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We consider the color spin locking (CSL) phase of two-flavor quark matter at zero temperature for
nonlocal instantaneous separable interactions. We employ a Lorentzian-type form factor allowing a
parametric interpolation between the sharp [Nambu-Jona-Lasinio (NJL) model] and very smooth (e.g.
Gaussian) cutoff models for systematic studies of the influence on the CSL condensate the deviation from
the NJL model entails. This smoothing of the NJL model form factor shows advantageous features for the
phenomenology of compact stars: (i) a lowering of the critical chemical potential for the onset of the chiral
phase transition as a prerequisite for stability of hybrid stars with extended quark matter cores and (ii) a
reduction of the smallest pairing gap to the order of 100 keV, being in the range of values interesting for
phenomenological studies of hybrid star cooling evolution.
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I. INTRODUCTION

Recently, the investigation of color superconducting
phases in cold dense quark matter has received much
attention [1–6], in particular, due to the possible conse-
quences for the physics of compact stars [7,8]. From the
point of view of observational constraints on quark matter
and color superconductivity in compact stars, the cooling
characteristics play a central role. It has been shown that
the occurrence of a normal quark matter core would lead to
a conflict with observations since the direct Urca (DU)
process in normal quark matter would lead to enhanced
cooling in disagreement with the data [9,10]. The DU
conflict would be solved provided no ungapped quark
modes occur in the quark core. This has been demonstrated
on the example of a hypothetical pairing channel (X-gap)
for the quark color which is ungapped in the 2SC phase
(2 SC� X phase) [10,11]. However, the microscopic ori-
gin of the X-gap could not yet be specified. A microscopi-
cally well-defined pairing pattern which could solve the
quark DU problem would be the color spin locking (CSL)
phase [12] corresponding to a spin-one condensate [13–
15]. A prerequisite for the realization of this pairing pattern
in quark matter would be a sufficient flavor asymmetry to
prevent the u-d pairing in the otherwise dominant scalar
diquark channel of the 2SC phase. It has been demon-
strated that under neutron star conditions the 2SC phase

is indeed rather fragile and may not be realized for mod-
erate coupling strengths [16]. Thus the CSL phase becomes
particularly interesting for the solution of the quark DU
cooling problem, and corresponding simulations will be
performed as soon as the cooling regulators such as emis-
sivities, specific heat and thermal conductivity are pro-
vided. The first steps in this direction have been made
recently [17,18].

Most of the calculations of QCD superconducting
phases have been done using the sharp cutoff NJL model
(see Ref. [1] and references therein). However, lattice QCD
calculations [19] indicate that quark interactions should act
over a certain range in the momentum space, and various
approaches to include nonlocality effects beyond the NJL
model have been suggested [20]. We refer to nonlocal
separable interaction models as introduced, e.g., in the
works [21–26] and references therein, where it has been
concluded that smoothing the cutoff leads to a reduction of
the chiral condensate and a lowering of the critical tem-
perature for the chiral phase transition. The question arises
for the effects of nonlocality on the spin-one gaps, to be
explored by varying the form factor of the quark interac-
tion from a sharp cutoff in the NJL model to a smoothly
decreasing form such as a Gaussian. The first exploratory
calculations reported in [27] have shown that the nonlo-
cality could lead to a sizable decrease of the energy gaps.

In this paper, we investigate the robustness of CSL
pairing against a modification of the sharp cutoff (NJL)
in a systematic way by employing a separable, instanta-
neous interaction with a Lorentzian-type interaction which
allows us to interpolate between the NJL case and very
smooth interaction form factors of, e.g., the Gaussian type.
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This investigation is performed on the basis of recently
developed parametrizations for the instantaneous three
flavor case [28].

II. NONLOCAL CHIRAL QUARK MODEL FOR
THE CSL PHASE

We investigate a nonlocal chiral quark model in which
the quark interaction is represented in a separable way by
introducing form factor functions g�p� in the bilinears of
the current-current interaction terms in the Lagrangian
[16,21,29]. It is assumed that this four-fermion interaction
is instantaneous and therefore the form factors do not
depend on the energy but only on the modulus of the three
momentum p � j ~pj. The ansatz for the s-wave, single-
flavor diquark condensate characterizing the CSL phase as
introduced in Ref. [12]1 is a scalar product (locking) of the
three-vector of antisymmetric color matrices ��2; �5; �7�
with the three-vector of Dirac spin matrices ��3; �2; �1�.
Thus, the corresponding gap matrix �̂ for the CSL phase
reads

 �̂ � ���3�2 � �2�5 � �1�7�: (1)

Since the two flavor channels decouple, the quark thermo-
dynamical potential can be decomposed into single-flavor
components

 �q�T; f�fg� �
X
f�u;d

��T;�f�; (2)

and it is sufficient to consider in the following the contri-
bution of a single flavor only, which in the mean field
approximation is given by
 

��T;�� �
�2

8G
� 3

�2

8Hv

� T
X
n

Z d3p

�2��3
1

2
Tr ln

�
1

T
S�1�i!n; ~p�

�
; (3)

where � stands for the chemical potential of that flavor.
The first two terms are quadratic contributions of the mean
field values � and � of the order parameter fields that
signal chiral symmetry breaking and CSL superconductiv-
ity, respectively. Their denominators contain the coupling
constants G and Hv in the corresponding channel. In (3)
the sum is over fermionic Matsubara frequencies !n �
�2n� 1��T, and the trace is over Dirac, color and Nambu-
Gorkov indices.

In our nonlocal extension, the inverse fermion propaga-
tor differs from the NJL model case by momentum-
dependent form factors g�p� modifying the mesonic and
diquark mean fields

 S�1�p� � p6 ���0 �M�p� g�p��̂
�g�p��̂y p6 ���0 �M�p�

 !
;

(4)

where M�p� is the dynamical quark mass function

 M�p� � m� g�p��: (5)

Note that, although the first two terms in Eq. (3) do not
have any explicit dependence on the form factors, the
quantities � and � do depend implicitly on them through
the gap equations; see Eq. (14) below.

After evaluation of the trace [12] and Matsubara sum-
mation the thermodynamical potential takes the form
 

��T;�� �
�2

8G
� 3

�2

8Hv
�
X6

k�1

Z d3p

�2��3

� �Ek�p� � 2T ln�1� e�Ek�p�=T��; (6)

where Ek�p� denote the excitation energies for the modes
k � 1; . . . ; 6. The odd (even) indices denote particle (anti-
particle) excitations, each corresponding to a triplet of
spin-one eigenstates. All modes have a gap in the excita-
tion spectrum and can be brought into a standard form,
which for E1�p� reads

 E2
1�p� � �"eff�p� ��eff�p��2 � �2

eff�p�; (7)

with the effective quantities

 "eff�p� �
���������������������������
p2 �M2

eff�p�
q

; (8)

 Meff�p� �
�

�eff�p�
M�p�; (9)

 �eff�p� � �
�����������������������������������
1� �2g2�p�=�2

q
; (10)

 �eff�p� �
M�p�
�eff�p�

�g�p�; (11)

and for E3;5�p� is given by

 E2
3;5�p� � �"�p� ���

2 � a3;5�p��2g2�p�; (12)

with the momentum-dependent coefficients

 a3;5�p� �
1

2

�
5�

p2

"�p��
	

������������������������������������������������������
1�

p2

"�p��

�
2
� 8

M2�p�

"2�p�

s �
;

(13)

where "�p� �
�������������������������
p2 �M2�p�

p
. The remaining modes

E2;4;6�p� are obtained from E1;3;5�p� by changing �!
�� in Eqs. (7)–(13). Note that the modes E1;2�p� corre-
spond to the vanishing z projection of the spin, Sz � 0, thus
being inert against an external B field. The remaining
modes corresponding to Sz � 	1 are expected to get
shifted (Zeeman effect).

1Note that such ansatz differs from the one in [15], where the
states are constructed with total angular momentum of 1.
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For given values of T and �, the global minimum of
��T;�� in the space of the order parameters � and �
corresponds to the thermodynamical equilibrium state. We
obtain this state by comparing solutions of the gap equa-
tions

 

���T;��
��

�
���T;��
��

� 0: (14)

We present results for the case of vanishing temperature
and finite chemical potential in the next section.

III. MODEL CALCULATIONS

A. Form factors and their parameters

In (4) and (5) we have introduced the same form factors
g�p� to represent the nonlocality of the interaction in the
meson (q �q) and diquark (qq) channels. In the calculations
we use the sharp cutoff (NJL), Lorentzian with integer
parameter � (L�) and Gaussian (G), form factors defined
as

 gNJL�p� � ��1� p=��; (15)

 gL��p� � �1� �p=��2���1; � 
 2; (16)

 gG�p� � exp��p2=�2�; (17)

where � is a cutoff parameter. These form factors are
plotted in Fig. 1. We achieve deviations from the NJL
case (step function) by using the Lorentzian form factor
with decreasing the � parameter. The Gaussian form factor
appears on the other limit, having a very soft momentum
dependence.

To perform numerical calculations one has to specify,
for each form factor, the following set of parameters: the
light quark current mass (m), the coupling strength (G) and
the range of the interaction (�). The diquark coupling
constant Hv is fixed to the ratio Hv=G � 8=3 in accor-
dance with the result of the Fierz transformation for a one-
gluon exchange interaction. In this work we use the pa-
rametrizations recently given in Ref. [28] and listed in
Table I. They have been obtained by fitting the vacuum
properties of the pion (f� � 92:4 MeV, M� � 135 MeV)
and the vacuum constituent quark mass at zero momentum,
M � m��. For the latter, the phenomenologically rea-
sonable values M � 330 and 400 MeV have been used.

Note that the results to be presented below do not depend
on the choice of the Lorentzian-type function as an inter-
polating form factor. In fact, similar results have been
obtained using other interpolating functions such as, e.g.,
the Woods-Saxon form factors, the parametrization of
which is given in [28].

B. Quark mass and CSL pairing gap

First, we analyze form factors which do not deviate
strongly from the NJL case, i.e. L� for � 
 3, shown as
the gray area in Fig. 1. In Fig. 2 we compare the solutions
obtained for the mass and the CSL gaps for two different
sets of regularizations for fixed constituent mass: M �
330 MeV (left) and M � 400 MeV (right). For the pa-
rametrizations with a larger constituent mass in vacuum,
one obtains a larger critical chemical potential �c for the
phase transition from the chirally broken phase to the
restored one, where the CSL pairing can occur. The gaps
at the onset, ���c�, are larger whereas the mass gaps after
the chiral transition are smaller.

Like in the NJL case [12], the CSL gaps are strongly
increasing functions of � in the range that is relevant for
compact stars,�c < � & 500 MeV, where the upper limit
is due to the threshold for the occurrence of strange quarks
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FIG. 1 (color online). Form factors used to represent the non-
locality in the momentum space. Decreasing � in the
Lorentzian-type form factor (notation L�) causes deviations
from the NJL model in a systematic way.

TABLE I. Parameter sets for the nonlocal chiral quark model
with Lorentzian and Gaussian form factors and for the NJL
model. Sets for different fixed M � 330, 400 MeV are listed.

M (MeV) Form factor � (MeV) G�2 m (MeV)

330 NJL 629.5 2.17 5.28
L10 649.2 2.36 4.71
L5 666.5 2.49 4.09
L3 685.8 2.59 3.25
L2 703.4 2.58 2.37
G 891.1 3.88 2.18

400 NJL 587.9 2.44 5.58
L10 600.3 2.64 5.01
L5 609.3 2.78 4.39
L3 616.2 2.87 3.55
L2 617.8 2.83 2.65
G 756.1 4.22 2.60
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which allow pairing patterns like the CFL phase, energeti-
cally more favorable than CSL (for recent phase diagrams
for neutral matter in the three flavor case, see [30–32]).

On the other hand, Fig. 2 clearly shows that the pairing
gaps in this nonlocal extension are reduced relative to the
NJL ones: the smoother the form factor, the smaller the
gap. The reduction could be up to a factor 3 in the case of
the Lorentzian with � � 3.

But perhaps one of the most important effects of non-
locality from the point of view of the phenomenology of
compact stars is the shift of the chiral phase transition to
lower values of �. A lowering of the critical density for
deconfinement makes stable hybrid star configurations
with large quark matter cores possible [29,33]. On the
other hand, results from lattice QCD simulations for the
quark propagator [19] show a very smooth four-
momentum dependence of the quark self-energies which
is also a characteristic of confining quark models within the
Dyson-Schwinger approach [34]. Smoother form factors
could thus be more appropriate to model QCD interactions.
Note, however, that the instantaneous nonlocal models
with such smooth form factors lead to unrealistically large
values of the chiral condensate (above 280 MeV) in the
vacuum [28].

Therefore we have subdivided our discussion of differ-
ent form factors into two groups: those which lead to
deviations from the NJL results within 1 order of magni-
tude and those resulting in larger deviations from the NJL
model case (Lorentzian with � � 2 and Gaussian); see
Fig. 3. For example, the shift in the critical chemical
potential for the onset of the chiral phase transition relative

to the NJL case is less than 20 MeV within the first group,
but larger than 30 MeV for the second group; see Figs. 2
and 3. However, the qualitative behavior of the chiral and
CSL gaps is not affected by the choice of the form factors.

To obtain the above results, we have kept fixed the ratio
Hv=G at the standard value obtained from Fierz trans-
forming the one-gluon exchange interaction. However, in
order to estimate the effect of possible uncertainties in this
value, we have also considered the situation in which this
ratio is taken to be twice its Fierz value. The corresponding
results for 2Hv and all Lorentzian-type form factors under
consideration are shown in Fig. 4. It is worth noticing that,
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FIG. 3 (color online). Same as Fig. 2 for smooth form factor
models (Lorentzian with � � 2 and Gaussian).
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FIG. 4 (color online). Same as Figs. 2 and 3 but the coupling
constant Hv in the diquark channel is doubled with respect to the
usual value coming from Fierz transformed one-gluon exchange
interaction.
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FIG. 2 (color online). The dependence of the dynamical mass
M�0� and the CSL pairing gap � on the chemical potential � for
different NJL-like form factor models (NJL and Lorentzian with
� 
 3). The parametrizations correspond to a fixed constituent
mass: M � 330 MeV on the left and M � 400 MeV on the
right.
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while the increase of Hv by a factor 2 increases the CSL
gaps by 1 (M � 400 MeV) or 2 (M � 330 MeV) orders of
magnitude, the qualitative behavior of M and � as func-
tions of � remains practically unchanged. The lowering of
�c and � as the form factor becomes smoother is also
similar to the previous case.

C. Quasiparticle excitation spectrum

In Fig. 5 we show the quasiparticle excitation spectrum
at the critical chemical potential for both parametrizations,
respectively. We observe that the quasiparticle mode with
the lowest energy band corresponds to E1�p� with a mini-
mum

 E1;min � min
p
�E1�p��; (18)

being the most relevant quantity for possible applications
of the CSL phase of quark matter to compact star cooling
phenomenology. This minimum occurs at the Fermi mo-
mentum p � pF. In a very good approximation, pF can be
represented by the lowest orders of a series expansion in
the parameter s � pFg

0
L��pF�=gL��pF�, which is a mea-

sure for the influence of the form factor
 

p2
F � �2

eff�pF� �M
2
eff�pF� � 2�2

eff�pF�

�
M�pF��M�pF� �m� �M

2
eff�pF�

M2�pF� �M
4
eff�pF�=�

2 s�O�s2�: (19)

In the same order of the expansion in s, we obtain for the
minimal excitation energy

 E1;min � �eff�pF� �O�s
2�: (20)

Although E1;min might be quite small (see below) it never
vanishes. In fact, as in the NJL case [12], in the present
class of models none of the dispersion relations lead to
gapless modes. It is interesting to note that this lowest
energy mode E1�p�, relevant for compact star cooling
phenomenology, is the one which is inert against the influ-
ence of a strong external magnetic field typical for neutron
stars since it belongs to vanishing spin projection, Sz � 0.

In Figs. 6 and 7 we plot E1;min as a function of � for
different models from the NJL-like and the smooth form
factor groups, respectively. The calculations are made for
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FIG. 5 (color online). Excitation energies in the CSL phase as
a function of the momentum for both parametrizations of the
L10 model from Table I at the corresponding critical values of
the chemical potential, � � �c. Left panel: M � 330 MeV,
�c � 338 MeV; right panel: M � 400 MeV, �c � 375 MeV.
Antiparticle modes E2, E4 and E6 are not shown.
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both sets of parametrizations of Table I, corresponding to
constituent masses of M � 330 MeV and M � 400 MeV.
According to the analytical approximative result of
Eq. (20), the behavior of the minimal excitation energies
can be understood as a product of the increasing � depen-
dence of the CSL pairing gaps and the decreasing one of
the other factors in Eq. (11). For the parametrizations with
M � 400 MeV in the right panel, we obtain that E1;min is a
decreasing function of� since the increase in ���� cannot
overcompensate the decrease in M�pF�g�pF�=�eff�pF�. A
similar effect has been reported for NJL models [12]. On
the other hand, for parametrizations with M � 330 MeV
the interplay between ���� and the other factors in
Eq. (11) is density dependent: a slightly increasing behav-
ior of E1;min at low densities is followed by a tendency to a
saturation or even decreasing behavior at high densities.
For the group of NJL-like form factors, our results for
E1;min lie in the range of 50–500 keV, and for the case of
smooth form factors they are between 1 and 100 keV.

Our main results are summarized in Fig. 8. In the upper
panel we show the scaling of the critical chemical potential
�L�
c for the onset of the CSL phase for the Lorentztian-

type model L� with the smoothness parameter 1=� nor-
malized to the NJL limit case, �NJL

c . In the lower panel we
show a comparative plot of the minimal excitation energies
EL�

1;min in units of the corresponding NJL counterpart ENJL
1;min,

evaluated at �L�
c and �NJL

c , respectively. The correspond-
ing results for 2Hv are also shown in Fig. 8 as open

symbols. As we see, the qualitative behavior of both
�L�
c =�NJL

c and EL�
1;min=E

NJL
1;min as a function of 1=� remains

unchanged.
It is remarkable that, as it would be expected from an

expansion to lowest order in s, both quantities scale almost
linearly with 1=�. In fact, a very good approximation to
our numerical results is obtained with

 �L�
c �

�
1�

	0

�

�
�NJL
c ; (21)

 EL�
1;min �

�
1�

	
�

�
ENJL

1;min; (22)

for � down to 2, where the slope parameters 	 and 	0 only
moderately depend on the model parametrization (M) and
the CSL coupling strength (Hv). For M � 330 MeV we
get 	 � 1:8 �1:5� and 	0 � 0:13 �0:12�, while for M �
400 MeV the corresponding values are 	 � 1:6 �1:2�, 	0 �
0:17 �0:16�. The numbers in parentheses are obtained by
doubling Hv.

IV. CONCLUSION

We have studied the effect of instantaneous nonlocal
interactions in the CSL phase of quark matter. We have
introduced momentum-dependent form factors to model
the nonlocality and compared systematically with the local
NJL counterpart.

We have shown that there is a systematic lowering of the
critical chemical potential for the onset of the CSL phase as
well as for the minimal excitation energy (effective CSL
gap) as a function of the nonlocality which can be repre-
sented as a linear dependence on the smoothness parameter
1=� of the Lorentz-type form factor. These qualitative
effects are shown to be robust under changes in the cou-
pling constant used to represent the CSL interaction.

It has been found that hybrid star cooling requires all
quark modes to be paired with a minimal pairing of the
order of 10–100 keV to suppress the direct Urca process in
quark matter. The present model for the CSL phase meets
this requirement and calls for a more detailed analysis of
the cooling phenomenology based on this microscopically
justified pairing pattern.

The smallest gap which governs the cooling phenome-
nology corresponds to the zero z projection of the spin and
thus remains unaffected by the external magnetic field of a
compact star. Moreover, the CSL pairing pattern is a flavor
singlet and insensitive to the flavor asymmetry in a com-
pact star under 
 equilibrium.

Therefore, the CSL phase with nonlocal instantaneous
interactions is particularly interesting for applications in
compact stars and allows us to achieve a suitable descrip-
tion of quark matter properties by choosing the appropriate
form factor models. Although it remains to be shown that
hybrid star configurations with the CSL quark matter phase
could be stable, due to the small gaps, we expect to have
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results reproducing those of the normal quark matter case,
where stable quark matter cores in nonlocal models have
been found.
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[4] T. Schäfer, hep-ph/0304281.
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