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A mass-independent texture is a set of linear relations of the fermion mass-matrix elements which
imposes no constraint on the fermionic masses nor the Majorana phases. Magic and 2–3 symmetries are
examples. We discuss the general construction and the properties of these textures, as well as their relation
to the quark and neutrino mixing matrices. Such a texture may be regarded as a symmetry, whose unitary
generators of the symmetry group can be explicitly constructed. In particular, the symmetries connected
with the tribimaximal neutrino mixing matrix are discussed, together with the physical consequence of
breaking one symmetry but preserving another.
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I. INTRODUCTION

It was found by Harrison, Perkins, and Scott [1] that
neutrino mixing could be described by the tribimaximal
PMNS matrix
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whose mixing angles are given by sin2�13 � 0, sin2�12 �
0:333, and sin2�23 � 0:50. These values agree very well
with the numbers sin2�13 � 0:9�2:3

�0:9� 10�2, sin2�12 �

0:314�1�0:18
�0:15�, and sin2�23 � 0:44�1�0:41

�0:22� obtained from
a global fit of the experimental data [2].

The symmetric Majorana neutrino mass matrixM, in the
basis of a diagonal charged lepton matrix, is related to the
PMNS unitary mixing matrix U � fuijg and the complex
neutrino masses m � diag�m1; m2; m3� by

 M � UmUT �

�X
k

uikmkujk

�
: (2)

The mass matrix MHPS obtained by taking U � UHPS

obeys a 2–3 symmetry [3,4] and a magic symmetry [5–
7]. The former refers to the invariance of MHPS under a
simultaneous permutation of the second and third columns,
and the second and third rows. The latter refers to the
equality of the sum of each row and the sum of each
column. Moreover, the correspondence is one to one
[3,5] in that any symmetric mass matrix which is 2–3
and magic symmetric will lead to the mixing matrix UHPS.

Textures are linear relations between mass-matrix ele-
ments. They have been studied extensively, especially for
those with a fixed number of zeros [8]. They relate the
matrix elements of the diagonalization matrix to the
masses, and also the Majorana phases for Majorana neu-
trinos. We study in this paper mass-independent textures,

the type in which no constraints whatsoever are imposed on
the masses nor the Majorana phases, so that whatever
restrictions derived from them occur only among the
diagonalization-matrix elements. For example, the 2–3
and magic symmetries mentioned above are both mass-
independent textures. In fact, the 2–3 texture for M gives
rise to a bimaximal mixing, and its magic texture gives rise
to a trimaximal mixing [3–7], neither of which has any-
thing to do with neutrino masses nor Majorana phases. In
light of the importance of these two textures for neutrino
mixing, we thought it worthwhile to carry out a general
study of the construction and the properties of the mass-
independent textures. Whether they are also important for
quark mixing remains to be seen. When we mention a
texture in what follows, we automatically mean a mass-
independent texture unless stated otherwise.

We shall show that a symmetry for a mass matrix leads
to a mass-independent texture, and a mass-independent
texture gives rise to a symmetry. Thus a study of these
textures is a study of symmetry. It should be mentioned that
the symmetry here refers to a horizontal symmetry of the
Standard Model with a left-handed Majorana mass, in
which the sole isodoublet Higgs transforms like a singlet
under the horizontal symmetry of fermions. In the more
general case when additional Higgs are introduced which
transforms nontrivially under the horizontal symmetry, the
mass-matrix elements are linear combinations of the ap-
propriate horizontal Clebsch-Gordan coefficients, and the
Higgs expectation values which break the horizontal sym-
metry. If the number of arbitrary parameters are smaller
than the number of independent mass-matrix elements,
then one or several linear relations exists between the
mass-matrix elements and a texture is present. However
these textures may nor may not be mass-independent, so
they may or may not correspond to symmetries in the
present sense. An example of such a texture which is
mass independent is given at the end of Sec. VI.

The construction and the general properties of mass-
independent textures will be given in the next section.
The relation between textures and symmetries will be*Electronic address: Lam@physics.McGill.ca
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discussed in Sec. III. Given a texture, the allowed form of
the diagonalization matrix will be discussed in Sec. IV. It is
generally rather restrictive unless a mass degeneracy ex-
ists. As a consequence, it is impossible for both types of
quarks or both types of leptons to share a common texture,
except in an approximate manner in which certain masses
are regarded as degenerate. These discussions can be found
in Sec. V. We will discuss in Sec. VI various ways symme-
tries can be assigned to the lepton mass matrices for the
neutrino mixing matrix in the tribimaximal form, and the
physical consequence of breaking one symmetry while
preserving another. Finally, a summarizing conclusion is
presented in Sec. VII.

II. MASS-INDEPENDENT TEXTURES

We consider two kinds of mass matrices M, symmetric
and hermitian. The Majorana neutrino mass matrix M� is
symmetric, but the charged fermion matrices Mf �

MfM
y
f �f � u; d; e� are hermitian, where Mf is the

Dirac mass matrix for fermion f.
A hermitian mass matrix M can be diagonalized by a

unitary matrix V, so that VyMV � � � diag��1; �2; �3�,
with �i being the square masses. If vi is the ith column of
V, then the diagonalization relation is equivalent to an
eigenvalue problem

 Mvi � �ivi; �i � 1; 2; 3�: (3)

Given a normalized column vector w � �w1; w2; w3�
T , a

mass-independent texture for M can be constructed by
equating w to one of its eigenvectors vi. If Mw � �iw,
then it follows that
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These two relations define a texture. All three expressions
in (4) are equal to �i, but these two relations do not care
what �i is, so the texture relations are mass independent.

If M is a symmetric mass matrix, then we can find a
unitary V to make VTMV � � � diag��1; �2; �3� diago-
nal. The �i’s here are generally complex: their norms are
the neutrino masses, and their phases are the Majorana
phases, though one of them is unphysical.

If vi is the ith column vector of V, instead of (3) we now
have Mvi � �iv

�
i . We shall refer to vi as a pseudoeigen-

vector. Instead of (4) we have
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For real w’s, there is no difference between (4) and (5).
Let us consider two illustrative examples. If w �

�1; 1; 1�T=
���
3
p

, then (4) becomes
P
kM1k �

P
kM2k �P

kM3k, so this texture is just the magic symmetry when
M is a symmetric matrix. If w � �0; 1;�1�T=

���
2
p

, then (4)

requires M12 � M13 and M22 �M32 � M23 �M33. If M
is symmetric, then the last equality becomes M22 � M33,
so this texture is just the 2–3 symmetry.

Suppose w and w0 are two mutually orthogonal normal-
ized column vectors. The texture imposed by asking bothw
and w0 to be eigenvectors of M define a full texture, so
named because in that case the third normalized eigenvec-
tor w00 is also known. Up to a phase it is just the unique
vector orthogonal to w and w0. The diagonalization matrix
V is then fully determined up to umimportant phases, and
order of the eigenvectors, provided there is no mass degen-
eracy in M. The 2–3 and magic textures taken together
define a full texture, whose diagonalization matrix is just
V � UHPS [5,6]. We shall sometimes refer to what is
defined in (4) or (5) as a simple texture to distinguish it
from a full texture.

It is clear from (4) that unless one of the wi’s is zero, the
only diagonal matrix with any texture is a multiple of the
identity matrix. If a wi is zero, Mii may be arbitary, but the
other matrix elements of the diagonal matrix must be
equal. The only texture enjoyed by a general diagonal
matrix is the ones defined with two vanishing wi’s. This
characterization of diagonal matrices with a nontrivial
texture will be used later.

IfMa andMb are hermitean mass matrices with the same
texture, i.e., both have w as an eigenvector, then their
inverses, their product, and their linear combination all
havew as an eigenvector, so they all have the same texture.
We will refer to this property of textures as closure. If w is
real, then M� also has the same texture, and the symmetric
mass matrices are closed as well.

III. TEXTURE AND SYMMETRY

Mass-independent textures may be regarded as symme-
tries, and vice versa. A unitary transformation f ! Gff of
the left-handed charged fermion f�� u; d; e� leads to the
tranformation Mf ! GyfMfGf of its hermitean mass ma-
trix. ThusMf is invariant and Gf a symmetry if and only if
MfGf � GfMf. This calls for simultaneous eigenvectors
of Gf and Mf. Similarly, a unitary transformation �!
G�� of the left-handed Majorana neutrino leads to the
tranformation M� ! GT

�M�G� of its symmetric mass ma-
trix. ThusM� is invariant andG� is a symmetry if and only
if M�G� � G��M�. As a result, if vi is a pseudoeigenvector
of M�, then G�vi is also a pseudoeigenvector of M�,
making it possible for the pseudoeigenvectors of M� to
be the eigenvectors of G�.

Given a symmetry G of a mass matrix M, all the eigen-
vectors of G are the (pseudo-) eigenvectors of M if G has
no degenerate eigenvalues. In that case M possesses a full
texture defined by the eigenvectors of G. However, if G is
doubly degenerate, then only its nondegenerate eigenvec-
tor defines a (simple) texture for M. If it is triply degener-
ate, then it is a multiple of the unit matrix and everything is
trivial.
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Conversely, suppose Mf or M� has a mass-independent
texture defined by w. To construct its symmetry operator
G, we need to find two normalized column vectors v0 and
v00 which are mutually orthogonal and both orthogonal to
w. Then the matrix

 G � g1ww
y � g2�v

0v0y � v00v00y� (6)

obeys MfG � GMf for hermitean mass matrices, and
M�G � G�M� for symmetric mass matrices if gi are
real. This is so because v0v0y � v00v00y � w0w0y �
w00w00y if w0 and w00 are the other two normalized
(pseudo-)eigenvectors of M.

In order for G to be unitary, the numbers g1 and g2 must
both be a pure phase. For neutrino mass matrix they also
have to be real, so they are �1. If by convention we fix
g1 � �1 and g2 � 1, then the symmetry matrix G is
unique and G2 � 1. Of course �G is unitary and it com-
mutes with M as well, so the symmetry group for any
Majorana neutrino mass matrix is at least Gw � Z2 � Z2,
corresponding to the four possible signs of g1 and g2.

For charged fermions, g1 and g2 could be any phase
factor, so the symmetry group is Gw � U�1� �U�1�. If we
want to limit ourselves to real matrices, then again it comes
down to Gw � Z2 � Z2.

If the mass matrix has a full texture defined by the
vectors w and w0, then up to a phase w00 is also known,
so that we can take �v0; v00� to be �w0; w00� for the group Gw,
and to be �w;w00� for the group Gw0 . The generators of Gw
and Gw0 commute with each other, so the symmetry group
is then Gw � Gw0 .

If it is known that the mass matrix Mf has the same
eigenvalue for its eigenvectors w0 and w00, then the sym-
metry group is enlarged to Gw � U�1� �U�2� because the
symmetry operator is a more general

 G � g1ww
y � �u11v

0v0y � u22v
00v00y � u12v

0v00y

� u21v
00v0y�; (7)

where g1 is a phase factor and uij are the elements of any
2� 2 unitary matrix u.

If the same degeneracy occurs in the Majorana neutrino
mass matrix M�, then G has to be real to be a symmetry, so
the numbers g1 and uij have to be taken to be real. The
symmetry group is then Z2 �O�2�, where O�2� is the
group of 2-dimensional real orthogonal matrices. Note
that although SO�2� is an abelian group, O�2� itself is
nonabelian.

Since neither the neutrino nor the charged fermion
masses are exactly degenerate, these larger symmetries
can only be approximate. Nevertheless, they may be useful
in model constructions. An example of this kind will be
discussed below.

Let us illustrate these various possibilities with some
examples for the Majorana neutrino mass matrix M.

Suppose M has 2–3 texture defined by w �
�0; 1;�1�T=

���
2
p

, then we can take v0 � �0; 1; 1�T=
���
2
p

and
v00 � �1; 0; 0�T=

���
2
p

. With g1 � �1 and g2 � 1, its unitary
symmetry matrix constructed from (6) is

 G2–3 �

1 0 0
0 0 1
0 1 0

0
@

1
A: (8)

This is hardly surprising for a 2–3 texture because it is just
the 2–3 permutation matrix. Note that if we did not require
G to be unitary, then there are many other real matrices that
commute with M. For example, taking g1 � 2 and g2 � 0,

 G �
0 0 0
0 1 �1
0 �1 1

0
@

1
A; (9)

is such a matrix.
Next let us assumeM to possess the magic texture. Then

w � �1; 1; 1�T=
���
3
p

so we can take v0 � �1;�1; 0�T=
���
2
p

and
v00 � �1; 1;�2�T=

���
6
p

. With g1 � �1 and g2 � 1, its uni-
tary symmetry operator constructed from (6) is

 Gmagic �
1

3

1 �2 �2
�2 1 �2
�2 �2 1

0
@

1
A: (10)

If we did not require unitarity, then we may, for example,
choose g1 � 3 and g2 � 0. The resulting democracy ma-
trix [6]

 G �
1 1 1
1 1 1
1 1 1

0
@

1
A (11)

also commutes with M, but it is neither unitary nor
invertible.

Since Gmagic is itself 2–3 symmetric, it commutes with
G2–3. Moreover, G2

2–3 � G2
magic � 1, so the symmetry

group for the neutrino mass matrix MHPS is G2–3 �

Gmagic, and both G2–3 and Gmagic are isomorphic to Z2 �

Z2, agreeing with the general theory discussed above.
To illustrate the degenerate scenario let us consider the

mass matrix [9]

 M �
a b b
b a b
b b a

0
@

1
A: (12)

This mass matrix has a permutation symmetry S3 because
it is invariant under the exchange of any two rows
and simultaneously the same two columns. It has a non-
degenerate eigenvalue a� 2b with eigenvector v1 �

�1; 1; 1�T=
���
3
p

, and a doubly degenerate eigenvalue a� b
with eigenvectors v2 � ��1; 0; 1�T=

���
2
p

and v3 �

�1;�2; 1�T=
���
6
p

. Taking w � v1, v0 � v2, v00 � v3 and
g1 � �1 in (7), the unitary symmetry operator becomes
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where uij are the matrix elements of a 2� 2 real orthogo-
nal matrix. The nonabelian group Z2 �O�2� thus
generated contains but is much larger than the permutation
group S3. In particular, the S3 generators are the
identity G�1; 0; 0; 1� � 1, the two-cycle permutations
G�12 ;

��
3
p

2 ;
��
3
p

2 ;�
1
2� � P12, G�12 ;�

��
3
p

2 ;�
��
3
p

2 ;�
1
2� � P23,

G��1; 0; 0; 1� � P13, and the three-cycle permutations
G�� 1

2 ;�
��
3
p

2 ;
��
3
p

2 ;�
1
2� � P123 and G�� 1

2 ;
��
3
p

2 ;�
��
3
p

2 ;�
1
2� �

P132.

IV. DIAGONALIZATION MATRIX

Given a texture for a mass matrix M, we want to know
what restriction that places on its diagonalization matrix V.

The vectorw defining a texture is a (pseudo-)eigenvector
of M. Let w0 and w00 be the other two (pseudo-)eigen-
vectors. Then the three columns of V is just the three
vectors w, w0, w00 arranged in some order.

Although we do not know w0 and w00, we do know that
they can be obtained from any orthonormal pair of basis
vectors v0, v00 in the plane orthogonal to w by a unitary
rotation. We shall let V0 � �w; v0; v00� be the unitary matrix
whose first, second, and third columns are given by the
vectors w, v0, and v00, and let

 � �
� �
��� �

� �
(14)

be the unitary matrix that rotates �v0; v00� to �w0; w00�.
Namely, �w0; w00� � �v0; v00��. It is parametrized by a com-

plex number � whose norm is not larger than 1, and � ������������������
1� j�j2

p
.

To write down an explicit mathematical form for V, it is
convenient to introduce two auxiliary matrices. Let Pjk �
Pkj be the permutation matrix with 1 in the (jk), (kj) and
(ii) entries, and 0 elsewhere (i � j � k � i). Moreover, let
Pii be the identity matrix. Then A0 � PjkA is the matrix
obtained by permuting the jth and the kth rows of A, and
A00 � APjk is the matrix obtained by permuting the jth and
the kth columns of A.

Furthermore, let Bjk��� � Bkj��� be a block-diagonal
unitary matrix with 1 in the (ii) entry, 0 elsewhere in the
ith row and the ith column, and � in the j, k rows and
columns. Then the matrix A0 � Bjk���A is obtained from A
by making a unitary rotation of its jth and kth rows, and the
matrix A00 � ABjk��� is obtained from A by making a
unitary linear transformation of its jth and kth columns.

Putting all these together, we are now ready to write
down the general expression for V.

First consider the case when the eigenvalue �i of M is
nondegenerate. Then up to an unimportant phase,

 V � V0P1iBjk���: (15)

V0P1i is a unitary matrix made up of w, v0, v00, with w
appearing in the ith row. Bjk��� is there to rotate �v0; v00�
into �w0; w00�.

If �i � �j, then we are also free to have a unitary mixing
of the ith and the jth eigenvectors ofM, so the most general
form of V is

 V � V0P1iBjk���Bij��0�: (16)

Note that the matrix Bjk���Bij��
0� has a zero in the (ik)

position. Conversely, any 3� 3 unitary matrix U with a
zero in the (ik) position can be factorized into the form
Bjk���Bij��

0�.
To see that, let w be the kth column ofU, so that wi � 0.

From the discussion at the end of Sec. II, we know that we
can find a diagonal matrix M with Mjj � Mkk to have this
texture. Taking V0 � UP1k, the most general form for V
according to (13) is V � UBij���

0�Bjk����. For later
convenience the two parameters � and �0 in (13) are now
called ��0 and �� respectively. The eigenvector w is now
placed at the kth column rather than the ith column, so that
the indices �i; j; k� in (13) become �k; i; j� respectively.
Since M is diagonal, one of these V’s must the the identity.
Setting V to be the identity, we see that

 U � Bjk����yBij���0�y � Bjk���Bij��0�; (17)

proving the claim.
Eqs. (12)–(14) are subject to phase conventions. Since

we may alter the phase of each column and each row at
will, we may always premultiply each unitary matrix in
these equations by a ���1; �2; �3� �

:
diag�ei�1 ; ei�2 ; ei�3� to

add phases to its rows, and post multiply it by a
���01; �

0
2; �

0
3� to add phases to its columns. Of course

most of these phases are not physically meaningful.
In particular, applying (14) to U � UHPS in Eq. (1),

whose (13) entry is zero, we get

 ��0; 0; ��UHPS � B23�1=
���
2
p
�B12�1=

���
3
p
�: (18)

We shall return to this factorization later.
Finally, if �i � �j � �k, everything is trivial, but we can

use the formalism to write a general unitary matrix V in a
factorized form. On the one hand, M is then a multiple of
the identity matrix, so V can be any unitary matrix.
Moreover, we can choose V0P1i � 1. On the other hand,
since we have three-fold degeneracy in the eigenvalues, we
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may mix all three eigenvectors. There is more than one way
to mix three eigenvectors, so V can be written in different
ways.

Instead of (13) we now have

 V � Bjk���Bij��
0�Bik��

00� � Bjk���Bij��
0�Bjk��

000�: (19)

The first equality allows a mixing of the ith and the jth
eigenvectors, and then a mixing of the resulting ith and the
kth eigenvectors. The second expression allows a mixing of
the ith and the jth eigenvectors, and then a mixing of the
resulting jth and the kth eigenvectors. Again, we may pre-
or post- multiply every unitary matrix by a phase matrix �.

If V is the mixing matrix, then V �
B23�s23�B13�s13e

�i��B12�s12� is just the Chau-Keung
parametrization [10], and V � B23��s2���0; 0;
��B12��s1�B23�s3� is just the Kobayashi-Maskawa pa-
rametrization [11].

V. TEXTURES FROM MIXING MATRICES

Let Vf be the unitary matrix that diagonalizes Mf �

MfM
y
f �f � u; d; e�, so that VyfMfVf � �f is diagonal.

Let V� the unitary matrix that diagonalizes the left-handed
Majorana neutrino mass matrixM�, so that VT�M�V� � ��
is diagonal. Then the CKM quark mixing matrix is
UCKM � Vyu Vd, and the PMNS neutrino mixing matrix is
UPMNS � Vye V�.

Mixing matrices can be measured experimentally, but
the individual mass matrices cannot. We want to know
what can be said about the texture of the mass matrices
once a mixing matrix is known.

Since the mixing matrix is a product of two diagonaliza-
tion matrices, there is no way to determine both of them
unless something else is specified. We start by assuming
both mass matrices to have the same texture, i.e., they share
some symmetry, and ask whether that is enough to nail
them down, and if so, whether this assumption is consistent
with experiments.

Let us deal with the neutrino mixing matrix, and assume
it to be given by UHPS of Eq. (1). If bothMe and M� have a
texture defined by ~w, then ~w is an eigenvector of Me and a
pseudoeigenvector of M�. Given any unitary matrix X,
w �
:
Xy ~w is an eigenvector of M0e �

:
XyMeX and a pseu-

doeigenvector of M0� �
:
XTM�X, hence the transformed

mass matrices M0e and M0� also share a common texture
w. Their diagonalization matrices are now V0e � XyVe and
V 0� � XyV�.

In particular, if we choose X � Ve, then M0e � �e is
diagonal, and the diagonalization matrix for M0� is V0� �
Vye V� � UPMNS � UHPS. The vector w defining the com-
mon texture comes from one of the columns of
V 0� � UHPS—we shall call the texture Cp if it is taken
from column p. The matrixM0e shares the same texture and
it is diagonal, hence according to the discussion at the end
of Sec. II, two of its matrix elements must be the same,

�M0e�jj � �M
0
e�kk. Moreover, we need to have wi � 0 for

i � j, k. Since in reality the charged lepton masses are all
different, this mass equality cannot be satisfied, so it is
impossible for M0e and M0�, or Me and M�, to share the
same texture.

However, since the electron and the muon masses are
much smaller than the 	 mass, as a first approximation we
might want to regard them to be equal. Even so, the
condition wi � w3 � 0 cannot be satisfied for any Cp
because the third row of UHPS does not contain a vanishing
element.

Similarly, if we choose X � V�, then M0� � �� is di-
agonal, and the diagonalization matrix of M0e is V0e �
Vy�V 0e � UyPMNS � UyHPS. The vector w for the common
texture is taken from one of the columns of V 0e � UyHPS,
or equivalently, one of the rows of UHPS. We shall label the
texture Rp if it is taken from the pth row ofUHPS. SinceM0�
is diagonal and it must share the same texture Rp, the
condition �M0��ii � �M0��jj requires the neutrinos to have a
two-fold mass degeneracy. This cannot happen because
neither the solar nor the atmospheric gap is zero, so once
again we come to the same conclusion that the charged
lepton and the neutrino mass matrices cannot share the
same texture. However, since the solar gap is smaller than
the atmospheric gap, one might be willing as a first ap-
proximation to assume �M0��11 � �M0��22. In that case we
must still require w3 � 0. The only zero element is the
third column of UHPS is the first one, so we conclude that
such an approximate symmetry could be valid, but only for
the texture R1. In this way R1 distinguishes itself for being
the most symmetrical texture among these six discussed.

A similar discussion can be carried out for the CKM
mixing matrix. However, since UCKM has no zero element,
in order to obtain an approximate symmetry, not only do
we have to assume a two-fold mass degeneracy for the u or
the d quarks, we must also be willing to approximate the
small (13) or the (31) elements of the CKM matrix to be
zero.

Without the benefit of a common texture, to make any
headway it is necessary to specify how the PMNS matrix is
split up into Vye and V�. One common practice is to require
Ve � 1, namely,Me to be diagonal. In that case V� � UHPS

and M� enjoys the textures C1, C2 and C3, any two of
which implies the third and define a full texture. The C2
texture is just the magic texture and the C3 texture is just
the 2–3 texture; the C1 texture will be discussed in the next
section. Alternatively, we can require V� � 1 or M� di-
agonal. In that case Ve � UyHPS and Me enjoys the R1, R2,
R3 textures.

It is also possible to make use of (15) to assign half of
UHPS to Vye and half to V�. The textures obtained this way
as well as their symmetry operators will be discussed in the
next section as well.

These considerations can be generalized to any UPMNS.
The discussion is similar but the textures Rp and Cp will
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be modified. Moreover, we no longer have (15), but using
either the Kobayashi-Maskawa or the Chau-Keung pa-
rametrization of the mixing matrix, we can always factor-
ize the PMNS matrix into three factors, two of which can
be attributed to Vye and one to V�, or vice versa.

VI. NEUTRINO MIXING

In this section we split the tribimaximal mixing matrix
UHPS in different ways to discuss the resulting textures on
the leptonic mass matrices. In subsection VI A, we assume
Ve � 1 andMe diagonal. The resulting texturesC1,C2,C3
taken from the three columns ofUHPS are discussed one by
one, in each case the texture relations, the unitary symme-
try operators, the diagonalization matrix and the Jarlkog
invariant are worked out. This allows us to parametrize the
PMNS matrix if one of these symmetries is preserved
while the other is broken. In subsection VI B, we assume
V� � 1 andM� diagonal, and discuss the resulting textures
R1, R2, R3 taken from the three rows of UHPS in a similar
way. As mentioned before, the texture R1 is the only one
among these six ‘‘diagonal textures‘‘ which can be re-
garded as an approximate symmetry for the diagonal lep-
tonic mass matrix as well. In subsection VI C, we consider
‘‘factorized textures‘‘ by splitting UHPS equally among the
two leptonic mass matrices. The two cases considered
differ only by a permutation, with the second case also
being the result of a horizontal Z2 � S3 group with three
Higgs doublets in some mass limits [12].

A. Me diagonal

1. C1

For C1 we have w � �2;�1;�1�T=
���
6
p

. The resulting
texture relations (4) are

 2M11 � 3M12 �M13 � 2�M22 �M23�;

2M11 �M12 � 3M13 � 2�M23 �M33�:
(20)

where the symmetry Mij � Mji of the neutrino mass ma-
trix has been used.

In particular, if M is diagonal, then (17) requires M11 �
M22 � M33, hence the diagonal Me cannot possess this
texture even if we assume the electron and muon masses
to be degenerate. This agrees with the general conclusion
obtained in the last section.

Setting V0 � UHPS and i � 1 in Eq. (12), the mixing
matrix for the C1 texture is

 UPMNS� V� �UHPSB23���

�
2=

���
6
p

�=
���
3
p

�=
���
3
p

�1=
���
6
p

�=
���
3
p
���=

���
2
p

�=
���
2
p
��=

���
3
p

�1=
���
6
p

�=
���
3
p
���=

���
2
p

��=
���
2
p
��=

���
3
p

0
B@

1
CA:

(21)

The Jarlskog invariant is J � Im�U11U22U�12U
�
21� �

��
���
6
p
=18�� Im���, where U stands for UPMNS.

The unitary symmetry operator G for this texture can be
obtained from (6), by setting g1 � �1 and g2 � 1 as per
our convention discussed in Sec. III. The vectors v0 and v00

can be taken from the second and third columns of UHPS.
The result is

 GC1 �
1

3

�1 2 2
2 2 �1
2 �1 2

0
@

1
A: (22)

2. C2

For C2 we have w � �1; 1; 1�T=
���
3
p

. This is just the
magic texture whose texture relations and symmetry op-
erator GC2 � Gmagic have been discussed in Sec. III.
Again, the row sums of the diagonal Me are all equal
only when all the charged lepton masses are equal, so Me
cannot possess this texture even in the approximation
me � m
, as concluded in the last section.

With V0P1i � UHPS, the mixing matrix for the C2 tex-
ture is

 U � UHPSB13���

�

��������
2=3

p
� 1=

���
3
p ��������

2=3
p

�
��=

���
6
p
� ��=

���
2
p

1=
���
3
p

�=
���
2
p
� �=

���
6
p

��=
���
6
p
� ��=

���
2
p

1=
���
3
p

��=
���
2
p
� �=

���
6
p

0
B@

1
CA:
(23)

This parametrization was first obtained in [13] with��������
2=3

p
� � u. The Jarlskog invariant is �

��������
2=3

p
Im���.

3. C3

For C3 we have w � �0;�1; 1�T=
���
2
p

. This is just the 2–
3 texture whose texture relations and symmetry operator
GC3 � G2–3 have been discussed in Sec. III. Since m
 �

m	, the diagonal Me cannot possess this texture.
With V0P1i � UHPS, the mixing matrix for the C3 tex-

ture is

 U � UHPFB12���

�
2�=

���
6
p
� ��=

���
3
p

2�=
���
6
p
� �=

���
3
p

0
��=

���
6
p
� ��=

���
3
p

��=
���
6
p
� �=

���
3
p

1=
���
2
p

��=
���
6
p
� ��=

���
3
p

��=
���
6
p
� �=

���
3
p

�1=
���
2
p

0
B@

1
CA:

(24)

The Jarlskog invariant

 J � Im�U22U
�
23U

�
32U33� (25)

is zero in this case, so we might as well take � to be real. In
that case, with s real and c �

��������������
1� s2
p

real, we can rewrite
U in a more familiar form
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 U �
c s 0

�s=
���
2
p

c=
���
2
p

1=
���
2
p

�s=
���
2
p

c=
���
2
p

�1=
���
2
p

0
@

1
A: (26)

Thus in the presence of a 2–3 texture, the reactor angle is
zero, the atmospheric mixing is maximal, but the solar
angle remains to be free.

B. M� diagonal

1. R1

For R1, take w � �
���
2
p
; 1; 0�T=

���
3
p

. Then (4) becomes

 M12 �
���
2
p
�M11 �M22�; M23 � �

���
2
p
M13: (27)

A diagonal matrix may satisfy these relations provided
M11 � M22, hence if we are allowed to ignore the solar
gap, then the diagonal M� may possess this texture ap-
proximately, as concluded in the last section. This is the
only texture among all the Ri’s and Ci’s that has this
property of being approximately common to both the
leptonic mass matrices.

Setting V0P1i � UT
HPS, we get from (12) that

 UPMNS� V
y
e �B23���yUHPS

�

���
2
p
=
���
3
p

1=
���
3
p

0
�����=

���
6
p

�����=
���
3
p

�����=
���
2
p

���� ���=
���
6
p
��� ���=

���
3
p

��� ���=
���
2
p

0
B@

1
CA:

(28)

Since one of the matrix elements is zero, the Jarlskog
invariant J � 0, hence we might as well let � to be real.
According to the breaking pattern of (25), the solar and the
reactor angles maintain their HPS values, but the atmos-
pheric angle can change.

The unitary symmetry operator is

 GR1 �
1

3

�1 �2
���
2
p

0
�2

���
2
p

1 0
0 0 1

0
B@

1
CA: (29)

2. R2

For R2, take w � ��1;
���
2
p
;
���
3
p
�T=

���
6
p

. Then (4) becomes

 

���
2
p
�M11 �M22� �M12 �

���
6
p
M13 �

���
3
p
M23 � 0;���

3
p
�M11 �M33� �

���
6
p
M12 � 2M13 �

���
2
p
M23 � 0:

(30)

For the diagonalM� to share this texture, both the solar and
the atmospheric gaps must be put to zero.

With V0P1i � UT
HPS, we get from (12) that

 UPMNS � Vye � B13���yUHPS

�
�2�� ��=

���
6
p

��� ��=
���
3
p

�=
���
2
p

�1=
���
6
p

1=
���
3
p

1=
���
2
p

���� 2���=
���
6
p

��� ���=
���
3
p

��=
���
2
p

0
B@

1
CA:

(31)

The Jarlskog invariant is �� Im���=6, and the unitary
symmetry operator is

 GR2 �
1

3

2
���
2
p ���

3
p

���
2
p

1 �
���
6
p

���
3
p

�
���
6
p

0

0
B@

1
CA: (32)

3. R3

For R3, take w � ��1;
���
2
p
;�

���
3
p
�T=

���
6
p

. Then (4) be-
comes

 

���
2
p
�M11 �M22� �M12 �

���
6
p
M13 �

���
3
p
M23 � 0;���

3
p
�M11 �M33� �

���
6
p
M12 � 2M13 �

���
2
p
M23 � 0:

(33)

Again, for the diagonal M� to share this texture, both the
solar and the atmospheric gaps must be put to zero.

Setting V0P1i � UT
HPS, we get from (12) that

 UPMNS � Vye � B12���
yUHPS

�
�2�� ��=

���
6
p

��� ��=
���
3
p

��=
���
2
p

���� 2���=
���
6
p

��� ���=
���
3
p

�=
���
2
p

�1=
���
6
p

1=
���
3
p

�1=
���
2
p

0
B@

1
CA:

(34)

The Jarlskog invariant is � Im���=6 and the unitary sym-
metry operator is

 GR3 �
1

3

2
���
2
p

�
���
3
p

���
2
p

1
���
6
p

�
���
3
p ���

6
p

0

0
B@

1
CA: (35)

C. Factorized textures

Since ��0; 0; ��UHPS has the factorized form (15), we
may let

 Vye � B23�1=
���
2
p
�Yy �

1 0 0
0 1=

���
2
p

1=
���
2
p

0 �1=
���
2
p

1=
���
2
p

0
@

1
AYy; (36)

and

 V� � YB12�1=
���
3
p
� � Y

���
2
p
=
���
3
p

1=
���
3
p

0
�1=

���
3
p ���

2
p
=
���
3
p

0
0 0 1

0
B@

1
CA; (37)

where Y is some unitary matrix. We have choosen a differ-
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ent phase convention [UPMNS � ��0; 0; ��UHPS] in this
subsection for later convenience.

Without specifying Y, this is completely general. We
shall discuss in this subsection two examples in which Y is
chosen to maintain the number of zeros in both Ve and V�.

1. Y � 1

From (4), we obtain the full textures of Me and M� to be

 �Me�12 � �Me�13 � �Me�22 � �Me�33 � 0; (38)

and

 �M��13 � �M��23 � �M��11 � �M��22 �
1���
2
p �M��12 � 0:

(39)

Explicity, these mass matrices are of the form

 Me �

a 0 0
0 b c
0 c b

0
@

1
A; (40)

 M� �
d

���
2
p
�e� d� 0���

2
p
�e� d� e 0

0 0 f

0
B@

1
CA: (41)

Using (33) and (34), we can relate these parameters to the
fermion masses. The results are

 a � m2
e; b � �m2


 �m2
	�=2;

c � ��m2

 �m

2
	�=2;

(42)

and

 d � �2m�1
�m�2

�=3; e � �2m�2
�m�1

�=3;

f � m�3
:

(43)

Since both Me and M� have a full texture, each has two
symmetry operators. The symmetry operators for Me com-
puted from (6) and (37) are

 Ge �

�1 0 0
0 1 0
0 0 1

0
@

1
A; G0e �

1 0 0
0 0 1
0 1 0

0
@

1
A; (44)

and the symmetry opreators forM� computed from (6) and
(38) are

 G� �

1 0 0
0 1 0
0 0 �1

0
@

1
A;

G0� �
1=3 �2

���
2
p
=3 0

�2
���
2
p
=3 �1=3 0

0 0 1

0
B@

1
CA:

(45)

2. Y � P23P12

This is similar to the previous case, except that a per-
mutation (132) is applied to the rows of Ve and V
. Hence

 Ve �
0 1=

���
2
p

1=
���
2
p

0 �1=
���
2
p

1=
���
2
p

1 0 0

0
B@

1
CA; (46)

and

 V� �
�1=

���
3
p ���

2
p
=
���
3
p

0
0 0 1���

2
p
=
���
3
p

1=
���
3
p

0

0
B@

1
CA: (47)

The full textures ofMe andM� are then obtained from (37)
and (38) by making a (132) permutation to their rows and
columns:

 Me �

b c 0
c b 0
0 0 a

0
@

1
A; (48)

 M� �
e 0

���
2
p
�e� d�

0 f 0���
2
p
�e� d� 0 d

0
B@

1
CA: (49)

The symmetry operators in (41) and (42) will also be
similarly permuted.

Using (43)–(46), the relation between the fermion
masses and the mass-matrix parameters is once again given
by (39) and (40). Hence

 Me �
�m2


 �m2
	�=2 �m2

	 �m2

�=2 0

�m2
	 �m

2

�=2 �m2


 �m
2
	�=2 0

0 0 m2
e

0
B@

1
CA; (50)

and

 M� �

�2m�2
�m�1

�=3 0
���
2
p
�m�2

�m�1
�=3

0 m�3
0���

2
p
�m�2

�m�1
�=3 0 �2m�1

�m�2
�=3

0
B@

1
CA:

(51)

This coincides with the result of a Z2 � S3 horizontal
symmetry [12] in the limit me � 0 and m�3

� �2m�2
�

m�1
�=3.

VII. CONCLUSION

We have investigated the construction and the general
property of mass-independent textures (Sec. II), and
showed that they can be interpreted as symmetries of
mass matrices (Sec. III). An explicit recipe is given to
construct the unitary symmetry operators and symmetry
groups (Sec. III), together with several illustrative ex-
amples (Sec. VI). We found the symmetry group corre-
sponding to any simple texture for a charged fermion mass
matrix to beU�1� �U�1�, and that for a Majorana neutrino
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mass matrix to be Z2 � Z2. If the mass matrix has a
degenerate eigenvalue, then its symmetry group is U�1� �
U�2� and Z2 �O�2� respectively. Whatever a texture is, we
found that both members of an isodoublet cannot simulta-
neously possess the same texture, though they may do so
approximately for the texture R1 of the neutrino tribimax-
imal mixing matrix (Sec. V). Various textures arriving
from the tribimaximal neutrino mixing matrix were con-
sidered, together with the symmetries they satified. This
includes the six ‘‘diagonal textures‘‘ C1, C2, C3 and R1,
R2, R3, as well as two ‘‘factorized textures‘‘, one of which

coincides with the result of a minimal Z2 � S3 horizontal
symmetry in some mass limit (Sec. VI). We have also
investigated possible patterns of symmetry breaking from
the tribimaximal neutrino mixing, assuming one of the
horizonal symmetries to remain intact while the others
are broken (Sec. VI).
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