mesons (infinite quark mass). Following Eq. (53), the
effective two-body potential in a hybrid meson is

 Vq �q �

����������������������������������������������������
�2r2 � 25=2��N � 3=2�

q
: (63)

We can see in Fig. 1 that the simple expression (63) fits
rather well the lattice data. However, this potential is a pure
confinement. The simplest way to include a short range
interaction is to add to Vq �q the effective one-gluon ex-
change potential

 �V �
�
 g

��������
S6r
�

3
S
2rqg

�
3
S
2r �qg

�������� g
�
: (64)

In analogy with formula (41) and using Eq. (42), we can
approximately compute �V, and we obtain

 �V �

S
6r
�

3
S�������������������������
r2

4 �
�N�3=2���

2
p
�

q : (65)

We expressed our results in terms of � instead of a since �
is the physical string tension, and it has to be used instead
of a in the wave function too. As illustrated in Fig. 2, the
addition of the contribution (65) lowers the potential en-
ergy, but the first states are still correctly described. This
last result is in agreement with Ref. [17].

As our model only depends on N , it is not able to
reproduce the splittings between various potentials at short
distances [2]. However, the constituent gluon picture can
provide an intuitive explanation for this fine structure. Let

us consider the N � 0 state. As N � 2ny � ‘y, the only
possibility is ny � ‘y � 0, which corresponds to the �u

state. For N � 1, we can only have ny � 0 and ‘y � 1. A
possible mechanism to explain the short distance splitting
of this state into three levels could be found in the relativ-
istic corrections to the coulomb or the confining terms, that
we neglected here. In particular, one of these corrections is
a spin-orbit term proportional to Lg � Sg [39].
Consequently, for a nonvanishing value of Lg (thus of
‘y), and since the gluon is a spin 1 particle, this spin-orbit
term will split a level into three levels defined by their

 

FIG. 1. Comparison between lattice QCD calculations (sym-
bols) from Ref. [1], and our effective potential Vq �q (63) with
different values of N (dotted lines) for a heavy hybrid meson.
The parameter � � 0:21 GeV2 is fitted on ground state ��g , with
the Funnel potential VF � �r� 4
S=3r. All the potentials are
plotted in terms of the lattice scale r0 � 2:5 GeV�1 and are
shifted by an overall amount VF�2r0�. Only the confining part of
the funnel potential is plotted in this figure. To clarify the graph,
only one of the four lattice states with N � 2 was plotted.

 

FIG. 2. Same as Fig. 1 but the short-range part �V (65) is
added to Vq �q (63). 
S � 0:234 is obtained from a fit of the funnel
potential on the ground state.
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value of Jg � Lg � Sg. Finally, for N � 2, a detailed
lattice study reveals four levels [2]. We expect that one of
them corresponds to ny � 1, ‘y � 0, and that the three
others are ny � 0, ‘y � 1 states with the spin-orbit inter-
action separating them. To check this point, we need to
include the spin structure of the gluon into the computation
of the effective potential. This cannot be done analytically,
and it is leaved for future works.

VII. CONCLUSIONS

In this work, we studied two different pictures of hybrid
mesons, which are both based on a spinless Salpeter
Hamiltonian with a linear confinement. In particular, we
applied the auxiliary fields technique to obtain analytical
mass formula and wave functions of our models.

The first framework describing a hybrid meson is the
excited flux tube. It relies on the idea that the flux tube (a
Nambu-Goto string) linking the quark and the antiquark is
not in its ground state, but in an excited one due to possible
quantum fluctuations of the string. The excited string ap-
proach has been widely discussed in the literature (see, for
example, Refs. [14,15]). In particular, it can be shown that
the interquark confining potential in this approach is of the
form V�r� �

����������������������������������������
a2r2 � 2�aN � E2
p

. Fundamental string
theory states that E2 � ��a=6 to preserve the Lorentz
invariance at the quantum level. However, we argued in
this study that since we are dealing with an effective string
theory, we should rather look at the physical content of E2.
As it can be interpreted as the square zero point energy of
the string fluctuations, we proposed to consider E as the
square zero point energy of the gluonic field, which is
simulated in a simplified way by the string.
Consequently, we are led to the conclusion that the usual
value of E2 is not the best one for our purpose.

A second picture assimilates the hybrid meson to a
three-body quark-antiquark-gluon bound state. The con-
stituent gluon is then linked to the quark and the antiquark
by two fundamental strings [10,17]. Thanks to the auxiliary

fields technique, we have been able to find an analytic
expression for this three-body system in the case of heavy
and light hybrid mesons. In this last case, we found for the
mass scale of the lightest hybrid mesons a value close to
2 GeV. This is in agreement with other effective models
[34,35] and with lattice QCD computations [36].

An interesting question is: how could the constituent
gluon approach be reduced to a two-body model (only the
quark and the antiquark) with an effective potential simu-
lating the effect of the constituent gluon? In the heavy
hybrid meson sector, we showed that the effective potential
has the form of the excited flux tube interaction, with the
gluon quantum numbers (2ng � ‘g) corresponding to the
string excitation number N . Moreover, the zero point
energy of the excited flux tube, denoted as E, is equal to
the zero point energy of the heavy q �qg system, when the
q �q energy is subtracted. Consequently, the constituent
gluon picture is in this case equivalent to an effective string
theory. In the light hybrid meson sector, the effective
potential crucially depends on the quark-antiquark state,
and only an asymptotic expression can be derived. This
asymptotic expression is similar to the Lüscher term, but is
now state dependent. It becomes universal only for highly
excited quark-antiquark states.

Finally, we compared our results with lattice QCD pre-
dictions concerning the gluonic field energy levels [1,2].
We find a good general agreement, but our model fails to
describe the fine structure appearing at short distances. We
argued that it was due to the fact that we did not take into
account the gluon spin. Indeed, we showed by intuitive
arguments that the spin-orbit interaction of the gluon
should be able to roughly explain this fine structure, at
least for the first excited states. The inclusion of the spin
structure of the q �qg system is thus a very interesting
problem, which requires further investigations. Such a
work is in progress.
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P. Weisz, J. High Energy Phys. 07 (2004) 014.
[28] L. Brink and H. B. Nielsen, Phys. Lett. 45B, 332 (1973).
[29] S. Deldar, Phys. Rev. D 62, 034509 (2000); G. S. Bali,

Phys. Rev. D 62, 114503 (2000); C. Semay, Eur. Phys. J. A
22, 353 (2004).

[30] F. Buisseret and C. Semay, Phys. Rev. D 73, 114011
(2006).

[31] S. D. Glazek and A. P. Szczepaniak, Phys. Rev. D 67,
034019 (2003).

[32] F. Brau and C. Semay, Phys. Rev. D 58, 034015 (1998).
[33] L. P. Fulcher, Phys. Rev. D 50, 447 (1994).
[34] F. J. Llanes-Estrada and S. R. Cotanch, Phys. Lett. B 504,

15 (2001); I. J. General, S. R. Cotanch, and F. J. Llanes-
Estrada, hep-ph/0609115.

[35] J. Merlin and J. Paton, Phys. Rev. D 35, 1668 (1987).
[36] C. Bernard et al., Phys. Rev. D 56, 7039 (1997); Z.-H. Mei

and X.-Q. Luo, Int. J. Mod. Phys. A 18, 5713 (2003).
[37] Yu. S. Kalashnikova and Yu. B. Yufryakov, Yad. Fiz.

60N2, 374 (1997) [Phys. At. Nucl. 60, 307 (1997)].
[38] S. K. Bose, A. Jabs, and H. J. W. Müller-Kirsten, Phys.

Rev. D 13, 1489 (1976).
[39] Yu. S. Kalashnikova and D. S. Kuzmenko, Yad. Fiz. 67,

556 (2004) [Phys. At. Nucl. 67, 538 (2004)].

FABIEN BUISSERET AND CLAUDE SEMAY PHYSICAL REVIEW D 74, 114018 (2006)

114018-10


