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We study the effects of a finite quark mass in the hedgehog configuration in the two phase chiral bag
model. We discuss the chiral properties, such as the fractional baryon number and the chiral Casimir
energy, by using the Debye expansion for the analytical calculation and the Strutinsky’s smearing method
for the numerical computation. It is shown that the fractional baryon number carried by massive quarks in
the vacuum is canceled by that in the meson sector. A finite term of the chiral Casimir energy is obtained
with subtraction of the logarithmic divergence term.
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I. INTRODUCTION

Strangelets of finite volume quark matter with strange-
ness have been one of the most interesting subjects of
exotic particles in hadron and quark physics [1–4]. In
recent studies of strangelets, a model has been presented
for a discussion of chiral symmetry breaking inside a quark
droplet of finite volume quark matter [5–8]. There, in
addition to quark confinement for a finite volume system,
it was allowed that the quarks acquire a finite mass by
dynamical chiral symmetry breaking. In this picture, it was
assumed that the quark interaction was provided by the
Nambu-Jona-Lasinio (NJL) type interaction inside a quark
droplet. In earlier works, the quark wave function was
given by the MIT bag in Refs. [5–7]. Later, in order to
overcome the chiral symmetry breaking at the bag surface,
the chiral bag model was introduced in Ref. [8]. The latter
model was called as the NJL chiral bag model. Such an
idea was first presented by T. Kunihiro in 1983 [9,10].

In the discussion of strangelets by the NJL chiral bag
model, the hedgehog ansatz was used for the pion and ud
quarks to include nonlinear interaction of pions and quarks
[8]. In the history of the study of the chiral bag model since
[11,12], effects of vacuum polarization, such as the anoma-
lous baryon number and the chiral Casimir effects, have
been discussed extensively for massless quarks [13–21]. It
was shown that the correct behavior of the baryon number
was provided by the contribution from the sea quarks [18–
21]. However, their discussions were limited only in the
massless quark. One motivation in the present paper is to
discuss the baryon number conservation for the massive
quark.

In the development of the chiral bag model, several
techniques for calculation of the sea quark contribution
were also developed. In Ref. [18], the fractional baryon
number was derived by using the Multiple Reflection
Expansion method. After that, the Debye expansion was
used [20,21]. The Casimir energy is also affected by the
pion cloud. It was shown that the chiral Casimir energy had

a term of logarithmic divergence [20–23]. The similar
situation can occur in the case of massive quarks.
However, these properties for massive quarks have not
been investigated so far. In the framework of the NJL chiral
bag model, the dynamical quark mass is an order parameter
for the chiral symmetry breaking in the chiral bag [8]. In
order to search the real stable state, we need to take a
variation of the energy with respect to the dynamical quark
mass. There we need to clarify the effect of vacuum
polarization (the chiral Casimir energy) for the finite quark
mass. The result of dynamical symmetry breaking in a
chiral bag was already given in the proceeding paper [8].
The calculation of the chiral Casimir energy is a compli-
cated problem which needs some techniques. It is our
second motivation to discuss a detailed procedure to solve
this problem with keeping the dynamical quark mass as
some fixed value.

We organize this paper as follows. In Sec. II, we propose
a model Lagrangian of the chiral bag with massive quarks.
In this paper, we describe the quarks with a finite Dirac
mass, which is generated through the NJL type interaction
in the chiral bag. In Sec. III, we discuss a fractional baryon
number for massive quarks by using both numerical com-
putation and analytical formulation. In Sec. IV, we discuss
the chiral Casimir energy. Deriving the terms of logarith-
mic divergence the finite term of the chiral Casimir energy
is obtained numerically. We summarize our discussion in
Sec. V.

II. THE CHIRAL BAG WITH MASSIVE QUARKS

In the NJL chiral bag model [8–10], the quark mass in a
finite volume system is induced by the NJL pointlike
interaction [24]. We consider the ud quark sector with a
finite quark mass induced by the mean field approximation
in the scalar channel. The problem which we would like to
discuss here is the chiral vacuum polarization induced by
finite mass of the dynamical quarks. The generation
mechanism of the dynamical quark mass was discussed
in [8]. Therefore, we take the dynamical quark mass as a
constant value in order to concentrate on the chiral vacuum
polarization. The Lagrangian in the ud quark sector is*Electronic address: yasui@th.phys.titech.ac.jp
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written as

 L � � �i@6 � m̂� ��R� r� �
1

2
� U�5 ��r� R�; (1)

which includes a boundary condition explicitly. Here,  �
�u; d�t is the ud quark fields, and the ud quark mass matrix
is given by m̂ � diag�mu;md� with flavor symmetry m �
mu � md. The ud quark mass is the sum of the current
mass and the constituent mass which is generated in the
nonzero expectation value of the quark scalar condensate
�qq. In general, the constituent quark mass can be posi-
tioned dependent. Here, in order to simplify the essential
discussion of the finite quark mass, we treat the quark mass
as a constant. For a bag configuration, we assume a static
spherical bag with radius R. The step function is multiplied
in the first term in order to confine quarks inside the bag.
Here, r is a distance from the center of the bag. The second
term with the delta function realizes the chiral invariant
boundary condition at the bag surface, where we define

 U�5 � ei ~�� ~��5 ; (2)

with the � meson field ~� and the Pauli matrix ~�. In this
paper, we do not explicitly show the Lagrangian in the pion
sector, since our current interest is to study the chiral
vacuum polarization of the quarks in the bag.

In order to consider the nonlinear effect of the pion, we
assume the hedgehog ansatz in the � meson sector, where
the pion field conserves the grand spin ~K � ~J� ~I with
total angular momentum ~J and isospin ~I. The hedgehog
pion field for r > R is written as

 ~� � F�r� ~n; (3)

with a chiral angle F�r� and a unit radial vector ~n in the real
space [25,26].

According to the � meson sector, we introduce the
hedgehog basis set in the ud quark sector [19,27]. We
construct the quark wave function  ��� for natural (� �
�) and unnatural (� � �) assignment for grand spin K,
respectively;

  ��� �
a0jK�pr�j0i � a1jK�pr�j1i

a2jK�1�pr�j2i � a3jK�1�pr�j3i

� �
; (4)

and

  ��� �
b2jK�1�pr�j2i � b3jK�1�pr�j3i
b0jK�pr�j0i � b1jK�pr�j1i

� �
: (5)

The coefficients ai and bi (i � 0; � � � ; 3) are determined by
satisfying the equation of motion of the ud quark for � �
�, respectively. jK�pr� is the spherical Bessel function and
p is the ud quark momentum. Here, the two-component
spinors j0i; � � � ; j3i are given by

 j0i � YKM��;���
0
0;

j1i �
X

	��1;0;1

�KM�	1	jKM�YKM�	��;���1
	;

j2i �
X

	��1;0;1

�K � 1M�	1	jKM�YK�1M�	��;���
1
	;

j3i �
X

	��1;0;1

�K � 1M�	1	jKM�YK�1M�	��;���1
	;

(6)

where YLM��;�� is the spherical harmonics with spherical
coordinate ��;��. �G	 are eigenstates of ~G � ~S� ~I �
~
=2� ~�=2,

 �0
0 �

1���
2
p �j "ijdi � j #ijui�; �1

1 � j "ijui;

�1
0 �

1���
2
p �j "ijdi � j #ijui�; �1

�1 � j #ijdi:

(7)

The sign of naturalness � corresponds to the parity P �
���K��.

In order to satisfy the equation of motion, the coeffi-
cients ai for naturalness assignment � � � are subjected
to

 

E�m 0 �iPp �iQp
0 E�m �iQp iPp
iPp iQp E�m 0
iQp �iPp 0 E�m

0BBB@
1CCCA

a0

a1

a2

a3

0BBB@
1CCCA � 0; (8)

where we define

 P �

����������������
K � 1

2K � 1

s
; Q �

����������������
K

2K � 1

s
; E �

������������������
p2 �m2

q
:

(9)

Then, we obtain two independent solutions

 ~a 0 �

a00
a01
a02
a03

0
BB@

1
CCA � N0

p
E�m iP
p

E�m iQ
1
0

0
BB@

1
CCA;

~a00 �

a000
a001
a002
a003

0BBB@
1CCCA � N00

p
E�m iQ
� p

E�m iP
0
1

0BBB@
1CCCA:

(10)

Here, the normalization constants N0 and N00 are deter-
mined by the condition

R
d3x ���y ��� � 1,
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N0�2 � R3 E
E�m

�
jK�pR�

2 � jK�1�pR�
2

�
1

pR

�
2�K � 1� �

m
E

�
jK�pR�jK�1�pR�

�
;

N00�2 � R3 E
E�m

�
jK�1�pR�

2 � jK�pR�
2

�
1

pR

�
2K �

m
E

�
jK�1�pR�jK�pR�

�
: (11)

The final solution is expressed as a linear combination of ~a0

and ~a00,

 ~a � c0 ~a0 � c00 ~a00

� c0N0

p
E�m iP
p

E�m iQ
1
0

0BBB@
1CCCA� c00N00

p
E�m iQ
� p

E�m iP
0
1

0BBB@
1CCCA; (12)

with constants c0 and c00. We obtain a solution for the
unnaturalness assignment � � � in the same way.

The eigenenergy of the hedgehog ud quark is given by
the boundary condition at the bag surface r � R,

 i ~n � ~� ��� � �ei ~�� ~nF�R��5 ���: (13)

By substituting the solution of Eq. (12), we obtain an
equation for the eigenvalue, which is given by
 

cosF�R�
�
jK�pR�2 �

�
E� �m

p

�
2
jK�1�pR�jK�1�pR�

�

� �
E� �m

p
jK�pR�fjK�1�pR� � jK�1�pR�g

�
E� �m

p
sinF�R�
2K � 1

jK�pR�fjK�1�pR� � jK�1�pR�g � 0:

(14)

The equation for K � 0 is obtained by setting j�1�pR� �
0. Equation (14) determines the energy spectrum of a quark
in the bag. We mention that there is a symmetry of the
energy level in the positive and negative energy

 EKP�F� � �EK�P��F�: (15)

This relation has its origin in the invariance of the
Lagrangian (1) under the transformation U ! U� or F !
�F. Another symmetry under F ! F� � and �! �� is
conserved in the massless case. However, this symmetry is
not conserved for the finite mass. This is due to an asym-
metry of the quark energy levels, which is shown in Fig. 1
in [8].

III. BARYON NUMBER CONSERVATION

In the limit of the zero bag radius, the meson field in the
Skyrme Lagrangian gives a mapping from R3 	 S3 to
SU�2� 	 S3 by imposing a boundary condition U � 1 at
r! 1: The winding number in the mapping is identified

with the baryon number [25,26]. The fractional baryon
number due to the pion cloud is given as [25,26]

 B� � �
1

�

�
F�

1

2
sin2F

�
; (16)

where F is the chiral angle at the bag surface. In the pure
Skyrmion, the chiral angle is given as n� with integer n.

On the other hand, in the chiral bag with finite bag
radius, the chiral angle is not generally equal to n�.
Therefore, the meson carries only a fractional baryon
number. There, it has been known that the total baryon
number is composed of the fractional baryon numbers of
the pion, of the vacuum and of the valence quarks in a bag
[18–21,27]. The baryon number carried by the vacuum
quarks is defined as

 Bq�m;F� �
1

2
hOj
 y;  �jOi

� �
1

2
lim
t!0�

X
n

sgn�En�e�tjEnj: (17)

Here, jOi is a vacuum state of an empty bag filled with
negative energy quarks, En � En�m;F� an n-th state en-
ergy of a quark with massm, and at the chiral angle F at the
bag surface. The quantum number n labels the grand spin
and parity. The sum is taken over for all the quark states n
with positive and negative energies in the bag. In order to
obtain the convergence in the sum, an exponential type
regularization is multiplied.

In the studies of the chiral bag model with massless
quarks, it was shown that the baryon number of the vacuum
quarks was canceled by that of the meson cloud [13–
16,18–21,23]. Accordingly, the total baryon number is a
conserved quantity. This result should also be the case for
the chiral bag with massive quarks. It is expected that the
baryon number conservation is not affected by the finite
quark mass, because U�1�B symmetry is conserved in our
Lagrangian (1). In the following, we show explicitly the
cancellation of the fractional baryon number between the
vacuum massive quarks and the pion cloud. We use both
numerical computation and analytical procedure.

First, we show the numerical computation. In the studies
of chiral bag model with massless quarks, the regulariza-
tion, such as the Gaussian type [22], heat kernel type [23],
have been used with success. In this paper, we use the
Strutinsky’s smearing method [28,29]. This method has an
advantage that the states necessary for computation are
limited up to the grand spin Kmax 	 40 in order to obtain
a good convergence, while we need Kmax 	 100 at least for
the other regulators. We rewrite the baryon number (16) by
introducing a delta function for a density of states to pick
up the discrete levels

 Bq�m;F� � �
1

2

Z 1
�1

dx
X
n

sgn�En���x� EnR� (18)

Then, we replace the delta function by a gaussian function,

CHIRAL SYMMETRY BREAKING AND VACUUM . . . PHYSICAL REVIEW D 74, 114003 (2006)

114003-3



 Bq�m;F� �
Z 1
�1

dx�x�m;F�; (19)

where we define a function for a density of states

 �x�m;F� � �
1

2

X
n

sign�En�
e��x�EnR�

2=�2

�
����
�
p ; (20)

where � ’ 2� 3 is a smearing parameter. We obtain Bq �
0 at F � 0, since the energy spectrum is symmetric for
positive and negative energies. In order to obtain a rapid
convergence in the sum, it is convenient to define the
difference of �x�m;F� between finite F and F � 0,

 ~� x�m;F� � �x�m;F� � �x�m; 0�: (21)

Therefore, the baryon number defined by Eq. (16) is given
by an alternative formulation

 Bq�m;F� �
Z 1
�1

dx~�x�m;F�: (22)

For a numerical computation, we restrict the range of the
x-integral in a finite interval x 2 
�xmax; xmax�.

 Bq�m;F� �
Z xmax

�xmax

dx~�x�m;F�: (23)

We use xmax ’ 20 to obtain sufficient convergence.
Carrying out numerical computation, we obtain the result
which is given by

 Bq�m;F� �
1

�

�
F�

1

2
sin2F

�
(24)

for F 2 
F0; F0 � ��. The value of F0 depends on the
quark mass; F0=� � �0:5, �0:695, �0:816 and �0:878
for mR � 0, 1, 2 and 3, respectively. The critical chiral
angle is given by a crossing point of the first 0� state at
E � 0 [8]. The value of the critical chiral angle is modified
from �=2 due to asymmetry in the Dirac spectrum induced
by finite quark mass. The fractional baryon number (24) is
independent of quark mass m, and coincides with the
opposite sign of Eq. (16) in the meson sector. Therefore,
the fractional baryon number by meson and vacuum quark
cancel each other for any quark mass.

The total baryon number is equal to A for a quark droplet
with 3A valence quarks for any chiral angle. Let us inves-
tigate the case of a baryon. The baryon number carried by
valence and vacuum quarks for chiral angle F0 <F < 0 is
given as a sum of the valence quark and the fractional
baryon number

 B�m;F�val�sea � 1�
1

�

�
F�

1

2
sin2F

�
: (25)

For��< F < F0, the valence quark is absent since the 0�

state is absorbed in the vacuum. Then, the baryon number
is obtained by substituting F� � instead of F from a
periodicity,

 B�m;F�val�sea �
1

�

�
�F� �� �

1

2
sin2�F� ��

�

� 1�
1

�

�
F�

1

2
sin2F

�
: (26)

Therefore, the total baryon number is one for any chiral
angle. In the same way, the conservation of baryon number
holds for any quark droplets.

Second, we present an analytical calculation of the
baryon number (17) by using the Debye expansion. This
method was originally developed in the chiral bag with
massless quark [20,21]. We apply this formalism to the
massive case. We rewrite Eq. (17) in terms of the quark
propagator as in [20,21]. Then, we obtain

 Bq�m;F� �
1

2
lim
�!0�

Z 1
�1

dx
2i�

ei�x
X1
K�0

�2K � 1�
d
dx

� ln
�
SK�m;F; ix�
S�K�m;F; ix�

�
(27)

Here, SK�m;F;p� is given as a product of the left hand side
of the eigenvalue equation Eq. (14) for natural (� � �1)
and unnatural (� � �1) states. For the sake of using the
Debye expansion, we substitute an imaginary number ix
for pR in the spherical Bessel function. We explicitly show

 S0�F; ix� � cosF�j1�ix�
2 � j0�ix�

2�

� 2
E sinF� �m

p
j0�ix�j1�ix� (28)

for K � 0, and
 

SK�m;F; ix� �
� �E

�p
cosF�jK�ix�2 � jK�1�ix�jK�1�ix��

�
sinF

2K � 1
jK�ix��jK�1�ix� � jK�1�ix��

�
2

�

�
�m
�p
�jK�ix�2 � jK�1�ix�jK�1�ix��

� jK�jK�1�ix� � jK�1�ix��
�

2
: (29)

for K � 0. For a short notation, we write �m � mR, �p � x
and �E �

�����������������
�m2 � x2

p
. The x-integral picks up an eigenvalue

as a residue instead of solving directly the boundary con-
dition. We note that Eq. (27) is an exact formulation, but it
is not practical to consider the x-integral and the sum over
K without approximation. In order to obtain the final result,
it is sufficient to use an asymptotic behavior of the quark
energy spectrum.

In the following manipulation, we discuss theK � 0 and
K  1 components separately for convenience. First, we
consider the K � 0 component, which is defined by

 B�K�0�
q �m;F� �

1

2
lim
�!0�

Z 1
�1

dx
2i�

ei�x
d
dx

ln
�
S0�m;F; ix�
S�0�m;F; ix�

�
:

(30)
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It is convenient to write the function S0�m;F; ix� in a polar
coordinate

 S0�m;F; ix� � R0�x�e
i�0�x�: (31)

By using the asymptotic form

 j1�ix� ’
i

2x
�ex � e�x�; (32)

we obtain

 �0�x� ’ arctan
�
e2x � e�2x

e2x � 2�2x

�����������������
x2 � �m2
p

sinF� �m
x cosF

�
: (33)

Then, it is straightforward to perform the integral, giving

 B�K�0�
q �m;F� ’

F
�
; (34)

for any quark mass m.
Second, for K  1, we use the Debye expansion for the

modified Bessel function in estimation of Eq. (29). In our
notation, the modified Bessel function I��x� is defined by

 jK�ix� �
�����
�
2x

r
iKI��x�; (35)

with � � K � 1=2. The Debye expansion is a uniform
asymptotic expansion with no constraint between � and
x. The Debye expansion gives

 I��x� ’
��1=2�

�
�����
2t
p ef��x�; (36)

in the lowest order, where we define t �
����������������
�2 � t2
p

and
f��x� � t� �sinh�1��=x�.

Now, let us define

 B�K1�
q �m;F� �

1

2
lim
�!0�

Z 1
�1

dx
2i�

ei�x
X
K1

d
dx

� ln
�
SK�m;F; ix�
S�K�m;F; ix�

�
: (37)

Here, we write SK�m;F; ix� in a polar coordinate

 SK�m;F; ix� � RK�x�ei�K�x�: (38)

Then, we apply the Debye expansion (35). After a little
tedious calculation, we pick up only the terms of the
leading order of �m, and obtain

 �K�x� ’ arctan
�
�

1

2K � 1

�
�x

2t3
sin2F�

4� �m
t

��
: (39)

We consider that the quark mass m is smaller as compared
with the momentum p. Indeed, this is a good approxima-
tion, since we are interested in the asymptotic behavior of
the quark energy spectrum. The x-integral for �K�x� is
integrated out and the integral is determined only by
�K�1� ��K��1�. Concerning the term which has no
quark mass, we use an identity

 

X
K1

cos���z�
�

� � lntan��z=4� � 2 cos��z=2�; (40)

and

 lim
�!0�

Z 1
�1

dx
2�i

e�i�x
X
K1

d
dx

�
�i

�x

2t3

�
� �

1

2�
: (41)

Concerning the term proportional to �m, we use

 lim
�!0�

Z 1
�1

dx
2�i

e�i�x
X
K1

d
dx

4� �m
t
� 0; (42)

which indicates the mass term does not contribute to the
integral. Consequently, we obtain the result

 B�K1�
q �m;F� � �

sin2F
2�

: (43)

Finally, by Eqs. (34) and (43), the fractional baryon num-
ber obtained in the analytical procedure coincides with the
numerical result Eq. (24).

IV. CHIRAL CASIMIR ENERGY

The chiral Casimir energy arises as a result of the
modification of quark energy levels for finite pion cloud.
Following the regularization scheme in the baryon number,
the chiral Casimir energy is defined by

 EC�m;F� �
1

2
hOj
 y; H �jOi

� �
1

2
lim
t!0�

X
n

sgn�En�Ene�tjEnj; (44)

as in Refs. [13–16,19–21,23,27,30].
We show the numerical procedure by using the

Strutinsky’s smearing method. By using the Gaussian func-
tion (20), we rewrite Eq. (44) as

 EC�m;F� �
Z 1
�1

dxx�x�m;F�: (45)

By choosing the reference point at F � 0, we obtain an
alternative formulation

 �EC�m;F� � EC�m;F� � EC�m; 0� �
Z 1
�1

dxx~�x�m;F�:

(46)

Restricting the range of integral in a finite range of

�xmax; xmax� with sufficient convergence, we obtain,

 �EC�m;F� �
Z xmax

�xmax

dxx~�x�m;F�: (47)

In order to achieve a rapid convergence of the integral, it is
much more practical to use the partial integration.1 We

1We use a relationship
R
1
�1 dxx~�x�m;F� �

�
R
1
�1 dx

x2

2 ~�0x�m;F� with ~�x�m;F� ! 0 for jxj ! �1.
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mention that we need xmax 	 40 to obtain the convergence
in the calculation. More states are necessary for the chiral
Casimir energy as compared for the baryon number
(xmax 	 20).

For massless quarks, it has been known that there is a
logarithmic divergence term in the Casimir energy (44). It
was shown that the divergence term is proportional to
sin2F [13–16,20–23,27,30]. Here, we also derive the loga-
rithmic divergence term for massive quark by using the
Debye expansion developed in [20,21]. Following the pro-
cedure in [20,21], we rewrite the Casimir energy as
 

�EC�m;F� �
1

2R
lim
�!0�

Z 1
�1

dx
2�

xei�x
X1
K�0

�2K � 1�
d
dx

� ln

��������SK�m;F; ix�
SK�m; 0; ix�

��������: (48)

Just as in the case of the baryon number, we consider the
calculation for K � 0 and K  1, separately for
convenience.

First, we investigate the K � 0 sector,

 �E�K�0�
C �m;F� �

1

2R
lim
�!0�

Z 1
�1

dx
2�

xei�x
d
dx

� ln

��������S0�m;F; ix�
S0�m; 0; ix�

��������: (49)

We apply the asymptotic form of the spherical Bessel

function (32). By expanding jS0�m;F; ix�=S0�m; 0; ix�j in
the lowest order of m, we obtain

 �E�K�0�
C �m;F� ’

1

2R
lim
�!0�

Z 1
�1

dx
2�

xei�x
d
dx

�
cos2F

� sinFtanh2�2x� � sinF
2 �m
x

tanh2�2x�
�
:

(50)

The first two terms in the integrand, which does not contain
quark mass, are given in [20,21]. The integral of the third
term proportional to �m is easily shown to be equal to zero.
Consequently, we obtain the result

 �E�K�0�
C �m;F� ’

F2

4�R
: (51)

The divergence term does not appear in the K � 0 sector.
Second, we investigate the sum over K  1,

 

�E�K1�
C �m;F� �

1

2R
lim
�!0�

Z 1
�1

dx
2�

xei�x
X1
K�1

�2K � 1�
d
dx

� ln

��������SK�m;F; ix�
SK�m; 0; ix�

��������: (52)

After a little troublesome calculation by using the Debye
expansion and expanding in the lowest order of �m, we
obtain

 

ln

��������SK�m;F; ix�
SK�m; 0; ix�

�������� ’ �sin2F
�
�1� L�L��2

�1� L2
���1� L

2
��
�

1

�2K � 1�2
�L� � L��2

�1� L2
���1� L

2
��

�
�

�m2

2x2 sin2F
�1� L�L��2

�1� L��2�1� L��2

� �
1

2
sin2F

1

t2

��
2�

�2

t2

�
�

�
1�

�2

t2

��
2�

3�2

t2

�
1

t
�O�1=t2�

�

�
�m2

2
sin2F

1

4

�
1�

�2

t2

�
1

t2

�
1�

�
1�

3�2

t2
1

t

�
�O�1=t2�

�
: (53)

Here, we define L� � I��1=I� for a short notation. The first term, which does not contain quark mass, coincides with the
case of massless quarks [20,21]. The second term proportional to �m is further analyzed as followings. By taking a
derivative with respect to x, we obtain
 

x
d
dx

ln

��������SK�m;F; ix�
SK�m; 0; ix�

�������� ’ � 1

2
sin2F

�
�4

x4

t6
�

6

t3
�

31�2

t5
�

46�4

t7
�

21�6

t9

�

�
�m2

8
sin2F

�
�

2

t2
�

3

t3
�

6�2

t4
�

23�2

t5
�

4�4

t6
�

41�4

t7
�

21�6

t9

�
: (54)

Then, introducing new variables h � t=� and z � x=�, we have
 

�E�K1�
C �m;F� ’

sin2F
�R

lim
�!0�

Z 1
0
dz

2z4

h6

X1
K�1

cos���z� �
sin2F
�R

lim
�!0�

Z 1
0
dz
�

6

h3 �
31

h5
�

46

h7 �
21

h9

� X1
K�1

cos���z�
�

�
�m2

8�R
sin2F lim

�!0�

Z 1
0
dz
�
�

1

h2 �
6

h4 �
4

h6

� X1
K�1

cos���z�

�
�m2

8�R
sin2F lim

�!0�

Z 1
0
dz
�
�

1

h3 �
23

h5
�

41

h7 �
21

h9

� X1
K�1

cos���z�
�

: (55)
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The summation over K  1 and the integral is achieved by
the formula Eq. (40). Finally, we arrive at the result
 

�E�K1�
C �m;F� ’

�
�

3

16R
�

�
�

2

15�R
ln��

12 ln2� 9

30�R

�

�
�m2

64R
�

1

15

�m2

8�R
�ln�� 1� 4 ln2�

�
� sin2F (56)

Therefore, we obtain a logarithmic divergence term with
coefficient of sin2F for a finite quark mass. Our result is
consistent with that for the massless quark [20,21]. The
logarithmic divergence appears as a consequence of the
UV behavior of the quark modes. On the other hand, the
mass effect influence the IR behavior. Therefore, it is a
natural consequence that the chiral Casimir energy for
finite quark mass has a logarithmic divergence as in the
massless case.

Now, in order to remove the logarithmic divergence, we
subtract the second derivative of the chiral Casimir energy
with respect to the chiral angle at the reference point F �
0, and we obtain a finite contribution [20–22,28–30]

 Efin
C �m;F� � �EC�m;F� �

1

2
sin2F

@2EC�m;F�

@F2

��������F�0
:

(57)

The regularization scheme in Eq. (57) was shown to con-
sistent with the condition that axial flux through the bag
surface remains finite at the zero bag radius limit
[19,22,23]. In addition, the linear divergence in axial flux
can be subtracted by the this regularization. The same
regularization scheme was adopted to the massive quark
case.

In Fig. 1, we show the chiral Casimir energy Efin
C as a

function of the chiral angle F. The lines are distinguished
by the quark masses mR � 0 (dashed line), mR � 1 (solid
line), respectively. It is a remarkable point that the Casimir
energy for the massive quark takes a nonzero value at F �
��, while that of the massless quark becomes zero at F �
��. This is because that the massive quark has an asym-
metric energy spectrum between F � 0 and��, while the
massless quark has a symmetric spectrum, as shown in
Fig. 1 in [8].

Here, we recall the Cheshire Cat picture in the chiral bag
model with massless quarks. There, the continuous trans-
formation from the chiral bag to the Skyrmion was induced
in the limit of small bag radius [13–15,31–34]. This pic-
ture seems not to be applied to the case of the massive
quarks, since the chiral Casimir energy takes a finite value
at the zero bag radius, or F � ��. However, this obser-
vation does not make us abandon our discussion. Indeed, in
our formulation, the quark mass is a dynamical variable
which should be determined by the energy variation. Our
previous result suggested that the chiral symmetry was

restored in the limit of small bag radius [8]. Therefore,
the NJL chiral bag model holds the Cheshire Cat picture.

V. SUMMARY

We discussed the chiral vacuum properties in the hedge-
hog configuration in the chiral bag model which contained
massive quarks. This study gave a detailed description in
order to complete the discussion in the chiral bag model
with the NJL interaction, which was called as the NJL
chiral bag model [8]. There, the chiral vacuum polarization
for the finite quark mass should be understood in order to
obtain the stable state for dynamical chiral symmetry
breaking. In the present paper, we took the dynamical
quark mass as a constant value, and investigated the chiral
vacuum polarization effects, such as the fractional baryon
number and the chiral Casimir energy, for the finite quark
mass with an emphasis on the technical procedure.

We showed the numerical calculation by the Strutinsky’s
smearing method and the analytical technique by the
Debye expansion. It was shown numerically and analyti-
cally that the fractional baryon number carried by vacuum
massive quarks inside the bag was canceled that of the �
meson outside the bag. Therefore, the total baryon number
is exactly conserved. By using the Debye expansion, it was
shown that the chiral Casimir energy had a logarithmic
divergence term. The chiral Casimir energy was obtained
numerically by the Strutinsky’s smearing method by re-
moving the divergence term. It is a point different from
massless quark that the chiral Casimir energy for massive
quark had a nonzero value at the chiral angle F � ��.

As further development, we plan to discuss a fully chiral
symmetric equation of motion for a finite quark mass. In
our present analysis of the NJL chiral bag model, we
performed a mean field approximation only in the scalar
channel in the four point interaction [8]. However, in the
hedgehog configuration, it may be allowed to have a finite

 

−2 −1 0
F/π

0

2

4

6

E
C

fin
R

/N
c

mR=0
mR=1

FIG. 1. The Casimir energy as a function of the chiral angle at
the bag surface. The dashed and solid lines indicate the quark
masses mR � 0 and mR � 1, respectively.
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expectation value of �qq, not only in the sigma channel, but
also in the pion channel. In the latter case, the expectation
value of �qq with pion quantum number can be given as a
finite value in a basis set of the hedgehog quark wave
function. This study is now in progress. The quantization
of the hedgehog configuration for massive quark is an
important subject in order to obtain the state with definite
spin and isospin. It is also an interesting subject to include
the strangeness sector in our framework. These subjects are
left as future works.
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