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We present a model for dihadron fragmentation functions, describing the fragmentation of a quark into
two unpolarized hadrons. We tune the parameters of our model to the output of the PYTHIA event
generator for two-hadron semi-inclusive production in deep-inelastic scattering at HERMES. Once the
parameters of the model are fixed, we make predictions for other unknown fragmentation functions and
for a single-spin asymmetry in the azimuthal distribution of ���� pairs in semi-inclusive deep-inelastic
scattering on a transversely polarized target at HERMES and COMPASS. Such asymmetry could be used
to measure the quark transversity distribution function.

DOI: 10.1103/PhysRevD.74.114007 PACS numbers: 13.87.Fh, 11.80.Et, 13.60.Hb

I. INTRODUCTION

Dihadron fragmentation functions (DiFF) describe the
probability that a quark hadronizes into two hadrons plus
anything else, i.e. the process q! H1H2X. They can
appear in any process where hadronization is involved, in
particular, in lepton-lepton, lepton-hadron, and hadron-
hadron collisions producing final-state hadrons. They carry
information that is not accessible to single-hadron frag-
mentation functions, but on the other hand they are more
complex to study and to measure.

Unpolarized DiFF were introduced for the first time by
Konishi, Ukawa, and Veneziano [1]. Their evolution equa-
tions have been studied in Refs. [2,3] and more recently
reanalyzed in Refs. [4–6]. All these studies focused on the
probability of producing two hadrons with energy fractions
z1 and z2 by integrating over the invariant mass of the
produced pair. However, it is fair to say that the only
experimental information related to unpolarized DiFF con-
sists of invariant-mass spectra of hadron pairs produced in
e�e� annihilation [7–9], semi-inclusive deep-inelastic
scattering (SIDIS) [10–12], and proton-proton collisions
[13–15]. Recently, it has been suggested to use DiFF as
tools to investigate the in-medium effects in heavy-ion
collisions [5,6,15–17]. To address this and other issues, it
is necessary to improve our knowledge of unpolarized
DiFF in vacuum.

DiFF can be used also for spin studies. In particular, they
can act as analyzers of the spin of the fragmenting quark
[18–22] and they can be used to study vector meson
polarization [23–26]. The definition and properties of all
possible DiFF for two unpolarized detected hadrons have
been presented in Ref. [27] up to leading twist, and in
Ref. [28] up to subleading twist integrated over the trans-

verse component of the center-of-mass (cm) momentum of
the hadron pair. Despite the wealth of observables related
to polarized DiFF, experimental information is limited
[29–31].

At the present, the most important application of polar-
ized DiFF appears to be the measurement of the quark
transversity distribution in the nucleon. This function, h1,
represents the probabilistic distribution of transversely
polarized partons inside transversely polarized hadrons,
and is a missing cornerstone to complete the knowledge
of the leading-order (spin) structure of the nucleon (for a
review see Ref. [32]). Being a chiral-odd function, h1

needs to be combined with another chiral-odd soft func-
tion. The simplest possibility is to consider double-spin
asymmetries in polarized Drell-Yan processes [33]. This
option is under investigation at Brookhaven National
Laboratory, New York (BNL) using high-energy polarized
proton-proton collisions [34,35] and could be studied
also at Gesellschaft fuer Schwerionenforschung mbH,
Darmstadt, Germany (GSI) using polarized proton-
antiproton collisions [36–39].

Another possibility is to measure single-spin ssymme-
tries (SSA) in the SIDIS production of a pion on trans-
versely polarized targets. Recent data have been released
using proton [40,41] and deuteron [42] targets. Their in-
terpretation advocates the so-called Collins effect [43], by
which a leading-twist contribution to the cross section
appears where h1 is convolved with the Collins function
H?1 , a fragmentation function that describes the decay
probability of a transversely polarized quark into a single
pion. However, extracting h1 from SSA data requires the
cross section to depend explicitly upon the transverse
momentum of the detected pion with respect to the photon
axis [44]. This fact brings in several complications, includ-
ing the possible overlap of the Collins effect with other
competing mechanisms and more complicated factoriza-
tion proofs and evolution equations [45,46].
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Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H�

1

[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H

�
1 [48]. The COMPASS col-

laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functionsH�

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H�

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q! ����X.
The quark has momentum k. The two pions have masses
m� � 0:140 GeV, momenta P1 and P2, respectively, and
invariant massMh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph � P1 � P2

and R � �P1 � P2�=2. We describe a 4-vector a as
�a�; a�; ax; ay�, i.e. in terms of its light cone components
a� � �a0 � a3�=

���
2
p

and its transverse spatial components.

We introduce the light cone fraction z � P�h =k
� and the

polar angle �, being the angle between the direction of P1

in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as

 k� �
�
P�h
z
;
z�k2 � ~k2

T�

2P�h
; kxT; k

y
T

�
; (1)

 P�h �
�
P�h ;

M2
h

2P�h
; 0; 0

�
; (2)

 

R� �
�
j ~RjP�h
Mh

cos�;�
j ~RjMh

2P�h
cos�; RxT; R

y
T

�

�

�
j ~RjP�h
Mh

cos�;�
j ~RjMh

2P�h
cos�;

	 j ~Rj sin� cos�R; j ~Rj sin� sin�R

�
; (3)

where1

 j ~Rj �
Mh

2

�������������������
1�

4m2
�

M2
h

s
; (4)

and �R is defined later in Eq. (15) (see also Fig. 1). It is
useful to compute the scalar products

 Ph 
 R � 0; (5)

 Ph 
 k �
M2
h

2z
� z

k2 � j ~kT j
2

2
; (6)

 

Ph

Ph

P2

P1

RT

S
S
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φ
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l l’

q

FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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 R 
 k �
�
Mh

2z
� z

k2 � j ~kTj2

2Mh

�
j ~Rj cos�� ~kT 
 ~RT: (7)

Fragmentation functions are extracted from the correla-
tion function [55]
 

�q�z; cos�;M2
h;�R� �

zj ~Rj
16Mh

Z
d2 ~kTdk

�

	 �q�k;Ph; R�jk��P�h =z; (8)

where [28,56]
 

�q�k; Ph; R�ij �
X
X

Z d4�

�2��4
e�ik
�

	 h0jUn�
��1;�� 

q
i ���jPh; R;Xi

	 hPh; R; ; Xj � qj �0�U
n�
�0;�1�j0i: (9)

Since we are going to perform the integration over the
transverse momentum ~kT , the Wilson lines U can be
reduced to unity using a light cone gauge.

The only fragmentation functions surviving after
~kT-integration are [27,55]

 Dq
1�z; cos�;M2

h� � 4�Tr��q�z; cos�;M2
h; �R��

��; (10)

 

�ijT RTj
Mh

H�q
1 �z; cos�;M2

h�

� 4�Tr��q�z; cos�;M2
h; �R�i�i��5�: (11)

These functions can be expanded in the relative partial
waves of the pion pair system. Truncating the expansion
at the p-wave level we obtain [55]
 

Dq
1�z; cos�;M2

h� � Dq
1;oo�z;M

2
h� �D

q
1;ol�z;M

2
h� cos�

�Dq
1;ll�z;M

2
h�

1
4�3cos2�� 1�; (12)

 H�q
1 �z; cos�;M2

h� � H�q
1;ot�z;M

2
h� �H

�q
1;lt�z;M

2
h� cos�:

(13)

The fragmentation functionD1;oo can receive contributions
from both s and p waves, but not from the interference
between the two, D1;ol and H�

1;ot originate from the inter-
ference of s and p waves, D1;ll comes from polarized p
waves, and H�

1;lt originates from the interference of two p
waves with different polarization.

Our model can make predictions for the above fragmen-
tation functions as well as for transverse-momentum-
dependent fragmentation functions, which we do not con-
sider in this section. However, we will focus our attention
mainly on the functions D1;oo and H�

1;ot because of their
relevance for transversity measurements in SIDIS
[19,21,47,57].

Let us consider in fact the SIDIS process lp!
l0����X, where l and l0 are the momenta of the lepton

before and after the scattering and q � l� l0 is the mo-
mentum of the virtual photon. We consider the cross sec-
tion differential in dM2

h, d�R, dz, dx, dy, d�S, where z, x,
y are the usual scaling variables employed in SIDIS, and
the azimuthal angles are defined so that (see Fig. 1)2

 cos�S �
�q̂	 ~l�

jq̂	 ~lj


�q̂	 ~S�

jq̂	 ~Sj
; sin�S �

�~l	 ~S� 
 q̂

jq̂	 ~ljjq̂	 ~Sj
;

(14)

 

cos�R �
�q̂	 ~l�

jq̂	 ~lj


�q̂	 ~RT�

jq̂	 ~RT j
; sin�R �

�~l	 ~RT� 
 q̂

jq̂	 ~ljjq̂	 ~RT j
;

(15)

where q̂ � ~q=j ~qj and ~RT is the component of R perpen-
dicular to Ph.

When the target is transversely polarized, we can define
the following cross section combinations3

 

d6�UU �
d6�" � d6�#

2

�
X
q

	2e2
q

�yQ2

1� y� y2=2� y2�2=4

1� �2

	 fq1 �x�D
q
1;oo�z;M

2
h�; (16)

 

d6�UT �
d6�" � d6�#

2

� �
X
q

	2e2
q

4yQ2

1� y� y2�2=4

1� �2

	 sin��R ��S�h
q
1�x�
j ~Rj
Mh

H�q
1;ot�z;M

2
h�; (17)

where 	 is the fine structure constant, � � 2Mx=Q, and M
is the mass of the target. These expressions are valid up to
leading twist only. Subleading contributions are described
in Ref. [28]. In particular, they give rise to a term propor-
tional to cos�R in d�UU and a term proportional to sin�S
in d�UT . Corrections at order 	S were partially studied in
Ref. [4], but further work is required.

2The definition of the angles is consistent with the so-called
Trento conventions [58].

3The definition of the angles in Eqs. (14) and (15) is consistent
with the so-called Trento conventions [58] and it is the origin of
the minus sign in Eq. (17) with respect to Eq. (43) of Ref. [55]
(compare �R and�S in Fig. 1 with the analogue ones in Fig. 2 of
Ref. [55]).
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We can define the asymmetry amplitude

 Asin��R��S�
UT �x; y; z;M2

h� �
1

sin��R ��S�

d6�UT
d6�UU

� �

1�y�y2�2=4
xy2�1��2�

1�y�y2=2�y2�2=4
xy2�1��2�

�j ~Rj
4Mh

	

P
q
e2
qh

q
1�x�H

�q
1;ot�z;M

2
h�P

q
e2
qf

q
1 �x�D

q
1;oo�z;M

2
h�
:

(18)

Note that we avoided simplifying the prefactors because
numerator and denominator are usually integrated sepa-
rately over some of the variables.

III. FRAGMENTATION FUNCTIONS IN A
SPECTATOR MODEL

We aim at describing the process q! ����X at in-
variant massMh & 1:3 GeV. To have an idea of the promi-
nent channels contributing to this process, we examined
the output of the PYTHIA event generator [53] tuned for
HERMES [54], which well reproduces the measured
events at HERMES. Further details concerning the event
generator’s output will be discussed in the next section.
Figure 2 shows the number of counted dihadron pairs in
bins of Mh (200 bins from 0.3 to 1.3 GeV). The total
amount of events is 2 667 889.

A few prominent channels contribute to this process:
(1) q! ����X1: fragmentation into an ‘‘incoherent’’

���� pair that we will call, in the following,

‘‘background’’;
(2) q! 
X2 ! ����X2: fragmentation into a 
 reso-

nance decaying into ����, responsible for a peak
at Mh 
 770 MeV (14.81%);

(3) q! !X3 ! ����X3: fragmentation into a !
resonance decaying into ����, responsible for a
small peak at Mh 
 782 MeV (0.31%);

(4) q! !X04 ! ����X4 with X4 � �0X04: fragmen-
tation into a ! resonance decaying into �����0

(�0 unobserved), responsible for a broad peak
around Mh 
 500 MeV (8.65%);

(5) q! �X05 ! ����X5 with X5 � XX05: fragmenta-
tion into a��547� or�0�958� decaying into����X
(X unobserved), responsible for a peak around
Mh 
 350 MeV (2.05%);

(6) q! K0X6 ! ����X6: fragmentation into a K0

resonance decaying into ����, responsible for a
narrow peak at Mh 
 498 MeV (3.41%).

On top of these, there could be the presence of two other
channels:

(7) q! �X7 ! ����X7: fragmentation into the
largely debated � resonance (see, e.g., Ref. [59]) decaying
into ����, which could be responsible for a very broad
peak anywhere between 400 and 1200 MeV;

(8) q! f0X8 ! ����X8: fragmentation into a f0

resonance decaying into ����, which should give rise
to a peak at Mh 
 980 MeV, not evident in the output of
PYTHIA.
In our model, we considered only channels 1 to 6. All
events not belonging to channels 2 to 6 were included in
channel 1, which then contains 70.77% of the total events.

We work in the framework of a ‘‘spectator’’ model for
the fragmentation process: for q! ����X, the sum over
all possible intermediate states X is replaced by an effec-
tive on-shell state—the spectator—whose quantum num-
bers are in this case the same as the initial quark and whose
mass is one of the parameters of the model. In principle,
different channels could produce spectators with different
masses. Moreover, each channel could end up into more
than one possible spectator [60]. For the sake of simplicity,
here we consider just a single spectator for all channels. We
shall denote its mass as Ms and its momentum as Ps. The
choice of using the same spectator for all channels implies,
in particular, that the fragmentation amplitudes of all
channels can interfere with each other maximally. In real-
ity, it is plausible that only a fraction of the total events
ends up in the same spectator and can thus produce inter-
ference effects.

Pions in channels 2 and 3 are obviously produced in
relative pwave, since they come from the decay of a vector
meson. In channel 4, each charged pion can be in a relative
p wave with respect to the other one or to �0, the net result
being that there is a fraction of ���� pairs that is pro-
duced in a relative swave. In the following, we will neglect
this fraction and assume that all charged pairs are produced

 

co
un

ts

Mh (GeV)

0.4 0.6 0.8 1 1.2

5000

10000

15000

20000

2+3+45+6

All

1

FIG. 2. Semi-inclusive dihadron counts in bins of Mh from the
PYTHIA event generator [53] tuned for HERMES [54]. The
thick solid line represents the sum of all channels. The thin solid
line represents the sum of channels 2, 3, and 4 described in the
text. The dashed line represents the sum of channels 5 and 6
(which are excluded in our model). The gray line is the differ-
ence between the total and the sum of all channels 2 to 6 and is
assumed to represent channel 1.
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in pwave; at present we do not have enough information to
discriminate the two contributions. This assumption is
most probably inadequate and would lead to an overesti-
mate of the contribution of channel 4 to the final single-
spin asymmetry.

We further assume that all pions in channel 1 are pro-
duced in s wave. It is possible that a fraction of the
background events are also produced in p wave.
However, such a fraction cannot be too big, as it would
give rise to interference effects that would distort the shape
of the 
 meson peak. It is actually known that such a
distortion can indeed occur, but also that it is not big
[9,61]. We think that this point deserves further attention,
but should not change the main features of our results.

We model the correlation function in the following way
(see Fig. 3):

 �q�k; Ph; R� �
1

�2��4
�6k�m�

k2 �m2 �F
s?e��k

2=�2
s �

� Fp?e��k
2=�2

p� 6R��6k� 6Ph �Ms�

	 �Fse��k
2=�2

s � � Fpe��k
2=�2

p� 6R�

	
�6k�m�

k2 �m2 2����k� Ph�
2 �M2

s �: (19)

Isospin symmetry implies that the fragmentation correlator
for u! ����X is the same as for �d! ����X, d!
����X, �u! ����X. Therefore, the result for d and �u

quarks can be obtained from the result for the u quark by
simply changing the sign of ~R, i.e. changing �! �� �
and �! �� �. From now on we will drop the super-
script indicating the quark flavor and calculate the frag-
mentation functions for u! ����X. The terms with
vertex Fs refer to the s-wave contribution, the terms with
vertex Fp to the p-wave contribution. The exponential
form factors suppress the contributions from high quark
virtualities [62]. Other possibilities can be considered, e.g.,
dipole form factors [47,52], or sharp cutoffs [63].

Inserting Eq. (19) into Eq. (8), we get

 ��z; cos�;M2
h; �R� �

j ~Rj

128�2Mh

z2

2�1� z�P�h

Z
dj ~kTj2

�
jFsj2e��2k

2=�2
s �
�6k�m��6k� 6Ph �Ms��6k�m�

�k2 �m2�2

� jFpj2e��2k
2=�2

p�
�6k�m�6R�6k� 6Ph �Ms�6R�6k�m�

�k2 �m2�2

� Fs?Fpe�k
2��2

s��2
p=�2

s�
2
p�
�6k�m��6k� 6Ph �Ms�6R�6k�m�

�k2 �m2�2

� FsFp?e�k
2��2

s��2
p=�2

s�
2
p�
�6k�m�6R�6k� 6Ph �Ms��6k�m�

�k2 �m2�2

�
; (20)

with k2 fixed by the on-shell condition of the spectator
[52], i.e.,

 k2 �
z

1� z
j ~kTj2 �

M2
s

�1� z�
�
M2
h

z
: (21)

The first and second lines of Eq. (20) describe the pure s-
and p-wave contributions and, as such, they are the only
ones that can contribute to the functions D1;oo, D1;ll of
Eq. (12) and H�

1;lt of Eq. (13), while the third and fourth

lines describe the sp interference and they contribute to the
functions D1;ol and H�

1;ot.
For convenience, we introduce the function

 L2�z;M2
h� �

1� z

z2 M2
h �

1

z
M2
s �

1� z
z

m2: (22)

This function has to be always positive for kinematical
reasons.

We obtain the following result for the unpolarized frag-
mentation function

 

Ph
2 − R

k

π +

π −

q

Ph
2 + R

k − Ph

FIG. 3. Diagrammatic representation of the correlation func-
tion � in the spectator model.
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D1;oo�z;M2
h� �

zj ~Rj
16�Mh

jFsj2e��2m
2=�2

s �

��
1� 2

M2
h � �m�Ms�

2

z�2
s

�
�
�
0;

2zL2

�1� z��2
s

�

�
1� z

z2

M2
h � �m�Ms�

2

L2 e��2zL
2=�1�z��2

s �

�
�

zj ~Rj
16�Mh

jFpj2e��2m
2=�2

p�
j ~Rj2

3M2
h

��
2M2

h �
2� z
z
�m2 �M2

s �

� 2
�M2

h � �m�Ms�
2��2M2

h � �m�Ms�
2�

z�2
p

�
�
�

0;
2zL2

�1� z��2
p

�
�

1� z

2z2L2

��
M2
s �

1� z
z
�M2

h � zm
2�

�
�2
p

� 2�M2
h � �m�Ms�

2��2M2
h � �m�Ms�

2�

�
e��2zL

2=�1�z��2
p�

�
: (23)

The incomplete � function—typically appearing in model calculations with exponential form factors [62]—is defined as
��0; z� �

R
1
z e
�t=tdt. The first term of the fragmentation function can be identified with the pure s-wave contribution, also

called Ds
1;oo=4 in Ref. [55], and the second one with the pure p-wave contribution, also called 3Dp

1;oo=4.
We give here the results also for the other functions appearing in Eq. (12):

 

D1;ol�z;M
2
h� �

zj ~Rj
16�Mh

2 Re�Fs?Fp�e��2m
2=�2

sp�
j ~Rj

z2Mh

�
�m�Ms�

1� z
z
�2� z�M2

h � z�m
2 �M2

s �

L2 e��2zL
2=�1�z��2

sp�

�

�
2�m�Ms�

�2� z�M2
h � z�m

2 �M2
s �

�2
sp

� z�m� �1� z�Ms�

�
�
�
0;

2zL2

�1� z��2
sp

��
; (24)

 

D1;ll�z;M2
h� �

27

16
Dp

1;oo�z;M
2
h� �

zj ~Rj
16�Mh

jFpj2e��2m
2=�2

p�
9j ~Rj2

4z3�2
p

��
1� z

2zL2 �2
pe��2zL

2=�1�z��2
p� � �

�
0;

2zL2

�1� z��2
p

��

	 �2M2
h�2� 2z� z2� � 4z2mMs � 2z�2� z��m2 �M2

s �� � z�
2
p�2� 2z� z2��

�
0;

2zL2

�1� z��2
p

��
; (25)

where 2=�2
sp � 1=�2

s � 1=�2
p.

For the interference fragmentation function H�
1;ot we

obtain

 H�
1;ot�z;M

2
h� � �

zj ~Rj
16�Mh

2 Im�Fs?Fp�e��2m
2=�2

sp�
Mh

z2

	

�
1� z
z

M2
h � z

2m2

L2 e��2zL
2=�1�z��2

sp�

�

�
z� 2

M2
h � z

2m2

�2
sp

�
�
�
0;

2zL2

�1� z��2
sp

��
:

(26)

The interference function H�
1;lt vanishes in our model,

since it would be proportional to Im�Fp?Fp�. It would be
necessary to have other sources of nontrivial phases in the
amplitudes for p wave production, as the ones given by
loop corrections [64].

The vertices Fs and Fp are essential ingredients to
reproduce the correct invariant-mass behavior and to pro-
duce the imaginary parts required for the generation of
T-odd fragmentation functions. When no resonance is
present, we assume the vertices to be real. When reso-
nances are present, the vertex includes the resonance
propagator and contains therefore real and imaginary parts.
We assume in our calculation that the s-wave background

is free of resonances and thus is purely real (at tree level).
This is one of the main assumptions we make in the present
work and has critical consequences on the invariant-mass
behavior of the fragmentation functions D1;ol and H�

1;ot. As
can be readily seen from Eqs. (24) and (26), assuming Fs to
be real implies that D1;ol is proportional to Re�Fp� and
H�

1;ot is proportional to Im�Fp�.
At this point it is worthwhile to make a comparison with

the results presented in the literature in the past. In
Ref. [21], the necessary phase difference between s and
p waves was taken from �� phase shifts in elastic scat-
tering data [65]. No hypothesis was made on the invariant-
mass behavior of the s and p amplitudes, i.e., on the
fragmentation mechanism. The main assumption was that
the interference pattern occurring in the fragmentation
process, where the initial state is a quark and the final state
is composed of many hadrons, is supposed to be the same
as in�� scattering, where initial and final states are simply
two pions. In particular, the prediction of Ref. [21] changes
sign close to the 
 mass. The effect is in fact proportional
to the sum of the real part of the 
 resonance times the
imaginary part of the � plus the real part of the � times the
imaginary part of the 
. Both real parts change sign close
to the 
 mass. On the contrary, in our approach we neglect
the contribution of the � and we take a purely real s-wave
background, but we try to take into account in a collective
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manner all other ways in which pion pairs can be produced
in a semi-inclusive fragmentation process.

A different model prediction was also presented in
Ref. [47]. In that model, the s-wave amplitude was mod-
eled as a sequence of two single-pion emissions and was
purely real, while the p-wave amplitude contained only the

 decay, therefore having a predictive power limited to
invariant masses around the 
 resonance. The s� p phase
difference followed from the presence of an imaginary part
in the meson propagator. The parameters of the model were
fixed using theoretical arguments, since no experimental
input was available as a comparison. As already pointed
out, the present work is similar to Ref. [47], but the s-wave
amplitude is modeled by means of an effective real vertex
and the p-wave amplitude contains contributions from the

 and the ! mesons. Last but not least, the parameters of
the model are fixed by fitting the output of the PYTHIA
Monte Carlo generator, which is known to reproduce very
well the unpolarized data.

Our ansatz for the vertices is

 Fs � fs; (27)

 Fp � f

�M2

h �M
2

� � i�
M


�M2
h �M

2

�

2 � �2

M

2



� f!
�M2

h �M
2
!� � i�!M!

�M2
h �M

2
!�

2 � �2
!M

2
!

� if0!

��������������������������������

�M2

!;M
2
h; m

2
��

q
��M! �m� �Mh�

4��!M2
!�4M2

!m2
� � 
�M2

!;M2
h; m

2
���

1=4
;

(28)

where 
�M2
!;M2

h;m
2
�� � �M2

! � �Mh �m��
2�	

�M2
! � �Mh �m��

2� and � denotes the unit step function.
The couplings fs, f
, f!, and f0! are parameters of the
model. The first two terms of Fp can be easily identified
with the contributions of the 
 and the ! resonances
decaying into two pions. The Lorentz structure of the
resonance propagators is already taken into account in
Eq. (19). The masses and widths of the two resonances
are taken from the PDG [66]: M
 � 0:776 GeV, �
 �
0:150 GeV, M! � 0:783 GeV, �! � 0:008 GeV. The de-
tails of the resonance propagators could be also extracted
from phase-shift analyses, as done in Ref. [21]. In this case
the contribution of the 
 resonance would be

 f

� tan�1

1 � itan2�1
1

�
M
�1� tan2�1
1�
; (29)

where �lm are the �� phase shifts for the specific �l; m�
channel. However, using �lm from, e.g., Ref. [67] leads to
no significant change compared to Eq. (28), especially
considering the coarse level of accuracy of our model.

The third term in Eq. (28) comes from the decay of a !
resonance into three pions, of which the �0 goes unde-

tected, i.e., channel 4. Let us introduce the momentum
P! � Ph � P0, where P0 is the momentum of �0 and
P2
! � M2

3. Taking for ! the usual Lorentz structure of a
vector meson resonance, the evaluation of the correlator �
involves the contraction

 ��

�
�g�� �

P�!P�!
M2

3

�
R� � �6R�

R 
 P0�6Ph � 6P0�

M2
3

� �6R
�
1�
j ~P0j

3M2
3

�
: (30)

In the last step we took into account the fact that R has no
timelike component and we have to integrate over ~P0.
When performing the integration over P0, we make a
narrow-width approximation and we assume that the three
pions are produced exactly at the ! mass (M3 � M!). In
this approximation, j ~P0j is fixed, the last term of Eq. (30)
becomes negligible, and the contribution of channel 4 to
the vertex turns out to be purely imaginary and occurs only
at invariant masses lower than M! �m� � 0:643 GeV.
Abandoning the narrow-width approximation has the con-
sequence of smearing the invariant-mass distribution and
allowing pairs to appear at invariant masses higher than
0.643 GeV, as well as giving a real part to the third term of
Eq. (28).

Note that we sum the three contributions in Eq. (28) at
the amplitude level. This is the first instance where the
assumption of equal spectators has a direct consequence,
and deserves further comments. Channels 2, 3, and 4 can
interfere if X2 � X3 � X4. In general, only a fraction of the
total events will fulfill this requirement. On the contrary,
since we have a single spectator for all channels this is
always the case in our model. That’s why we add up the
amplitudes in Eq. (28). As we shall see in the next section,
the effect of these interferences in the unpolarized frag-
mentation function is in any case quite small, due to the
small contribution of channel 3 and the small overlap
between channels 2 and 4. However, a similar problem
will show up also in the calculation of the function H�

1 ,
with more relevant consequences, as we shall see in Sec. V.

Finally, we felt the need to use z-dependent �-cutoffs to
have an acceptable description of the data. We used the
following ansatz:

 �s;p � 	s;pz�s;p�1� z��s;p : (31)

The total number of parameters of the model is thus 12:3
parameters for the form-factor cutoff �s, 3 parameters for
the cutoff �p, the couplings fs, f
, f!, and f0!, the mass of
the spectator, Ms, and the mass of the fragmenting quark,
m. However, in the following we shall always assume
m � 0.
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IV. COMPARISON WITH PYTHIA AND
PARAMETERS FIT

In order to fix the parameters of the model, we compare
it to the output of the PYTHIA event generator [53] tuned
for HERMES [54]. The events are generated in 4�.
Exclusive channels are dropped. The standard HERMES
semi-inclusive DIS cuts are applied, in particular Q2 >
1 GeV2, 0:1< y< 0:85, 0:023< x< 0:4, W2 > 4 GeV2

and the momenta of the pions �j ~P1;2j� are constrained to be
larger than 1 GeV.4 The counts perMh-bin are proportional
to the cross section of Eq. (16) times 2Mh (since the cross
section in the former equation is differential in dM2

h),
integrated over y, x, �R, �S, and further over 0:2< z <
0:8. For the counts per z-bin, we integrated the cross
section over 0:3 GeV<Mh < 1:3 GeV.

In Fig. 4 the number of counted dihadron pairs is pre-
sented binned in Mh (200 bins from 0.3 to 1.3 GeV) and z
(200 bins from 0.2 to 0.8). From the total counts, we
excluded the contributions from � and K0, i.e., channels
5 and 6 (see Fig. 2), because they are not relevant for our
purposes. The lowest dark-gray histogram represents the
sum of the 
 and ! contributions (channels 2, 3, and 4),
assumed to describe the whole p-wave contribution. The
light-gray histogram in the middle is the background con-
tribution, i.e. channel 1, representing the s-wave contribu-
tion. The upper histogram is the sum of the other two and
corresponds to the total counts minus channels 5 and 6.

Instead of leaving all parameters of the model free, for
the sake of simplicity we assumed the fragmenting quark to
be massless. We take the spectator mass to be proportional
to the pair’s invariant mass. The number of free parameters
we used is then 11.

The �2 minimization was performed using MINUIT.
The �2 function was defined as the square of the difference
between the expected number of events in the bin and the
measured value, divided by the expected number (equiva-
lent to assigning a statistical error equal to the square root
of the number of events in the bin). The result of the fit for

the s and p wave (and their sum) is shown on top of the
PYTHIA output in Fig. 4. The resulting �2=d:o:f is very
high, about 20 (note that the statistical errors on the
PHYTIA output are very small, of the order of 1%).
However, we believe that the main characteristics of the
Mh and z shapes of the unpolarized fragmentation func-
tions are qualitatively well described.

The values of the parameters obtained by the fit are:
 

	s � 2:60�0:05 GeV2; �s � �0:751� 0:008;

�s � �0:193� 0:004; (32)

 

	p � 7:07�0:12 GeV2; �p � �0:038� 0:003;

�p � �0:085� 0:004; (33)

 fs � 2396� 4 GeV�1; f
 � 187� 3;

f! � 1:27� 0:05; f0! � 150:4� 2:4;
(34)

 Ms � �2:97� 0:04�Mh: (35)

The coupling constants are fixed modulo an overall nor-
malization factor which depends on the luminosity and is
irrelevant for asymmetry calculations. The sign of the
coupling constants is also not fixed, but the relative sign
of f
, f!, and f0! is (see below). We computed the statis-
tical errors on all the quantities predicted by the model
using the covariance matrix obtained from MINUIT and
the standard formula for error propagation. In all cases, the
error is of the order of 1%. We avoided drawing the error
bands on the plots since they would be hardly visible.

In the p-wave channel, our model deviates significantly
from the generated spectrum in the region around 0.6 GeV,
substantially increasing the �2. This is due to the interfer-
ence between channels 2 and 4, which is not included in the
Monte Carlo generator. At the same time, in the s-channel
the curve obtained from our model underestimates the data
in the same region. Thus, the sum of the two curves is in
good agreement with the total generated spectrum, to
which the Monte Carlo generator is actually tuned. The
agreement would be improved further if the contribution of
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FIG. 4. Semi-inclusive dihadron counts from the PYTHIA event generator [53] tuned for HERMES [54] and results of the fit (a) as a
function of Mh, (b) as a function of z. Solid line: p-wave contribution; dashed line: s-wave contribution; dotted line: sum of the two.
The contributions of the � and K0 have been excluded.

4To perform the fit, we neglected the last cut.
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the ! were extended at higher invariant masses by leaving
the narrow-width approximation for the ! resonance and
smearing the step function in Eq. (28). Note that the
interference is in this case constructive because the signs
of the couplings f
 and f0! have been taken equal. If the
two couplings were taken opposite, then a destructive
interference would take place and the model would under-
estimate the p-wave data at around 0.6 GeV. The agree-
ment with the total spectrum would then be worsened. Also
the f! coupling has been taken to have the same sign of f

to avoid destructive interference patterns. It is difficult with
the present poor knowledge to make any conclusive state-
ment about 
�! interference in semi-inclusive dihadron
production. However, we can at least conclude that in our
model the best agreement with the event generator is
achieved when the three couplings f
, f!, and f0! have
the same sign.

V. PREDICTIONS FOR POLARIZED
FRAGMENTATION FUNCTIONS AND

TRANSVERSE-SPIN ASYMMETRY

Using the parameters obtained from the fit we can plot
the results for the fragmentation functions D1;ll, H

�
1;ot, and

D1;ol. The function D1;ll is a pure p-wave function. It
depends on jFpj2, the modulus square of Eq. (28), and

has a behavior very similar to Dp
1;oo, the p-wave part of

D1;oo. In Fig. 5(a) we plot the ratio betweenD1;ll andD1;oo,
integrated separately over 0:2< z< 0:8. In Fig. 5(b) we
plot the same ratio but with the two functions multiplied by
2Mh and integrated over 0:3 GeV<Mh < 1:3 GeV. In the
same figures, the dotted lines represent the positivity bound
[55]

 � 3
2D

p
1;oo � D1;ll � 3Dp

1;oo: (36)

The functions D1;ol and H�
1;ot arise from the interference

of s and p waves, i.e. from the interferences of channels 1-
2, 1-3, and 1-4, proportional to the product �fsf
�, �fsf!�,
�fsf0!�, respectively. Since the relative sign of fs and the
p-wave couplings is not fixed by the fit, we can only
predict these functions modulo a sign. For the plots, we
assume that the p-wave couplings have a sign opposite to
fs (as suggested by the sign of preliminary HERMES data
[48]).

In Fig. 6(a) we plot the ratio between�j ~Rj=MhH
�
1;ot and

D1;oo, integrated separately over 0:2< z< 0:8. In Fig. 6(b)
we plot the same ratio but with the two functions multi-
plied by 2Mh and integrated over 0:3 GeV<Mh <
1:3 GeV. In the same figures, the dotted lines represent
the positivity bound [55]
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FIG. 5. Model prediction for the ratio D1;ll=D1;oo: (a) as a function of Mh, (b) as a function of z. The dotted lines represent the
positivity bounds of Eq. (36).
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FIG. 6. Model prediction for the ratio ��j ~RjH�
1;ot�=�MhD1;oo�: (a) as a function ofMh, (b) as a function of z. The overall sign ofH�

1;ot
cannot be predicted by the model and is chosen to have an agreement with the sign of preliminary HERMES measurements [48]. The
dotted lines represent the positivity bounds of Eq. (37).

MODELING DIHADRON FRAGMENTATION FUNCTIONS PHYSICAL REVIEW D 74, 114007 (2006)

114007-9



 

j ~Rj
Mh

H�
1;ot �

�������������������������������������������������
3

8
Ds

1;oo

�
Dp

1;oo �
1

3
D1;ll

�s
: (37)

As is evident, there are two main contributions:
(i) the interference between channel 1 (s-wave back-

ground) and the imaginary part of 2 (
 resonance),
with a shape peaked at the 
 mass, i.e. roughly
proportional to the imaginary part of the 
 resonance
in Eq. (28);

(ii) the interference between channel 1 (s-wave back-
ground) and 4 (! resonance decaying into three
pions), with a shape peaked at Mh � 0:5 GeV,
roughly proportional to the third (imaginary) term
in Eq. (28).

The two contributions have comparable size and are large.
At this point, we want to stress once more that our model
assumptions imply that the above channels can interfere in
a complete way, since the spectators X1, X2, and X4 are the
same. As already argued before, it is likely that only a
fraction of the X2 and X1 states interfere, and so does a (in
general different) fraction of the X4 and X1 states. This
could decrease the sizes of the two ‘‘peaks’’ of Fig. 6(a)
and accordingly the overall size of the curve in Fig. 6(b).
This is beyond the reach of our model in its present form,
but could be a way to proceed when fitting data related to
H�

1;ot.
In Fig. 7(a) we plot the ratio between �D1;ol and D1;oo,

integrated separately over 0:2< z< 0:8. In Fig. 7(b) we
plot the same ratio but with the two functions multiplied by
2Mh and integrated over 0:3 GeV<Mh < 1:3 GeV. The
dotted line in Fig. 7(a) represents the positivity bound [55]
(in the second plot the bound lies beyond the plot range)

 D1;ol �
��������������������������������������������
3
4D

s
1;oo�D

p
1;oo �

2
3D1;ll�

q
: (38)

In this case, the function D1;ol receives basically only
one contribution, namely, from the interference between
channel 1 (s-wave background) and the real part of 2 (

resonance). In fact, its shape has a sign change at the 

mass and is roughly proportional to the real part of the 

resonance in Eq. (28). Channel 3 is negligible as in the
previous case, while channel 4 plays no role now because
we assumed it to be purely imaginary.

Next we compute the asymmetry defined in Eq. (18),
integrated over all variables but one. In Fig. 8(a) we plot

 Asin��R��S�
UT �Mh� � c

R
0:8
0:2 dzj ~Rj=MhH

�
1;ot�z;M

2
h�R

0:8
0:2 dzD1;oo�z;M

2
h�

; (39)

and in Fig. 8(b) we plot

 Asin��R��S�
UT �z� � c

R
1
0:5 dMh2Mhj ~Rj=MhH

�
1;ot�z;M

2
h�R

1
0:5 dMh2MhD1;oo�z;M2

h�
;

(40)

where

 c �
�
4

R
0:85
0:1 dy

R
xmax
xmin

dx 1�y�y2�2=4
xy2�1��2�

�4�hu1�x� � h
�u
1�x�� � �h

�d
1�x� � h

d
1�x���R

0:85
0:1 dy

R
xmax
xmin

dx 1�y�y2=2�y2�2=4
xy2�1��2�

�4�fu1 �x� � f
�u
1�x�� � �f

�d
1 �x� � f

d
1 �x���

: (41)

We neglected strange quark contributions. The fact that the d and �u transversity distributions enter with an opposite sign is
due to the symmetry properties of the fragmentation functions. As already discussed in Sec. III, the fragmentation function
H�

1;ot is the same for all quarks, but the sign of sin��R ��S� changes for d and �u.
In Fig. 8(c) we plot

 Asin��R��S�
UT �x� � c0

R
0:85
ymin

dy 1�y�y2�2=4
y2�1��2�

�4�hu1�x� � h
�u
1�x�� � �h

�d
1�x� � h

d
1�x���R

0:85
ymin

dy 1�y�y2=2�y2�2=4
y2�1��2�

�4�fu1 �x� � f
�u
1 �x�� � �f

�d
1�x� � f

d
1 �x���

; (42)

where

 c0 �
�
4

R
0:8
0:2 dz

R
1
0:5 dMh2Mhj ~Rj=MhH

�
1;ot�z;M

2
h�R

0:8
0:2 dz

R
1
0:5 dMh2MhD1;oo�z;M

2
h�

: (43)

The choices of the integrations boundaries for x, y, z,
and Mh are inspired by the HERMES cuts [48]. We took
(s � 56:2 GeV2)

 xmin � max�0:023; Q2
min=�y�s�M

2���; (44)
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FIG. 7. Model prediction for the ratio �D1;ol=D1;oo: (a) as a
function of Mh, (b) as a function of z. The overall sign of D1;ol

depends on the choice made on the sign ofH�
1;ot. The dotted lines

represent the positivity bounds of Eq. (38).
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 xmax � min�0:4; 1� �W2
min �M

2�=�y�s�M2���; (45)

 

ymin � max�0:1; Q2
min=�x�s�M

2��;

�W2
min �M

2�=��1� x��s�M2���: (46)

For the unpolarized parton distribution functions we take
the parameterization of Ref. [68]. For the transversity
distribution function, we take the estimates of
Refs. [35,69–71]. The sign of the preliminary data indi-
cates that the s-wave and p-wave couplings should have
opposite signs and thus H�

1;ot should be negative. The
asymmetry obtained from our model appears to overesti-
mate the preliminary HERMES data [48] by about a factor
3–4. This probably indicates that the model overestimates
in general the effect of interferences. Apart from the over-
all normalization, the height of the bump around Mh �
0:5 GeV seems to be too big relative to the 
 peak, which is
probably due to the fact that not all the ���� pairs in
channel 4 should be considered in p wave. However, in
order to make more conclusive statements it is necessary to
wait for HERMES final data. Obviously, it would be better
to compare our model with an observable where H�

1;ot can
be isolated, e.g., in e�e� annihilation at BELLE [51].

In Fig. 9 we plot the same asymmetry as before, but for
the kinematics of the COMPASS experiment. We assumed
the same cuts as before and change only the value of s. The
size of the Mh- and z-dependent asymmetries is smaller
than at HERMES. This is due to the sensitivity of
COMPASS to lower values of x, where models predict
transversity to be small, while the unpolarized distribution
functions are big. Because of the same reason, there is a
much larger difference among the models, as they differ
substantially at low x. The asymmetries could be enhanced
if the low-x region is excluded from the integration.

The COMPASS collaboration has also presented pre-
liminary data of the above asymmetry for a deuteron target
[49]. We plot our prediction in Fig. 10.5 The different
isospin structure of the target, combined with that of the
fragmentation functions in our model, decreases the asym-
metry. The x-dependent asymmetry is less than half of that
for the proton target, while the Mh- and z-dependent
asymmetries are about 10 times smaller than for the proton
target.
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FIG. 9. Asin��R��S�
UT moment defined in Eq. (18) at COMPASS kinematics for a proton target: (a) as a function ofMh, (b) as a function

of z, (c) as a function of x. The different lines correspond to different models of the transversity distribution function: dotted line from
Ref. [69], dash-dotted line from Ref. [70], dashed line from Ref. [71], and solid line from Ref. [35].
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5Note that the preliminary measurements of COMPASS cor-
respond to �Asin��R��S�

UT .
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VI. CONCLUSIONS

In this paper we presented a model for the process q!
����X at invariant mass Mh & 1:3 GeV. We used a
spectator model, where the sum over all possible inter-
mediate states X is replaced by an effective on-shell state.
Using this model we calculated the fragmentation func-
tions that can be defined at leading twist when considering
only relative s and p waves of the pion pair [55]. We
obtained nonzero results for four out of five of them.

We fixed the values of the parameters of the model by
comparing the unpolarized fragmentation function D1;oo

with the output of the PYTHIA event generator [53] tuned
for HERMES [54]. The main characteristics of the Mh and
z shapes of D1;oo are qualitatively well described.

We made predictions for the fragmentation functions
D1;ll, D1;ol, and H�

1;ot. The first one is a pure p-wave
function, it is found to be positive, about 50% of the
unpolarized fragmentation function and with peaks at the

 mass and at around Mh � 0:5 GeV, where the ! decay-
ing into three pions gives a large contribution.

The function D1;ol arises from the interference between
the s and p wave. Since in our model we assumed the s
wave to be purely real, this function turns out to be pro-
portional to the real part of the p wave and, in particular,
displays a sign change at the 
 mass. The size of the
function is small, in particular, when integrated over the
invariant mass, due to the sign change. Our model cannot
predict the overall sign of the function.

The function H�
1;ot also arises from the interference

between the s and p waves, but is proportional to the
imaginary part of the p wave, i.e., it has peaks at the 

mass and at aroundMh � 0:5 GeV, due to the contribution
of the !! 3� channel. Its size is about 30% of the
unpolarized fragmentation function. Our model cannot
predict the overall sign of the function.

The function H�
1;ot is of particular interest because in

two-hadron-inclusive deep-inelastic scattering off trans-

versely polarized targets it gives rise to a single-spin
asymmetry in combination with the transversity distribu-
tion function. Therefore, it could be used as an analyzer for
this so far unknown distribution function. We estimated
this single-spin asymmetry at HERMES kinematics using
four different models for the transversity distribution func-
tion. We found the asymmetry to be of the order of 10% on
average. The sign of the preliminary HERMES measure-
ments suggests that H�

1;ot should be negative. The measure-
ment indicates that the asymmetry in our model is about 3–
4 times bigger than the data. This probably means that our
model overestimates the effects of interferences. However,
final experimental results are needed to make more reliable
comparisons.

For COMPASS kinematics, the enhanced sensitivity to
the portion of phase space at very low x induces a reduction
in the spin asymmetry with respect to HERMES, which can
largely differ depending on the model for transversity. For
the deuteron target, the particular isospin structure, com-
bined with that of the fragmentation functions in our
model, induces a further reduction such that the resulting
asymmetry is much smaller than for the proton, in
agreement with preliminary data of the COMPASS
collaboration.
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