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We analyze the consequences of the inclusion of the gluonic Polyakov loop in chiral quark models at
low temperature in the light of chiral perturbation theory. Specifically, the low-energy effective chiral
Lagrangian from two such quark models is computed. The tree level vacuum energy density, quark
condensate, pion decay constant, and Gasser-Leutwyler coefficients are found to acquire a temperature
dependence. This dependence is, however, exponentially small for temperatures below the mass gap in the
full unquenched calculation. The introduction of the Polyakov loop and its quantum fluctuations is
essential to achieve this result and also the correct large Nc counting for the thermal corrections. We find
that new coefficients are introduced at O�p4� to account for the Lorentz breaking at finite temperature. As
a byproduct, we obtain the effective Lagrangian which describes the coupling of the Polyakov loop to the
Goldstone bosons.
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I. INTRODUCTION

At zero temperature, confinement and spontaneous
breaking of chiral symmetry emerge as distinct features
of QCD. This explains the absence of free quarks and
gluons as well as the observed mass gap in the hadron
spectrum between the pseudoscalar mesons and the rest of
particles and resonances. At a given critical temperature,
lattice simulations predict a deconfinement phase transi-
tion where chiral symmetry is simultaneously restored (for
reviews and recent results see e.g. Ref. [1– 4] and refer-
ences therein). This remarkable coincidence between the
deconfinement and chiral phase transitions remains so far
unexplained from the theoretical side. Nevertheless, there
are two extreme limits where each of the phase transitions
can be characterized by an order parameter. For extremely
light quarks, the quark condensate is used as an order
parameter for the chiral phase transition where one goes
from a nonvanishing to a vanishing value across the phase
transition. In the opposite limit of infinitely heavy quarks,
the deconfinement phase transition can be characterized by
a breaking of the center symmetry of the gauge group and
the order parameter is the Polyakov loop which evolves
from a vanishing value to unity above the critical tempera-
ture. The real situation for light quarks is in between but
one still observes sudden changes both in the chiral con-
densate as well as in the Polyakov loop. In the present
paper we want to address in a quantitative manner a rather
remarkable feature that arises at low temperatures in quark
models when the chiral flavor symmetry and color gauge
center symmetry are jointly considered.

Besides the existence of a mass gap, a further outstand-
ing consequence of spontaneous chiral symmetry breaking
is that the would-be Goldstone bosons interact weakly at

low energies and effective field theory methods such as
chiral perturbation theory (ChPT) [5,6] (for a review see
e.g. Ref. [7] and references therein), can successfully be
applied in terms of unknown low-energy constants (LEC’s)
which cannot be explained on the basis of the symmetry
alone. This implies neglecting the explicit effects of states
about the mass gap which in the case of two flavors might
be identified with the scalar or vector meson masses, and
limits the maximum energy at which standard ChPT may
confidently be applied. Actually, the bulk of the values of
the LEC’s can be saturated by the low-energy contribution
stemming from the exchange of resonances located in the
mass gap region. At finite, but low, temperatures the phys-
ics of QCD is believed to consist of a gas of heated hadrons
and one still expects the dominant role to be played by the
pseudoscalar mesonic thermal excitations [8–10]; effects
of resonances are exponentially suppressed by a Boltz-
mann factor in the mass gap e�m�=T . Obviously, the appli-
cability of such an approach requires that there still be a
mass gap and that confinement still holds. This entitles, in
particular, to consider the LEC’s of the chiral Lagrangian
as temperature independent couplings and finite (low)
temperature model independent predictions are deduced
[11–17]. From this point of view finite temperature ChPT
provides a strong theoretical constraint on the QCD phys-
ics well below the phase transition. Extrapolations based
on ChPT suggest a melting of the condensate. However, it
is unclear whether this vanishing meets the very require-
ment of a phase transition regarding the quark condensate.
Moreover, such a purely hadronic based description can
never account, by construction, for the deconfinement
phase transition expected from lattice simulations [1].

As already mentioned, the deconfinement phase transi-
tion can be characterized for infinitely heavy quarks by a
breaking of the center symmetry of the color gauge group.
The interplay between this center symmetry and chiral
symmetry requires explicit consideration of quark degrees
of freedom and can quantitatively be assessed in chiral

*Electronic address: emegias@ugr.es
†Electronic address: earriola@ugr.es
‡Electronic address: salcedo@ugr.es

PHYSICAL REVIEW D 74, 114014 (2006)

1550-7998=2006=74(11)=114014(16) 114014-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.114014


quark models where the spontaneous chiral symmetry
breaking is implemented (see e.g. Ref. [18] for a review
and references therein) and the mass gap can be identified
as twice the constituent quark massM. Chiral quark model
Lagrangians are invariant under the flavor chiral group
SUR�Nf� � SUL�Nf� and have often been used to provide
some semiquantitative understanding of hadronic features
in the low-energy domain. In addition, at zero and finite
temperature the standard chiral quark models are invariant
under global SU�Nc� transformations. At some critical
temperature chiral quark models predict already at the
one loop level a chiral phase transition [19,20] at realistic
temperatures. Pion corrections where first considered in
Ref. [21] (for a review see e.g. Ref. [22]). This has been
traditionally considered a big phenomenological success
for these models, but they suffer from the unphysical
contribution of states which are not color singlets, so that
even at lowest temperatures the hot environment corre-
sponds to a plasma of multiquarks, characterized by
Boltzmann factors�e�nM=T and not color neutral hadronic
states [23]. This unphysical feature can be avoided by
noting the relevance of large and local SU�Nc� gauge
invariance at finite temperature. Basically, this corresponds
to include nonperturbative finite temperature gluons.
Based on previous works [24–26] (see also Refs. [27–
30]) we have discussed at length [23] how large gauge
invariance can be efficiently implemented by the coupling
of the Polyakov loop to the standard chiral quark models
hence providing a cooling mechanism to the chiral-
deconfinement phase transition in such a way that the
melting of the chiral condensate is shifted to higher tem-
perature values although with large uncertainties. An in-
crease in the critical temperature is in fact required by
recent lattice results [4] where the quoted value is Tc �
192�7��4� MeV for 2� 1 flavors. Without Polyakov loop
coupling the classical chiral quark model value was about
150 MeV, and in [23] this value becomes 250� 50 MeV
(for two light flavors). The overshooting of the central
value is presumably due to a lack of feedback of the quarks
on the gluonic action, which would eventually make less
efficient the Polyakov cooling mechanism. Although
Polyakov-chiral quark models might be improved along
these lines by suitable refinement of the gluonic action,
given the estimated uncertainties, it is not obvious whether
the discrepancy is significant, and in any case the region of
low temperatures would hardly be affected. This is due to
the dominance of the group integration measure, as already
discussed in great detail in Ref. [23] (see also below).

The coupling of QCD distinctive order parameters at
finite temperature to hadronic properties has been the sub-
ject of much attention over the recent past [24,26,31–34].
Effective actions for the Polyakov loop as a confinement-
deconfinement order parameter have been proposed be-
cause of their relevance in describing the phase transition
from above the critical temperature [35–38]. These works

focus naturally on the phase transition, but do not inves-
tigate the relation to well established low temperature or
large Nc constraints within ChPT at finite temperature.
Actually there is a challenge of simultaneously accounting
for a phase transition and complying to ChPT at low
temperatures.

The Polyakov-chiral quark models, unlike ChPT, are
known to predict a rapid change of the mass gap as well
as a sudden rise of the Polyakov loop expectation value at
about the same temperature [33], complying on a semi-
quantitative level to lattice QCD simulations [39,40].
Given this successful link between (flavor) chiral and
(color) center symmetries, it is intriguing how the
Polyakov loop couples to the lightest Goldstone bosons
at low energies, and what is the net effect at low tempera-
tures in the effective chiral Lagrangian. In the present
paper we analyze these issues. Amazingly, the inclusion
of Polyakov loops, a color source, at a quantum level [23]1

reproduces the expectations of low temperature ChPT
based on the existence of a mass gap, namely, the tree
level coefficients of the chiral Lagrangian are exponen-
tially suppressed in the mass gap. This supports the ChPT-
expected dominance of pion fluctuations at low tempera-
tures, and as we will show, the large Nc behavior is the
correct one. Thus Polyakov-chiral quark models not only
provide a physical picture, but can also be regarded as an
interpolating description between ChPT on the low
temperature-low-energy side and lattice data around the
critical temperature, when the quantum and local nature of
the Polyakov loop is taken into account.

The paper is organized as follows. In Sec. II we describe
shortly the Polyakov-chiral quark models, and more spe-
cifically the simplest version of them. In Sec. III we set up
the calculational framework of the low-energy chiral
Lagrangian at finite temperature and display already the
general structure of the main result. In Sec. IV we use the
technique of heat kernel expansion at finite temperature
with Polyakov loops and the associated large gauge invari-
ance is preserved. This enables the calculation of the
effective Lagrangian in terms of the Polyakov loop and
pseudoscalar mesons as basic and independent degrees of
freedom. In Sec. V we go further and integrate over the
Polyakov loop variable in a gauge invariant manner, pro-
viding the form of the effective (tree level) Lagrangian of
ChPT at finite temperature. Finally, in Sec. VI we summa-
rize our conclusions.

II. POLYAKOV-CHIRAL QUARK MODELS

In this section we review the coupling of the Polyakov
loop to chiral quark models as a quantum and independent

1All other existing implementations [24–30] of the Polyakov-
chiral quark models are carried out at the mean field level. See
discussion in Ref. [23] on the advantages and shortcomings of
such an approximation.
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variable as suggested in previous work [23–26]. We follow
Ref. [23] for the basic ingredients involved in the construc-
tion of such a model. Since the coupling to quarks is rather
universal we will restrict ourselves to the simplest chiral
model, namely, a constituent quark model (CQ). The cor-
responding Lagrangian reads2

 L CQ � �q�i@6 � v6 f � a6 f�5 �MU
�5 � M̂0�q �: �qiDq;

(2.1)

where q � �u; d; s; . . .� represents a quark spinor with Nc
colors and Nf flavors. M̂0 � diag�mu;md;ms; . . .� stands

for the current quark mass matrix. The symbols �vf�; a
f
��

denote external vector and axial-vector fields, in flavor
space. M is the constituent quark mass and U � ei

��
2
p

�=f�

(f� being the pion weak decay constant in the chiral limit)
is the flavor matrix representing the pseudoscalar octet of
mesons in the nonlinear representation:

 � �

1��
2
p �0 � 1��

6
p � �� K�

�� � 1��
2
p �0 � 1��

6
p � K0

K� �K0 � 2��
6
p �

0
BB@

1
CCA: (2.2)

For vanishing current quark masses LCQ is invariant under
local U�Nf�R � U�Nf�L transformations. In addition there
is a global SU�Nc� symmetry.

After formally integrating out the quarks one gets the
effective action

 �CQ � �iTr log�iD� �
Z
d4xL��x�; (2.3)

where the corresponding Lagrangian, L��x�, has also been
introduced. We use Tr for the full functional trace, trf
stands for the trace in flavor space, and trc for the trace
in color space. The ultraviolate divergences introduced by
the functional determinant can be conveniently handled by
the Pauli-Villars method. Let us note that the issue of
regularization is not so crucial in the present case, T 	
� [20], since the divergences affect only the zero tempera-
ture contributions [41,42].

The chiral quark model coupled to the Polyakov loop
corresponds to introducing a non trivial color component
of the vector field in the temporal direction

 vf� ! vf� � vc�; vc� � ��0v
c
0 (2.4)

in the Dirac operator, Eq. (2.1). The field vc0�x� acts as a
chemical potential in color space [26]. Upon Wick rotation
to pass to imaginary time (which we use to introduce finite
temperature) this field gives rise to the Polyakov loop

 �� ~x; x4� � T exp
�
i
Z x4��

x4

dx04v
c
4� ~x; x

0
4�

�
; (2.5)

where T indicates the Euclidean temporal ordering and
� � 1=T. The Polyakov loop plays an important role as an
order parameter for the deconfinement transition. In the
present context it appears quite naturally, since as shown in
Refs. [43,44] a generic effective action with gauge fields at
finite temperature will depend not only on the standard
zero temperature local gauge covariant operators On�x�
constructed with the covariant derivative, but also on the
Polyakov loop ��x� as a new finite temperature gauge
covariant operator. Specifically, at the one loop level the
effective Lagrangian takes the generic form [44]

 L �x� �
X
n

tr
fn���On�: (2.6)

In the Polyakov-chiral quark model the partition func-
tion takes the form

 Z �
Z
DUD�ei�G
��ei�CQ
U;��; (2.7)

where DU is the Haar measure over the flavor group
SU�Nf� (actually, the product of local Haar measures)
and D� is essentially the Haar measure of the color group
SU�Nc� (see however Sec. V), �G is the effective gluon
action whereas �CQ stands for the quark effective action in
Eq. (2.3). The model is motivated by the underlying idea
that all zero temperature gluon degrees of freedom have
been integrated out to yield the constituent quark mass,
leaving unintegrated the Polyakov loop as the only specifi-
cally finite temperature gluonic degree of freedom. Ideally
�G
�� would be the result of such a partial integration in
pure gluodynamics. The Polyakov loop integration imple-
ments the gauge invariant integration over the vc0 field [45].
Since gluons are vector fields, no color axial-vector com-
ponent is introduced in Eq. (2.4).

As discussed in [23] the integration over the Polyakov
loop coupled to quarks suppresses unwanted colored quark
states and mimics the confinement mechanism within the
quark model. Note that the Polyakov loop measure
D�ei�G
�� preserves center symmetry, i.e., invariance
under ’t Hooft transformations [46] under which �!
z�, with zNc � 1. This symmetry is preserved by hadrons
but not by quarks. In the Polyakov-chiral quark model
picture, as a valence quark propagates at finite temperature,
one can at any place insert a path starting and ending at the
same point x which winds a number n of times around the
thermal cylinder, picking up a factor h����ni that goes
with the propagator factor e�jnjM=T (modulo subleading
polynomial corrections). In the presence of sea quarks
there are further thermal windings, giving roughly (being
L the number of sea quark loops)

 h����n�n1�����nLie��jnj�jn1j�����jnLj�M=T: (2.8)

The average over the gauge group is that for a pure Yang-
Mills theory and so preserves triality in the confined phase
that we are considering, i.e., n� n1 � � � � � nL must be a

2In Minkowski space we will use Bjorken-Drell conventions
throughout the paper.
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multiple ofNc. ForNc  3, the leading thermal corrections
comes from contributions of the form n � �n1 � 1, n2 �
. . . � nL � 0. This describes a thermal q �q pair, with a
propagator factor e�2M=T . Taking into account quark inter-
actions the leading thermal corrections will be of the type
e�m�=T , being the pion the lightest meson.

A remaining technical point deserves comment. As
noted above the presence of the Polyakov loop in the
effective action is an inescapable consequence of having
a gauge theory at finite temperature. So in addition to the
standard color Polyakov loop, there will be also Polyakov
loops associated to the vector and axial-vector flavor ex-
ternal fields. Such chiral Polyakov loops take the form

 �R;L�x� � T exp
�
i
Z x4��

x4

dx04�v
f
4� ~x; x

0
4� � a

f
4� ~x; x

0
4��

�
;

(2.9)

and they appear automatically in any gauge invariant one
loop computation at finite temperature. Such operators (as
well as the vector flavor Polyakov loop) would introduce
interesting new effects such as center symmetry in flavor
space, preserved by mesons but not necessarily by baryons,
depending on the number of flavors. Since spin 1 mesons
are relatively heavy we do not expect the flavor Polyakov
loops to be essential in the low temperature regime to be
studied in this work, so it will be disregarded in what
follows. Nevertheless they could play a more active role
near the transition temperature.

III. THE STRUCTURE OF THE LOW-ENERGY
CHIRAL LAGRANGIAN AT FINITE

TEMPERATURE

As already shown in previous works at zero temperature
[47–50] (see e.g. [51] for an updated list of references)
chiral quark models may provide a quantitative and micro-
scopic understanding of the structure of the low-energy
effective Lagrangian of ChPT for the pseudoscalar mesons
at tree level, namely, providing numerical values for the
leading Nc contributions to the low-energy constants
(LEC’s). In such a framework, external currents are mini-
mally coupled at the level of the more microscopic quark
degrees of freedom. On top of this, meson loops would
provide subleading 1=Nc contributions to the LEC’s in
addition to the standard unitarity corrections of ChPT [52].

In this section we extend the zero temperature results to
the finite temperature case and consider also the influence
of the Polyakov loop in the scheme described in the
previous section. More explicitly, the partition function
in Eq. (2.7) can be written as

 Z �
Z
DUD�ei�G
��ei

R
d4xL��x� (3.1)

and then

 Z �
Z
DUei

R
d4xL��x�: (3.2)

The Lagrangian L��x� is obtained after integration of the
quarks (see Eq. (2.3)) and depends on the fields U�x� and
��x�. The traditional CQ model can be recovered from the
full Lagrangian L��x� by setting � � 1 and leaving out
the ��x� integration. In such a case one would obtain the
ChPT Lagrangian at finite temperature corresponding to
the CQ model without coupling to the Polyakov loop.3 If
the Polyakov loop is retained, as done in this work, L��x�
provides also the coupling of Goldstone mesons to the
Polyakov loop field, and interesting subject by itself.4

The computation of L��x� can be carried out by follow-
ing the methods developed in Ref. [43,44] and already
applied to QCD in Ref. [53]. The procedure is detailed in
the next section. It is worth noticing that L��x�, either
directly, after setting � � 1, or averaged over the
Polyakov loop, represents a one quark-loop result and
hence a quenched approximation to the chiral Lagrangian.

Integration over the Polyakov loop field in Eq. (3.1)
gives the (unquenched) finite temperature ChPT
Lagrangian of the model, denoted L��x�, which is the
main purpose of this work. In ChPT at finite temperature
it is usually assumed that the corresponding low-energy
constants are temperature independent [8] (see also
Refs. [16,54]). This is a quite natural assumption because
the applicability of ChPT is based on the existence of a
mass gap between the Goldstone bosons and the rest of the
hadronic spectrum. For nonstrange mesons the gap is
provided by the � meson mass MV , so one expects the
temperature dependence of the LEC’s to be of the order of
e�MV=T . In a chiral quark model, however, the pseudoscalar
mesons are composite particles of constituent quarks of a
mass M, and the finite temperature also influences their
microscopic quark substructure. As a consequence the
LEC’s become temperature dependent of the order
e�2M=T . Our calculation below makes these remarks quan-
titative and also provides an understanding on how the
Polyakov loop cooling mechanism works in favor of the
ChPT expectations at finite temperature.

Although the calculation is straightforward, reducing
effectively to evaluation of Dirac and flavor traces, it is
technically involved so we discuss here the structure of the
final result for the general case. More details will be
elaborated in the next sections.

The low-energy effective Lagrangian written in the
Gasser-Leutwyler [5] notation and in Minkowski space
reads as follows (we often use an asterisk as upperscript

3This is obtained as a byproduct of our calculation. For such a
calculation at zero temperature see Refs. [47–51].

4It is not clear, however, how such an effective Lagrangian
could be formulated in a model independent way since in QCD
the Polyakov loop is renormalized and in general it will lie
outside the SU�Nc� manifold.
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for finite temperature quantities),

 L ��0��x� � B�; (3.3)

 L ��2��x� �
f�2�
4

trf�D�UyD�U� �yU� �Uy�; (3.4)

 

L��4��x� � L�1�trf�D�UyD�U��2 � L�2�trf�D�UyD	U��2 � L�3 trf�D�UyD�UD	UyD	U�

� �L�3 trf�D0U
yD0UD�U

yD�U� � L�4 trf�D�U
yD�U� trf��

yU� �Uy� � L�5 trf�D�U
yD�U��yU�Uy���

� �L�5 trf�D0UyD0U��yU�Uy��� � �L0�5 trf��D0D0Uy � �yD0D0U� � L�6�trf��
yU� �Uy��2

� L�7�trf��
yU� �Uy��2 � �L0� trf�U

yD0D0U�UD0D0U
y� trf��

yU� �Uy�

� L�8 trf��yU�yU� �Uy�Uy� � iL�9 trf�FR�	D�UyD	U� FL�	D�UD	Uy�

� i �L�9 trf�ERi �D0UyDiU�DiUyD0U� � ELi �D0UDiUy �DiUD0Uy��

� i �L0�9 trf�D0E
R
i U
yDiU�D0E

L
i UDiUy� � L�10 trf�U

yFL�	UF
�	R� �H�1 trf��F

R
�	�

2 � �FL�	�
2�

� �H�1 trf��ERi �
2 � �ELi �

2� �H�2 trf��y��: (3.5)

Here, trf means flavor trace and we have introduced the
standard chiral covariant derivatives and gauge field
strength tensors,

 

D�U � DL
�U�UDR

� � @�U� iVL�U� iUVR�;

Fr�	 � i
Dr
�;Dr

	� � @�Vr	 � @	Vr� � i
Vr�; Vr	�;
(3.6)

with r � L, R, and VR;L� � vf� � a
f
�. Finally, as at zero

temperature, we have normalized the explicit chiral break-
ing field � � 2B�0M̂0 so that L��2� takes a standard form.
This introduces a LEC B�0 � jh �qqi

�j=f�2� , where h �qqi� is
the quark condensate for one flavor at finite temperature.

The general form of the chiral low-energy effective
Lagrangian, Eq. (3.5), requires some remarks. As we see
there are terms which can be written as the zero tempera-
ture Lagrangian but with temperature dependent effective
couplings. In addition, we also have new terms, which due
to the finite temperature generated by a heat bath at rest,
necessarily break Lorentz invariance. This feature was al-
ready pointed out in [44]. The remarkable, not yet under-
stood, feature is that there appear less terms breaking the
Lorentz symmetry than one might naively suggest (for
instance a term of the type trf�D0UyD0U� is missing).
Thus, some accidental symmetry may be at work and it
would be interesting to find it explicitly.

Although the form of the Lagrangian is quite general,
the particular values of the low-energy coefficients obvi-
ously depend on the specific model. We will consider two
particular chiral quark models: the constituent quark model
and the spectral quark model [55]. The results for the latter
model will be presented in Appendix B, and we concen-
trate on the CQ model in the following sections.

IV. HEAT KERNEL EXPANSION AT FINITE
TEMPERATURE IN THE PRESENCE OF

POLYAKOV LOOPS

The calculation of the effective chiral Lagrangian of
Eqs. (3.3)–(3.5) can be divided into several steps. First,
we construct a Klein-Gordon operator out of the Dirac
operator and its adjoint for the nonanomalous part of the
effective action. After a generalized proper-time represen-
tation we are naturally lead to a heat kernel of the Klein-
Gordon operator, for which a heat kernel expansion is
particularly suited. This identification allows to directly
apply the results of Refs. [44,53] and to work out the traces
after applying some relevant matrix identities which re-
duce the number of independent operators. Finally, the
equations of motion are also considered to take into ac-
count that the pion fields are on the mass shell. In the
present section we assume a fixed value of the Polyakov
loop. This provides L��x� of (3.1). In Sec. V the Polyakov
loop integration will be addressed, to yield the unquenched
chiral Lagrangian L��x� of Eq. (3.2).

In this section and the next one we revert to Euclidean
space, x4 � ix0, since it is much more convenient for
calculations at finite temperature in the imaginary time
formalism. The partition function is numerically un-
changed, but takes the form

 Z �
Z
DUe�

R
d4xL��x� �Euclidean�: (4.1)

Likewise, the low-energy coefficients are also unchanged.
See e.g.,
 

L��0��x� � �B� �Euclidean�;

L��2��x� �
f�2�
4

trf�D�UyD�U� �yU� �Uy�;

with the same values of B�, f��, etc.
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A. The effective Klein-Gordon operator

The Dirac operator appearing in the fermion determinant
behaves covariantly under chiral transformations. This
implies that, in principle, one has to consider both vector
and axial-vector couplings. A great deal of simplification is
achieved if the conventions of Refs. [56,57] are considered,
where it is shown that it suffices to carry out the calculation
in the simpler case of a vectorlike coupling and then
reconstruct the total chiral invariant result in a suitable
way.

Let us hence consider the following Dirac operator with
a vectorlike coupling,5

 D � 6D� h; h � m� z; (4.3)

where h includes the pion field m, which we take O�p0� in
the chiral counting, and the chiral symmetry breaking mass
term z which we take O�p2�. We also introduce the follow-
ing useful notation

 mLR � MU; mRL � MUy; (4.4)

 zLR �
1

2B�0
�; zRL �

1

2B�0
�y; (4.5)

where � has been introduced after Eq. (3.6). (In the nota-
tion of Refs. [56,57], the symbol m is to be interpreted as
mLR or mRL depending on its position in the formula, and
similarly for the other vectorlike symbols.) It is convenient
to introduce the adjoint Dirac operator

 D y � �6D� h: (4.6)

This definition allows us to separate the effective action
into �5-even and �5-odd components, corresponding to
normal and abnormal parity processes, since they corre-
spond to the real and imaginary parts of the Euclidean
effective action, respectively, (see e.g. Ref. [58]).

We will focus on the normal parity component of the
effective action, which from Eq. (2.3) is formally given by

 ��CQ � �
1

2
Tr log�DyD� �:

Z �

0
dx4

Z
d3xL��x�; (4.7)

with the relevant Klein-Gordon operator
 

DyD � �D2
� �

i
2

�	F�	 � ��D�h� z

2 � fm; zg �M2:

(4.8)

We use the notation D�h � 
D�; h�. The field strength
tensor is defined as F�	 � i
D�;D	�. The operator DyD
is of the Klein-Gordon type, with mass term

 

i
2

�	F�	 � ��D�h� z

2 � fm; zg �M2: (4.9)

Therefore a heat kernel expansion becomes appropriate.
After a (generalized) proper-time regularization, the effec-
tive Lagrangian in Euclidean space becomes

 L��x� �
1

2

Z 1
0

d�
�
���� trhxje��DyDjxi

�
1

2

Z 1
0

d�
�
����

e��M
2

�4���2
X
n

�n tr�b�n�x��: (4.10)

This proper-time representation has been chosen to accom-
modate the Pauli-Villars regularization as used in e.g.
Ref. [48],

 ���� �
X
i

cie���2
i ; c0 � 1; �0 � 0; (4.11)

but still using full advantage of the heat kernel. The con-
ditions

P
ici�

n
i � 0, for n � 0, 2, 4, allow to render finite

the logarithmic, quadratic and quartic divergencies, respec-
tively. To O�p4� terms we obtain the following contribu-
tions for the thermal Seeley-DeWitt coefficients [44,53]
after the Dirac trace has been implemented,
 

b�0 � 4’0���;

b�1=2 � 0;

b�1 � �4’0����fm; zg � z2�;

b�3=2 � 0;

b�2 � 2’0�����m��
2 � fm�; z�g � fm; zg2 �

1
3F

2
�	�

� 2
3 �’2���E2

i �O�p6�;

b�5=2 � O�p5�;

b�3 � �
2
3’0����m�fm�; fm; zgg � fm; zg�m��

2

� ifF�	;m�m	g � im�F�	m	 �
1
2�m�	�

2�

� 1
3 �’2����m4��

2 �O�p5�;

b�7=2 � O�p5�;

b�4 �
1
6’0�����m��

4 �m��m	�
2m� � �m�m	�

2�

�O�p5�: (4.12)

In these formulas Ei � F4i is the ‘‘electric field’’ and a
notation of the type X�	 has been used to mean
D�D	DX � 
D�; 
D	; 
D; X���, e.g. m4� � D4D�m,
F�	 � DF�	. The functions ’0 and �’2 are defined in
Appendix A.

Note that, in principle, sinceD� contains both flavor and
color gauge fields, the Polyakov loop and the field strength
tensor F�	 (and derivatives) in the heat kernel coefficients
will also contain flavor and color contributions. As ex-
plained before in the Polyakov loop we retain only its color
part. In addition, in the strength tensor and derivatives we
keep only the flavor part. This neglects some gluonic
corrections. This kind of QCD corrections have been con-
sidered for instance in Ref. [49] for the Nambu-Jona-

5Dirac gammas in Euclidean space are taken Hermitian, and
���	 � ��	 � 
�	.
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Lasinio (NJL) model. We disregard them in the present
treatment since they are not specific of finite temperature.

B. Effective Lagrangian

The effective Lagrangian can be written as

 L��x� � L�0�� �x� �L�2�� �x� �L�4�� �x� � � � � ; (4.13)

where L�n�� is of O�pn�. Making use of the expression
(4.10), the flavor trace of the Seeley-DeWitt coefficients
obtained in Eq. (A10) and after evaluating the proper-time
integrals using the Pauli-Villars regularization (see
Appendix A), we get for the Lagrangian L��x� an expres-
sion formally identical to (the Euclidean version of) that in
(3.3)–(3.5), except that the coefficients depend on the
Polyakov loop, that is, B���� instead of B�, etc.

At zeroth order one finds

 B���� � �
2NfM4

�4��2
trcI�4���: (4.14)

The second order gives

 f�2� ��� �
M2

4�2 trcI0���: (4.15)

Note that we have not yet averaged over the Polyakov loop
and the (Polyakov loop independent) normalization con-
stant B�0 (needed to fix the definition of �) is determined
after this average, as we will explain in the next section.
However the combination �=2B�0 � M̂0 is unambiguous. It
contributes to L�2�� (Euclidean) with

 �
M3

�4��2B�0
trcI�2��� trf��

yU�Uy��: (4.16)

For the fourth order one obtains

 L�1��� �
1

24�4��2
trcI4���; (4.17)

 L�2��� � 2L�1���; (4.18)

 L�3��� � �8L�1��� �
1
2L
�
9���; (4.19)

 

�L �3��� � �
1

6�4��2
trc �I2���; (4.20)

 L�4��� � 0; (4.21)

 L�5��� �
M

2B�0

�
f�2� ���

4M2 � 3L�9���
�
; (4.22)

 

�L �5��� � �L0�5 ��� �
1
2

�L�3���; (4.23)

 L�6��� � 0; (4.24)

 L�7��� �
1

8Nf

�
�
f�2� ���
2B�0M

� L�9���
�
; (4.25)

 

�L 0���� � �
1

4Nf
�L�3���; (4.26)

 L�8��� �
1

16B�0

�
1

M
�

1

B�0

�
f�2� ��� �

1

8
L�9���; (4.27)

 L�9��� �
1

3�4��2
trcI2���; (4.28)

 

�L �9��� � �L0�9 ��� � � �L�3���; (4.29)

 L�10��� � �
1
2L
�
9���; (4.30)

 H�1��� � �
f�2� ���

24M2 �
1

4
L�9���; (4.31)

 

�H �1��� � �
1

6�4��2
trc �I0���; (4.32)

 H�2��� � �
f�2� ���

8B�20

�
1

4
L�9���: (4.33)

Note that all new Lorentz breaking terms, except �H�1, are
proportional among them. On the other hand, the standard
Gasser-Leutwyler coefficients can be expressed in terms of
f�2� , B�0, L�1 and L�9 or, equivalently, in terms of the integrals
trcIn for n � �2, 0, 2, 4, which are computed in
Appendix A.

V. POLYAKOV LOOP INTEGRATION

A. Color group averaging

In order to proceed to the computation of the chiral
(Euclidean) Lagrangian we need to carry out the
Polyakov loop integration

 e�
R
d4xL��x� �

Z
D�e��G
��e�

R
d4xL��x�: (5.1)

To this end we can take advantage of the chiral counting to
expand the exponential with L��x� to fourth order. There
is an obstruction, however, since L�0�� will appear to all
orders, making it difficult to take the Polyakov loop aver-
age. To sort this problem in the low temperature regime, we
introduce a further thermal counting, in addition to the
chiral one. The thermal counting suppresses terms which
become irrelevant at low temperatures and so it is compat-
ible with the chiral expansion.

The thermal counting is defined as follows. L��x�
comes from one quark-loop. As noted at the end of
Sec. II, any such loop will wind ‘ times around the thermal
cylinder (in imaginary time). Paths with ‘ � 0 give the
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zero temperature Lagrangian L0 which depends on U but
not on �. The other paths pick up a factor trc
����‘�
which is accompanied by a suppression factor (at low
temperature) of the order of e�j‘jM=T from the quark propa-
gator. They give the thermal component of the Lagrangian.

 L ��x� � L0�x� �
X
‘1

L‘�x�: (5.2)

In this thermal counting the terms are ordered by the
number ‘ of Polyakov loops they carry with trc
����‘�
as order j‘j. The discussion of the incidence of the gluonic
part of the action �G
�� on this thermal expansion will be
postponed till Sec. V D.

Combining the chiral and thermal expansions, one has

 L��x� � L0�x� �
X
n;‘

L�n�‘ �x�: (5.3)

(Note that the chiral expansion of the zero temperature
component L0�x� is not required since it does not depend
on the Polyakov loop.) This is to be introduced in the
Boltzmann factor exponential of Eq. (5.1) and expanded.
We will retain terms of O�p4� in the chiral expansion and
of leading order in the thermal expansion. Because the
Haar measure D� (and actually also the gluonic correc-
tion) preserves center symmetry, the first thermal correc-
tion with a single quark loop (i.e., keeping just one
Lagrangian in the expansion of the exponential) will be
of order ‘ � Nc (a baryon-loop like contribution). For
Nc  3 this is not the dominant contribution. The leading
thermal correction comes instead from correlation of a
quark loop with an anti quark loop, a meson-loop like
configuration. Schematically, these corrections have thus
the following structure

 L �0�
1 L�0�1 �L�0�1 L�2�1 � �L

�0�
1 L�4�1 �L�2�1 L�2�1 � (5.4)

contributing to L��0�, L��2�, and L��4�, respectively. Note
that the two quark loops occur at different spatial points, so
the correlation between two Polyakov loops is needed.
This we model as [23]

 

Z
D� trc�� ~x� trc�

�1� ~y� � e�
j ~x� ~yj=T; (5.5)

where 
 � �425 MeV�2 is the string tension. (This, of
course, implies that D� is not exactly the product of local
Haar measures.) This prescription is consistent with the
zero temperature quark-anti quark potential at medium and
large distances,6 while at coincident points it reproduces
the SU�Nc� group integration formula [59],

 

Z
d� trc� trc�

�1 � 1: (5.6)

Effectively, the consequence of using Eq. (5.5) in a two-
point computation of type (5.4) is to introduce a correlation
domain of spatial size V
 Z
d4xd4y

Z
D� trc�� ~x� trc��1� ~y� �

Z
d4x

V
T
;

V �
8�T3


3 :

(5.7)

Application of the procedure just described produces,
for the zeroth order of the effective Lagrangian in the chiral
expansion

 B� � B�
N2
fM

4T3V

�4 K2
2 : (5.8)

In this formula K2 � K2�M=T� and Kn�z� refers to the n-th
order Bessel function [60]. We use the same convention in
all forthcoming expressions for the LEC. Not surprisingly,
the thermal correction to the vacuum energy density is
proportional to the correlation volume V and contains
exactly two Bessel functions from the two correlated quark
loops. This holds also for all LEC to follow.

To O�p2� we find

 f�2� � f2
� �

NfM4TV

�4 K0K2; (5.9)

 B�0 � B0 �
NfM

4TV

�4f2
�

K2�B0K0 � 2TK1�: (5.10)

And therefore, for the single flavor quark condensate at
finite temperature

 h �qqi� � h �qqi �
2NfM4T2V

�4 K1K2: (5.11)

At very low temperatures, the asymptotic form of the
Bessel function [60]

 Kn�z� �
�
�
2z

�
1=2
e�z (5.12)

applies, and so the first thermal correction in the low-
energy coefficients has the exponential suppression
e�2M=T . This indicates that meson thermal loops dominate
at low temperatures (in our treatment we ignore completely
the quark binding effects so the nature of the mesons
involved cannot be resolved within the present approach).
Note that the group integration produces an Nc suppression
with respect to the zero temperature contribution [23].7 We
warn, however, that the results obtained with the full

6The short distance Coulombian part of the q �q potential
cannot be reproduced with unrenormalized Polyakov loops lying
on the group manifold.

7Naively, a two quark-loop term would be O�N2
c�, and in fact,

ignoring the Polyakov loop dependence, i.e., setting � � 1 as in
the standard NJL model, would give N2

c , instead of unity on the
right-hand side of Eq. (5.6). Thus the introduction of the
Polyakov loop proves essential to reproduce the O�N0

c� result
that one should expect for the thermal corrections coming from
colorless hadronic excitations.
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Bessel functions and with their asymptotic form differ
beyond very low temperatures, especially as n increases.

Because of center symmetry of the Polyakov loop mea-
sure, the higher thermal contributions are of the general
type

R
D� trc��

n1� � � � trc��
n‘�, with

P
ini a multiple of

Nc. Among other, there are
(i) Two or more mesonlike loops, of the typeR

D��trc� trc�
�1�n, n � 2; 3; . . . , with a thermal

suppression factors e�2nM=T .
(ii) Baryonlike loop excitations, of the typeR

D� trc�
�Nc , with thermal suppression e�NcM=T .

They come from a single quark loopingNc times the
thermal cylinder. These are the leading thermal
corrections of hadronic type in the quenched version
of the theory [61,62].

(iii) Gluonic corrections, with thermal suppression
e�mG=T , mG � 650 MeV, from �G
��.

In passing, we note that the leading thermal contribution
to the Polyakov loop expectation value can also be easily
computed. It comes from the coupling of the Polyakov
loop observable with a quark loop. Schematically, from
h�L�0�1 i. An easy computation gives, at leading order

 

�
1

Nc
trc�

�
�
Nf
Nc

M2TV

�2 K2: (5.13)

This is a measure of the explicit breaking of center sym-
metry by quarks, and is controlled by the ratio M=T in the
exponential factor.

B. Low-energy coefficients

Let us come now to O�p4� terms. The result we find for
the Gasser-Leutwyler coefficients for the constituent quark
model reads

 L�1 � L1 �
M4V

64�4T

�
K2

0 �
Nf
6
K2

2

�
; (5.14)

 L�2 � L2 �
NfM

4V

192�4T
K2

2 ; (5.15)

 L�3 � L3 �
NfM3V

48�4T
K2�MK2 � TK1�; (5.16)

 

�L �3 �
NfM4V

48�4T
K0K2; (5.17)

 L�4 �
M4V

16�4B0

K0K1; (5.18)

 L�5 � L5 � �L5 �
NfM3V

16�4B0

K2�MK1 � 2TK0�; (5.19)

 

�L �5 � �L0�5 �
1
2

�L�3; (5.20)

 L�6 �
M4TV

64�4B2
0

K2
1 ; (5.21)

 L�7 � L7 �
f2
�

16NfMB0
��

M3V

192�4 K2

�
12T
B0

K0 � K1

�
;

(5.22)

 

�L 0� � �
1

4Nf
�L�3; (5.23)

 

L�8 � L8 �
f2
�

16B0

�
2

B0
�

1

M

�
��

NfM
3V

192�4 K2

�

�
K1 �

12MT
B0

�
1

B0
�

1

M

�
K0

�
; (5.24)

 L�9 � L9 �
NfM3V

24�4 K1K2; (5.25)

 

�L �9 � �L0�9 � � �L�3; (5.26)

 L�10 � �
1
2L
�
9; (5.27)

 H�1 � H1 �
NfM

2V

96�4 K2�4TK0 �MK1�; (5.28)

 

�H �1 �
NfM

3V

24�4 K1K2; (5.29)

 H�2 � H2 �
f2
�

4B2
0

��
NfM3V

96�4 K2

�
12MT

B2
0

K0 � K1

�
;

(5.30)

where we have defined the quantity

 � � �B�0 � B0�=B0: (5.31)

As usual, to bring the fourth order Lagrangian to the
standard form (3.5) we have used the equation of motion
for the nonlinear U field. This is obtained by minimizing
L��2��x� (and hence after the average over the Polyakov
loop) and reads

 u��u� u�u� � B
�
0
u; z� �

B�0
Nf

trf�
u; z�� � 0 (5.32)

(where the vectorlike notation has been used, with uLR �
U and uRL � Uy). The last term arises from the constraint
det�U� � 1, since we are considering a SU�Nf� flavor
group.

Explicit expressions for the zero temperature coeffi-
cients appear in Ref. [51]. Once again, we observe that
the finite temperature corrections are Nc-suppressed as
compared to the zero temperature values, as expected
from hadronic excitations, and this requires a proper
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Polyakov loop average. The terms withNf, and also L�7 and
�L0�, are those coming from L�0�1 L�4�1 while those without
come from L�2�1 L�2�1 . It is worth noticing that some struc-
tures which were absent in the quenched approximation
L�4�� �x�, e.g. L�4 and L�6, are allowed in the unquenched

result, from L�2�1 L�2�1 .

C. Volume rule

Clearly, to carry out the functional integration over the
Polyakov loop indicated in (5.1), besides requiring a care-
ful specification of the Polyakov loop action, would be an
exceedingly demanding task. However, we can make sys-
tematic relations of the type (5.7) using a simple model.
This will allow us to go beyond the leading thermal cor-
rections and to include gluonic corrections from �G
��.
Specifically, we assume that the space-time is decomposed
into correlation domains of size V=T, in such a way that
two Polyakov loops are completely correlated if they lie
within the same domain and are completely decorrelated
otherwise. So for a partition function of the form

 Z �
Z
D�e�

R
d4xL�x� :� e�

R
d4xL0�x�; (5.33)

we take

 Z �
Z Y

n

d�ne
�
P

n
�n ; (5.34)

where n labels the correlation domain, d� is the Haar
measure, and �n � �V=T�L�xn�, xn lying in the domain
n. This gives

 Z �
Z Y

n

d�n

�
1�

X
n

�n �
1

2

X
n;n0

�n�n0 � � � �
�

� 1�
X
n

h�ni �
1

2

X
n

h�2
ni �

1

2

X
n�n0
h�nih�n0 i � � � � ;

(5.35)

where h i indicates average of � over SU�Nc�. Obvious
rearrangement gives, finally

 L 0�x� � hL�x�i �
1

2

V
T
�hL2�x�i � hL�x�i2� � � � � :

(5.36)

This is the standard cumulant expansion. Equivalently,
L0�x� can be read off from

 e��V=T�L
0�x� � he��V=T�L�x�iSU�Nc�: (5.37)

In concrete configurations the right-hand side can be com-
puted numerically (being the integration manifold very
well behaved.) Points to be noted are: (i) The effective
action is an extensive quantity. It is given by

R
d4xL0�x�

and not �V=T�L0�x�. (ii) If L�x� contains a piece L0�x�
which is Polyakov loop independent, this term simply adds

in L0�x�. It does not appear in the V-dependent contribu-
tions. And, iii) previous results of this section, e.g.
Eq. (5.7), are correctly reproduced.

D. Gluonic corrections

Up to now in Eq. (5.1) we have neglected the factor e��G

in the Polyakov loop measure. Following Ref. [26] we
adopt a simple model inspired on the lattice strong cou-
pling expansion [63,64]. This model has one parameter
which is fitted in Ref. [26] to reproduce the transition
temperature in gluodynamics in the mean field approxima-
tion. (A more refined fit involving more terms is discussed
in Ref. [27].) Because our calculation does not rely on the
mean field approach, our implementation of the model is
not identical to that in those works and so refitting would
probably be required. Nevertheless, this will not be needed
here to make low temperature estimates since the gluonic
corrections are much suppressed. Specifically, since we
want to have extensivity, we introduce a local Lagrangian

 �G
�� �
Z
d4xLg�x�; (5.38)

which is modeled as

 L g�x� � �
6

a3 Te
�
a=Tjtrc���j

2 (5.39)

with an adjustable parameter a�1 � 272 MeV. Triality is
preserved, but, unlike the pure Haar measure, at higher
temperatures the action favors center-of-the-group values
for the Polyakov loop. (The spontaneous breaking of center
symmetry in gluodynamics indicates that a Lagrangian
with a different form would be needed in the high tem-
perature regime.) At low temperature we can see an ex-
ponential thermal suppression controlled by a gluonic mass
mG � 
a � 664 MeV.

The gluonic corrections can be accounted for by includ-
ing Lg�x� in the Lagrangian of the volume rule (5.37). The
leading gluonic correction is O�e�mG=T� and goes to the
vacuum energy density. Using Eq. (5.6) one easily finds
�gB

� � �hLg�x�i � 6a�3Te�mG=T . At low temperature
this would be comparable with the meson-loop like terms,
however, recall that the constituent quark massM (actually
M�) gets reduced as the temperature approaches the chiral
transition, thereby enhancing the role played by mesonic
loops.

The gluonic corrections to f�2� , B�0 and the other low-
energy coefficients L�i are of O�e��2M�mG�=T�, as is easily
verified, thus they can be neglected as compared with the
hadronic-loop corrections.

Instead of modeling gluonic corrections through a local
Lagrangian, another approach suggested by the volume
rule (5.37) is to remove the Polyakov loop action from
the Lagrangian and instead, to replace the Haar measure
average over the color group by a weighted average, d�!
d�e��G
��. In principle such a weight could be obtained
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through a proper sampling of the Polyakov loop distribu-
tion on the group manifold within lattice computations of
gluodynamics. At present this is not feasible due to severe
numerical and conceptual problems related to renormal-
ization issues. An advantage of this approach would be that
expectation values of the type hf���x��i (a single point)
would be exact when the quarks are switched off. However,
it misses the normalization of the measure, which is needed
for its contribution to the vacuum energy density. From
Eq. (5.37) it is clear that such weight is equivalent to a local
Lagrangian Lg�x� � �T=V��G.

VI. CONCLUSIONS

The previous results clarify the question that chiral
quark model practitioners might legitimately ask, namely,
whether the tree level low-energy coefficients in the chiral
Lagrangian do genuinely depend on temperature or not.
According to our present calculation this temperature de-
pendence at very small temperatures is tiny. It is exponen-
tially suppressed by a scale which is exactly the mass gap,
and becomes inessential on temperature scales below the
deconfining transition (the region of temperatures where
the Polyakov cooling mechanism acts) if the Polyakov loop
is first introduced and color singlet projection is subse-
quently carried out in a gauge invariant manner. In a quark
model without Polyakov loop the temperature dependence
of the low-energy constants behaves as L�i � Li �
Nce

�M=T , due to spurious contributions of color non singlet
multiquark states while the Polyakov cooling, i.e., the
explicit suppression of colorful excitations provides in-
stead the behavior L�i � Li � e

�2M=T as expected from
ChPT arguments. Remarkably, this cooling mechanism
produces also the correct Nc counting. As shown in pre-
vious work [23] this effect at low temperatures manifests
quantitatively in the chiral symmetry restoration-center
symmetry breaking phase transition.

To see how the agreement of Polyakov-chiral quark
models to the theoretical assumptions of ChPT at finite
temperature well below the phase transition materializes in
practice we have calculated the chiral effective Lagrangian
at finite temperature. As a byproduct the interaction be-
tween Polyakov loop and Goldstone bosons may be ana-
lyzed in some detail. The resulting chiral Lagrangian can
be decomposed into a zero temperature like looking piece
with temperature dependent low-energy constants and a
new Lorentz breaking contribution with novel structures
generated by the heat bath at rest. We remind that these
calculations aim at describing the tree level effective action
of ChPT at finite temperature. In any case, the correspond-
ing temperature induced effects on the low-energy con-
stants at this level of approximation exhibit the Polyakov
cooling. In other words, below the phase transition any
temperature dependence on the tree level low-energy con-
stants may be neglected. This is precisely the starting

assumption of ChPT theory, a purely hadronic theory,
and as we have shown it arises naturally when the local
and quantum nature of the Polyakov loop is taken into
account.
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APPENDIX A: FLAVOR TRACES AND
PROPER-TIME INTEGRALS

In this appendix we compute the flavor traces of the
Seeley-DeWitt coefficients of Eq. (4.12), and the proper
time integrals which appear in Eq. (4.10), in order to obtain
the effective Lagrangian of Sec. IV B. Euclidean signature
is used throughout.

1. Flavor traces and useful identities

For Nf � 3 flavors we have the SU�3� identity

 tr �ABAB� � �2 tr�A2B2� � 1
2 tr�A2� tr�B2� � �tr�AB��2;

(A1)

where A and B are 3� 3 Hermitian traceless matrices.
From here one gets

 tr f��m�m	�
2� � �2 trf��m��

4� � 1
2�trf��m��

2��2

� �trf�m�m	��
2; (A2)

 tr f��m4m��
2� � �2 trf��m4�

2�m��
2�

� 1
2 trf��m4�

2� trf��m��
2�

� �trf�m4m���
2: (A3)

Further useful identities are

 tr f��m�	�
2� � trf��m���

2� � 2i trf�F�	m�m	�

� trf��mF�	�
2� �M2 trf�F

2
�	�; (A4)

 tr f��m4��
2� � trf�m44m��� � 2i trf�Ei
m4; mi��

� 2i trf�E4immi�; (A5)

where we have applied the identity X�	 � X	� �
i
F�	; X�, being X any operator. Using the equation of
motion, Eq. (5.32), we obtain the following identities
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 tr f�m�z�� �
1

2B�0M
2 trf��m��

2mx� �
1

4B�0M
trf��mx�2� �

M
4B�0

trf�x2� �
1

8MNfB
�
0

�trf�
m; x���2; (A6)

 tr f��m���
2� �

1

M2 trf��m��
4� �

1

2
trf��mx�

2� �
M2

2
trf�x

2� �
1

4Nf
�trf�
m; x���

2; (A7)

 

trf�m44m��� �
1

M2 trf��m4�
2�m��

2� �M trf�m44x� �
1

M
trf��m4�

2mx� �
1

2MNf
trf�m44m� trf�
m; x��; (A8)

where the normalized field x � 2B�0z has been introduced and so

 xLR � �; xRL � �y: (A9)

Applying Eqs. (A2)–(A8) the flavor trace of the Seeley-DeWitt coefficients can be worked out, yielding

 

trfb�0 � 4Nf’0���;

trfb
�
1 � �’0���

�
4

B�0
trf�mx� �

1

B�20

trf�x
2�

�
;

trfb�2 � 2’0��� trf��m��
2� �

2

B�0M
2 ’0��� trf��m��

2mx� �
1

B�0

�
1

B�0
�

1

M

�
’0��� trf��mx�2� �

M
B�0

�
M
B�0
� 1

�
’0��� trf�x2�

�
2

3
’0��� trf�F

2
�	� �

2

3
�’2��� trf�E

2
i � �

1

2MNfB�0
’0����trf�
m; x���

2;

trfb
�
3 �

4

3
i’0��� trf�F�	m�m	� �

1

3
’0��� trf��mF�	�

2� �
1

3
M2’0��� trf�F

2
�	� �

1

6
M2’0��� trf�x

2�

�
1

6
’0��� trf��mx�

2� �
2

B�0
’0��� trf��m��

2mx� �
1

3M
�’2��� trf��m4�

2mx� �
M
3

�’2��� trf�m44x�

�
2

3
i �’2��� trf�Ei
m4; mi�� �

2

3
i �’2��� trf�E4immi� �

1

3M2 ’0��� trf��m��
4� �

1

3M2 �’2��� trf��m4�
2�m��

2�

�
1

12Nf
’0����trf�
m; x���

2 �
1

6MNf
�’2���trf�m44m� trf�
m; x���;

trfb
�
4 � �

1

12
’0����trf��m��

2��2 �
1

6
’0����trf�m�m	��

2 �
2

3
’0��� trf��m��

4�: (A10)

2. Proper-time integrals with Polyakov loop

The basic proper-time integrals are defined by

 I 2l��;M;�� :� M2l
Z 1

0

d�
�
�����le��M

2
’0���; (A11)

 

�I 2l��;M;�� :� M2l
Z 1

0

d�
�
�����le��M

2
�’2���; (A12)

where � is a SU�Nc� matrix in color space, and we define
’0 and �’2 as follows:

 ’0��� �
X
n2Z

e��n
2�2=4������n; (A13)

 �’ 2��� �
�2

2�

X
n2Z

n2e��n
2�2=4������n: (A14)

The n � 0 term in the sum corresponds to the zero tem-
perature contribution, and for such a term the Pauli-Villars
regularization can be applied. In the remaining n � 0
terms the regularization will be removed, since these ther-
mal terms are ultraviolet finite. This approximation is
justified for temperatures well below the cutoff. The cal-
culation of the integral yields
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M4I�4��;M;�� � �
1

2

X
i

ci��2
i �M

2�2 log��2
i �M

2� � 8�MT�2
X1
n�1

K2�nM=T�

n2 �����n � �����n�;

M2I�2��;M;�� �
X
i

ci��
2
i �M

2� log��2
i �M

2� � 4MT
X1
n�1

K1�nM=T�
n

�����n � �����n�;

I0��;M;�� � �
X
i

ci log��2
i �M

2� � 2
X1
n�1

K0�nM=T������n � �����n�;

I2l��;M;�� � ��l�
X
i

ci

�
M2

�2
i �M

2

�
l
� 2

�
M
2T

�
l X1
n�1

nlKl�nM=T������n � �����n�; Re�l�> 0;

�I2l��;M;�� � 4
�
M
2T

�
l�1 X1

n�1

nl�1Kl�1�nM=T������n � �����n�; l 2 R:

(A15)

APPENDIX B: RESULTS FOR THE SPECTRAL
QUARK MODEL

In this appendix we present the results of the low-energy
coefficients for the spectral quark model (SQM). In the
SQM the effective action reads

 �SQM � �i
Z
d!��!�Tr log�iD�; (B1)

where the Dirac operator is given by

 iD � i@6 � v6 � a6 �5 �!U
�5 � M̂0 (B2)

and ��!� is the spectral function of a generalized Lehmann
representation of the quark propagator with ! the spectral
mass defined on a suitable contour of the complex plane
[50,55,65,66]. The use of certain spectral conditions guar-
antees finiteness of the action.

A judicious choice of the spectral function based on
vector meson dominance generates a quark propagator
with no-poles (analytic confinement). More details of the
SQM at zero and finite temperature relevant for the present
paper are further developed at Ref. [23]. The partition
function for the SQM can be written as

 Z �
Z
DUD�ei�G
��ei�SQM
U;��: (B3)

In this model one has to compute an average over the
constituent quark mass with an spectral weight function
��!� satisfying a set of spectral conditions Note that M
appears as argument in the integrals I2l and �I2l, but also as
additional multiplicative factors in the Gasser-Leutwyler
coefficients. This generates a larger number of independent
functions as compared to the NJL model.

We write first the results for the effective Lagrangian
before the group average. We get for the zeroth order
Lagrangian

 L �0�
� � �

2Nf
�4��2

h!4 trcI�4���i: (B4)

To simplify the notation we indicate with h i the spectral
average

R
d!��!�. The second order Lagrangian becomes

 L �2�
� �

f�2� ���
4

trf��u��2� �
2

�4��2B�0

�h!3 trcI�2���i trf�ux�; (B5)

with

 f�2� ��� �
1

4�2 h!
2 trcI0���i: (B6)

As in the CQ model, B�0 will be obtained after the average
in �. The fourth order Lagrangian has the low-energy
coefficients
 

L�1��� �
1

24�4��2
htrcI4���i;

�L�3��� � �
1

6�4��2
htrc �I2���i;

L�5��� �
1

2�4��2B�0
�h! trcI0���i � h!trcI2���i�;

L�7��� �
1

2�4��2Nf

�
�

1

2B�0
h!trcI0���i � 4�2L�9���

�
;

L�8��� �
1

4�4��2B�0
h!trcI0���i �

f�2� ���

16B�20

�
1

8
L�9���;

L�9��� �
1

3�4��2
htrcI2���i;

H�1��� � �
1

6�4��2
htrcI0���i �

1

4
L�9���;

�H�1��� � �
1

6�4��2
htrc �I0���i;

H�2��� �
1

2�4��2B�0

�
1

B�0
h!2 trcI�2���i � h! trcI0���i

�

�
f�2� ���

8B�20

�
1

4
L�9���: (B7)

The remaining coefficients satisfy the same geometric
relations obtained in the NJL, Eqs. (4.17)–(4.33). We
also get the relation
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 L�7��� � �
1

Nf

�
f�2� ���

16B�20

� L�8���
�
; (B8)

both in the SQM and in NJL.
The next step is to carry out the integration over

Polyakov loops, as in Sec. V. For the temperature indepen-
dent part the result can be expressed in terms of the spectral
log-moments as was already done in Ref. [50]. For the
temperature dependent contributions we will explicitly use
the meson dominant form of the spectral function ��!�.
After computing all averages (spectral and color group
average), we get for the zeroth order effective
Lagrangian at leading order in the thermal expansion

 B� � B�
N2
fT

3V

�4 h!2K2i
2: (B9)

In this expression K2 � K2�!=T�. We use the same con-
vention for the symbol Kn in subsequent expressions. The
spectral average can be computed and gives

 h!2K2i �
T2

24
�48� 24xV � 6x2

V � x
3
V�e

�xV=2: (B10)

We use the notation xV � MV=T.
The pion weak decay constant and the normalization

constant read respectively

 

f�2�
f2
�
� 1�

NfTV

�4f2
�
h!2K0ih!2K2i; (B11)

 

B�0
B0
� 1�

NfTV

�4f2
�
h!2K2i �

�
h!2K0i �

2T
B0
h!2K1i

�
;

(B12)

with the spectral averages

 h!2K0i �
T2

24
x2
V�2� xV�e

�xV=2; (B13)

 h!2K1i �
�03
4T
e�xS=2; (B14)

and xS � MS=T. The equations of motion are those in
Eq. (5.32). (Note that B�0, and hence the normalization of
the field � depends on the model.) The low-energy coef-
ficients, including the first thermal correction, read

 L�1 � L1 �
2V

3�4��4T
�6h!2K0i

2 � Nfh!2K2i
2�; (B15)

 L�2 � L2 �
NfV

3�8�2�2T
h!2K2i

2; (B16)

 L�3 � L3 �
NfV

3�2��4T
h!2K2i�h!2K2i � T2h!K1i�; (B17)

 

�L �3 �
NfV

3�2��4T
h!2K0ih!2K2i; (B18)

 L�4 �
V

�2��4B0

h!2K0ih!
2K1i; (B19)

 L�5 � �1� ��L5 �
NfV

�2��4B0

h!2K2i�2Th!K0i � h!K1i�;

(B20)

 

�L �5 � �L0�5 �
1
2

�L�3; (B21)

 L�6 �
TV

64�4B2
0

h!2K1i
2; (B22)

 

L�7 � L7�
L5

2Nf
��

V

192�4 h!
2K2i

�
12T
B0
h!K0i � h!2K1i

�
;

(B23)

 

�L 0� � �
1

4Nf
�L�3; (B24)

 

L�8 � L8 �

�
f2
�

8B2
0

�
L5

2

�
��

NfV

192�4 h!
2K2i

�

�
h!2K1i �

12T
B0

�
1

B0
h!2K0i � h!K0i

��
; (B25)

 L�9 � L9 �
NfTV

24�4 h!K1ih!2K2i; (B26)

 

�L �9 � �L0�9 � � �L�3; (B27)

 L�10 � �
1
2L
�
9; (B28)

 H�1 � H1 �
NfV

6�2��4
h!2K2i�4ThK0i � h!2K1i�; (B29)

 

�H �1 �
NfV

24�4 h!K1ih!
2K2i; (B30)

 

H�2 � H2 �

�
L5 �

f2
�

2B2
0

�
��

NfV

96�4 h!
2K2i

�

�
12T
B0

�
h!K0i �

1

B0
h!2K0i

�
� h!2K1i

�
24T2

B2
0

h!K1i

�
; (B31)

where � � �B�0 � B0�=B0. The spectral averages are
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 hK0i � �
1

2
�E � log�xV=4� �

1

2
 �5=2�

�
x5
V

7200 1F2
5=2; 7=2; 7=2; �xV=4�2�

�
x2
V

48 2F3
1; 1;�1=2; 2; 2; �xV=4�2�; (B32)

 h!K0i �
�03

2T2x2
S

�2� xS�e�xS=2; (B33)

 h!K1i �
T
12
�12� 6xV � x2

V�e
�xV=2 (B34)

pFq
a1; . . . ; ap; b1; . . . ; bq; z� is the generalized hypergeo-
metric function. The expressions for the zero temperature
coefficients appear in Ref. [50].
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