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The decay width of the process �! �0�� is calculated in the framework of the Nambu-Jona-Lasinio
model. The momentum dependence of quark loops is taken into account. Three types of diagrams are
considered: quark box, scalar (a0) and vector ��;!� pole diagrams. The obtained estimations are in
satisfactory agreement with recent experimental data.
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I. INTRODUCTION

The investigations of the process�! �0�� have a long
history. The experimental studies of this process began
in 19661 [2]. The first experimental results led to a
large value of the branching ratio of the process. The
theoretical estimates obtained in the vector dominance
model (VDM) [3], nonlinear chiral theory2 [4] and lately
in the chiral quark model [5–7] predicted noticeably lower
value.

A real breakthrough in the investigation of this process
happened in the experiment GAMS in 1981 at Protvino [8]
where the large energies of the produced �-mesons dra-
matically suppressed the background. During a subsequent
reanalysis, the value ��!��� � 0:84� 0:18 eV was ob-
tained3 [9]. Lately, the SND collaboration in the experi-
ment VEPP-2M confirmed this value to be an upper limit
1 eV for the width of the process [1]. In 2005, the results
obtained by the Crystal Ball collaboration at BNL AGS
were published; these results ��!��� � 0:45� 0:12 [10]
were noticeably smaller than those reported by the GAMS
collaboration.

From a theoretical point of view this process was inves-
tigated in many theoretical models: VDM model [3], non-
linear chiral theory [4], different quark models [5–
7,11,12], resonance exchange models [13,14], the chiral
perturbation theory (ChPT) [15–19], and chiral unitary
approach [20]. In ChPT, the main contribution comes
from the terms of the order O�p6� of low energy expansion
because the tree terms of the order O�p2� and O�p4� are
absent and one-loop contributions of the order O�p4� are
very small. The counterterms of the order O�p6� are not
determined from the theory itself and should be fixed using
experimental information, from the assumption of meson

saturation (vector meson exchange giving the dominant
contribution) or calculated from the model (NJL, for ex-
ample). In [15], the meson saturation approach was
adopted, which gave ��!��� � 0:18 eV; too small, com-
pared to the experimental value. But, keeping the momen-
tum dependence in the vector meson propagators gives an
‘‘all-order’’ estimate of about 0.31 eV [15], in agreement
with the old VDM prediction [3]. Taking into account the
scalar and tensor meson contributions (the signs of which
cannot be unambiguously determined within this ap-
proach) and the one-loop contribution at O�p8�, the final
estimate of [15] is ��!��� � 0:42� 0:20 eV, in a satis-
factory agreement with the recent Crystal Ball result. This
result is confirmed in [16], where the O�p6� counterterms
are calculated in the framework of the NJL model with the
result 0:58� 0:3 eV. However, the same counterterms
obtained from the NJL model by different methods lead
to 0.1 eV [18] and 0:27�0:18

�0:07 eV [19].
The ‘‘all-order’’ estimations in [15] are a signal that the

preservation of full momentum dependence is highly de-
sirable. Note that in [6,7] the simple NJL model is used
without taking into account the momentum dependence of
quark loops. Then, in a quark models [11,12], the full
momentum dependence of the quark box diagram is con-
sidered whereas the diagram with the intermediate scalar
a0�980� is ignored. The vector sector of the model has not
been taken into account as well.

In the present work, the process �! ��� is calculated
in the framework of the NJL model with scalar-
pseudoscalar and vector-axial-vector sectors. The contri-
bution of the quark box loop is considered together with the
contributions of the diagrams with scalar and vector inter-
mediate mesons (as in [6,7]). The momentum dependence
of the quark loops and pseudoscalar—axial-vector transi-
tions are taken into account, following [21–23].

II. THE U�3� � U�3� NJL MODEL

The U�3� �U�3� NJL model with scalar-pseudoscalar
and vector-axial-vector sectors is used in the present work.
To solve the UA�1� problem, the six-quark t‘Hooft interac-
tion is added to the Lagrangian of the model [24,25]

*Electronic address: aradzh@theor.jinr.ru
†Electronic address: volkov@theor.jinr.ru
1Excellent review of theoretical and experimental works can

be found in [1].
2Note the similar result for the width of the order 10�2 eV

lately obtained in ChPT for pion-loop contribution at the level
O�p4�.

3Notice that this result is consistent with those obtained in the
NJL model [6].

PHYSICAL REVIEW D 74, 113001 (2006)

1550-7998=2006=74(11)=113001(7) 113001-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.113001


 

L � �q�i@̂�m0�q�
G
2

X8

i�0

�� �q�iq�2 � � �qi�5�iq�2	

�
GV

2

X8

i�0

�� �q���iq�
2 � � �q�5���iq�

2	
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where �i �i � 1; . . . ; 8� are the Gell-Mann matrices and
�0 � �23�

1=21, with 1 being the unit matrix;m0 is the current
quark mass matrix with diagonal elements m0

u, m0
d, m0

s

(m0
u 
 m0

d), G and GV are the scalar-pseudoscalar and
vector-axial-vector four-quark coupling constants; K is
the six-quark coupling constants. The six-quark interaction
can be reduced to an effective four-fermion vertex after the
contraction of one of the quark pairs. The details are given
in Appendix A.

Light current quarks transform to massive constituent
quarks as a result of spontaneous chiral symmetry break-
ing. Constituent quark masses can be found from the
Dyson-Schwinger equation for the quark propagators
(gap equations)

 mu � m0
u � 8muGI1�mu� � 32mumsKI1�mu�I1�ms�

ms � m0
s � 8msGI1�ms� � 32K�muI1�mu��

2;
(2)

where I1�m� is the quadratically divergent integral. The
modified Pauli-Villars (PV) regularization with two sub-
stractions with same � is used for the regularization of
divergent integrals4 (see [21–23,26]). In this case the quad-
ratically and logarithmically divergent integrals I1�m� and
I2�m� have the same form as in the four-momentum cut-off
scheme

 I1�m� �
Nc

16�2

�
�2 �m2 ln

�
�2

m2 � 1
��
;

I2�m� �
Nc

16�2

�
ln
�
�2

m2 � 1
�
�

�
1�

m2

�2

�
�1
�
:

Moreover, the Pauli-Villars regularization is suitable for
the description of the vector sector because it preserves
gauge invariance.

Masses and vertex functions of the mesons can be found
from the Bethe-Salpeter equation. The expression for the
quark-antiquark scattering matrix is

 T̂ � G�G��p2�T̂ �
1

G�1 ���p2�
; (3)

where G and ��p2� are the corresponding matrices of the
four-quark coupling constant and polarization loops.
The particle mass can be found from the equation

det�G�1 ���M2�� � 0 and near the poles the correspond-
ing part of the T̂ matrix can be expressed in the form

 T̂ �
�V � V

p2 �M2 ; (4)

where V and M are the vertex function and mass of the
meson, and �V � �0Vy�0. Details of calculations for differ-
ent channels are presented in Appendices B and C. Here we
discuss only general properties.

The most simple situation takes place for the vector and
the isovector scalar meson with equal quark masses (say �
and a0). In this case, the coupling constant and polarization
operator are just numbers (not matrices). For pseudoscalar
mesons, additional axial-vector components appear in the
vertex function due to the pseudoscalar-axial-vector mix-
ing (in the scalar case this transition loop is proportional to
the difference of quark masses). An additional complica-
tion takes place for� and�0 due to the singlet-octet mixing
(or mixing of strange and nonstrange quarks due to the
t‘Hooft interaction). Therefore, the vertex function of this
meson has four components: strange and nonstrange pseu-
doscalar and axial-vector.

III. FIXING MODEL PARAMETERS

The model has six parameters: the coupling constantsG,
GV , K, PV cut-off �, and constituent quark massesmu and
ms. We use two parametrization schemes. In the first one,
the model parameters are defined using masses of the pion,
kaon, � and � mesons and the weak pion decay constant
f�. Note that the number of input parameters is greater
than the number of physical observables by one. This
allows us, following [22], to take the mass of the u quark
slightly larger than the half of the �-meson mass. As a
result, we have the following set (set I) of model parame-
ters

 mu � 390 MeV; ms � 496 MeV;

G � 6:62 GeV�2; GV � �11:29 GeV�2;

K � 123 GeV�5; � � 1 GeV:

(5)

The values of the current quark masses m0
u, m0

s are defined
from the gap Eqs. (2)m0

u � 3:9 MeV andm0
s � 92:3 MeV

(m0
u=m

0
s � 23:7).

For this set of model parameters, the two-photon decay
width of the � meson ��!�� � 0:37 KeV, is smaller than
the experimental one: �exp

�!�� � 0:510� 0:026 [27].
In the set II the model parameters are fixed in order to

reproduce the two-photon decay width of the � meson
instead of its mass (the � meson mass in this case M� �

530 MeV)

4Any function f�m2� of mass m2 is regularized by using the
rule

 f�m2� ! f�m2� � f�m2 ��2� ��2f0�m2 ��2�:
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 mu � 390 MeV; ms � 506 MeV;

G � 7:65 GeV�2; GV � �11:29 GeV�2;

K � 77 GeV�5; � � 1 GeV:

(6)

The current quark masses are m0
u � 3:9 MeV and m0

s �
92:1 MeV (m0

u=m0
s � 23:6).

IV. DECAY �! �0��

The general form of the �! �0�� decay amplitude
contains two independent tensor structures [28]
 

A��! �0��� � T���1
��

2
�;

T�� � A�x1; x2��q
�
1q

�
2 � q1 � q2g

���

� B�x1; x2�

�
�M2

�x1x2g
�� �

q1 � q2

M2
�

p�p�

� x1q
�
2 p

� � x2p�q�1

�
; (7)

where p, q1, q2 are the momentum of the � meson and
photons, �1

� and �2
� are the polarization vectors of the

photons, and xi � p � qi=M2
�.

The �! �0�� decay width has the form
 

� �
M5
�

256�2

Z �1�y�=2

0
dx1

Z xmax
2

xmin
2

dx2

���������A�x1; x2�

�
1

2
B�x1; x2�

��������2
�2�x1 � x2� � y� 1	2

�
1

4
jB�x1; x2�j

2�4x1x2 � �2�x1 � x2� � y� 1		2
�
;

xmin
2 � �1� 2x1 � y�=2;

xmax
2 � �1� 2x1 � y�=2�1� 2x1�;

y � M2
�=M2

�: (8)

In the NJL model the amplitude for the �! �0��
decay process is described by three types of diagrams
(see Fig. 1): the quark box and exchange of scalar (a0)
and vector ��;!� resonances. Let us consider theses con-
tributions in detail.

The scalar meson exchange has the simplest form. It
gives a contribution only to A�x1; x2�. This contribution
consists of three parts and can be written in the form (see
Appendices B and C for the definition of polarization loops
and vertex functions):

 A�x1; x2� � e2
ga0���2q1 � q2�ga0���2q1 � q2�

G�1
a0
��uu

SS�2q1 � q2�
; q1 � q2 � M2

�

�
x1 � x2 �

1

2

�
�
M2
�

2

ga0���p
2� �

1

2�2

Z 1

0
dx1

Z 1�x1

0
dx2

mu�1� 4x1x2��
4

�p2x1x2 �m
2
u ��2�2�p2x1x2 �m

2
u�

ga0���p
2� � �i2NcNf

Z d4
�k

�2��4
TrDfVa0

Su�k� q1�V�Su�k�V�Su�k� q2�g:

(9)

here TrD is the trace over Dirac indices, index � in the measure of integration means PV regularization of the integral and
Sj�p� � �p̂�mj�

�1.
The amplitude with the vector meson ��;!� exchanges consists of two quark triangles of anomalous type (see

Appendix D) and the vector meson propagator. It gives the following contributions

 B�x1; x2� � e2
X
j��;!

X
i�1;2

g�j��M2
�;M2

��1� 2xi�; 0�g�j��M2
�;M2

��1� 2xi�; 0�M2
�

G�1
V ��uu

VV�M
2
��1� 2xi��

;

A�x1; x2� � �e
2
X
j��;!

X
i�1;2

g�j��M2
�;M2

��1� 2xi�; 0�g�j��M2
�;M2

��1� 2xi�; 0�M2
��1� xi�

G�1
V ��uu

VV�M
2
��1� 2xi��

:

(10)

The box diagram is of a more complicated structure. It consists of three types of boxes (plus three crossed) and contains
the diagrams with pseudoscalar and axial-vector components of the � and � mesons
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FIG. 1. Diagrams contributing to the amplitude of the process �! �0��.
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T�� � �ie
2
Z d4

�k

�2��4
TrD�V�S�k�V�S�k� p� q1 � q2���S�k� p� q1���S�k� p�

� V�S�k� p�V�S�k���S�k� q2���S�k� q1 � q2� � V�S�k���S�k� q2�V�S�k� p� q1���S�k� p�

� fq1 $ q2; �$ �g�: (11)

We calculate these diagrams numerically. In order to check
the integration procedure, we calculate all coefficients of
different tensor structures and verify if they have gauge
invariant form (7).

The obtained results for the decay width are given in the
Table I for two sets of model parameters. The main con-
tribution comes from the box diagram. The contribution
from vector mesons has a constructive interference while
the scalar a0 contribution has a destructive one. The results
are in satisfactory agreement with Crystal Ball data 0:45�
0:12 [10] and the present value 0:57�0:21 given in PDG
[27].

It is also very instructive to consider the invariant mass
distribution. In Figs. 2 and 3 the invariant mass distribution
of the two-photons is shown for the scalar meson contri-
bution, vector mesons contribution, scalar�vector mesons
and total. In Fig. 4, the results of our calculations of the
invariant mass distribution are compared with the calcu-
lation in the chiral unitary approach [20].

V. CONCLUSIONS

Earlier calculations of the process �!�0�� in the NJL
model do not include the momentum dependence of quark
loops and pseudoscalar-axial-vector transitions and are in
satisfactory agreement with the GAMS experiment.

Recently, the new experimental data on this decay have
been obtained and the value of the decay width is almost 2
times smaller. A number of theoretical estimates is also
obtained, and it seems that the momentum dependence of
amplitudes is important for a correct description of this
process (‘‘all-order’’ estimate in ChPT).

 

FIG. 3. Invariant mass distribution of the two-photons of the
scalar meson contribution(dots), vector meson contributions(-
short dash), scalar� vector mesons�dash-dot�, quark box(long
dash) and total(continuous line) for the set II.

 

FIG. 2. Invariant mass distribution of the two-photons of the
scalar meson contribution(dots), vector meson contributions(-
short dash), scalar� vector mesons�dash-dot�, quark box(long
dash) and total(continuous line) for the set I.

TABLE I. �! �0�� decay width.

Contribution set I set II

vector mesons 0.17 0.20
scalar meson 0.03 0.12
vector� scalar mesons 0.10 0.12
box 0.28 0.35
box� vector 0.78 0.95
total 0.53 0.45

 

FIG. 4. Invariant mass distribution of the two-photons of the
total contributions for the set I (dashes), set II (dots) together
with the results of the chiral unitary approach [20].
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In the present work, the contributions from quark box,
scalar and vector pole diagrams are considered with the full
momentum dependence. The pseudoscalar-axial-vector
transitions are also taken into account.

The obtained result is consistent with recent experi-
ments, theoretical estimates of ChPT [15,16] and the chiral
unitary approach [20].

In future, we plan to consider the polarizability of pions
and also decays of vector mesons ��!� ! ������.
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APPENDIX A: LAGRANGIAN

Lagrangian (1) can be rewritten in the form (see [24,25])
 

L � �q�i@̂�m0�q�
1

2

X9

i�1

�G���i � �q�
0
iq�

2 �G���i � �qi�5�
0
iq�

2	

�G���us � �q�uq�� �q�sq� �G
���
us � �qi�5�uq�� �qi�5�sq�

�
GV

2

X8

i�0

�� �q���iq�2 � � �q�5���iq�2	; (A1)

where

 

�0i � �i�i � 1; . . . ; 7�;

�08 � �u � �
���
2
p
�0 � �8�=

���
3
p
;

�09 � �s � ���0 �
���
2
p
�8�=

���
3
p
;

G���1 � G���2 � G���3 � G� 4KmsI1�ms�;

G���4 � G���5 � G���6 � G���7 � G� 4KmuI1�mu�;

G���u � G 4KmsI1�ms�;

G���s � G;

G���us � �4
���
2
p
KmuI1�mu�:

(A2)

APPENDIX B: POLARIZATION LOOPS

Polarization loops in different channels after the PV
regularization

 e�izmimj ! Rij�z� � e�izmimj�1� �1� iz�2�e�iz�
2
	

(B1)

take the form (see [22] for the expressions for the polar-
ization loops with equal indices)

 �ij
PP�p

2� �
Nc

4�2

Z 1

�1
dy
Z 1

0

dz
z
Rij�z�e
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�
�
i
z
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j �	
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�ij;L
VV �p
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�
g�� �

p�p�

p2

�
�ij;T
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2� �
p�p�

p2 �ij
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2�;

�ij;T
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Nc

4�2

Z 1

�1
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(B2)
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APPENDIX C: VERTEX FUNCTIONS

The most simple form have the vertex functions for the
vector � and the isovector scalar meson a0, namely 5:

 Va0
� ga0

Ia0; V� � g�����: (C1)

The matrices G and � for a0 and � mesons have the form

 G a0
� G���1 ; �a0

�p2� � �uu
SS�p

2�;

G� � GV; ���p
2� � �uu

VV�p
2�

(C2)

For the pion and kaon, additional axial-vector compo-
nents appear in the vertex function due to pseudoscalar-
axial-vector mixing

 V� � g�i�5�1� ��p̂��; VK � gKi�5�1� �Kp̂�K

(C3)

Here G and � are
 

G� �
G���1 0

0 GV

 !
;

���p
2� �

�uu
PP�p

2� �uu
PA�p

2�

�uu
AP�p

2� �uu
AA�p

2�

 !
;

GK �
G���4 0

0 GV

 !
;

�K�p2� �
�us
PP�p

2� �us
PA�p

2�

�us
AP�p

2� �us
AA�p

2�

 !
:

(C4)

Therefore, the vertex function of the � meson have four
components: strange and nonstrange pseudoscalar and
axial-vector
 

V� � g�ui�5�1���up̂��u � g�si�5�1���sp̂��s

� g�i�5�cos���u � sin���s

� ��p̂�cos ~���u � sin ~���s��; (C5)

where �� and ~�� are the mixing angles for pseudoscalar
and axial-vector components. The matrices G and ��p2�
are four-by-four matrices

 G � G��� 0
0 GV

 !
; G��� � G���u G���us

G���us G���s

 !
;

GV � diagfGV;GVg

��p2� �
�PP�p2� �PA�p2�

�AP�p
2� �AA�p

2�

� �
;

�ij�p
2� � diagf�uu

ij�p2�
;�ss

ij �p
2�g; i; j � P;A

(C6)

APPENDIX D: AMPLITUDES �! ��, �! �����

The amplitude for the two-photon decay width of the
pseudoscalar meson has the form

 A�P! ��� � e2gP���M2
P; q

2
1; q

2
2����	
�

�
1 �

�
2q

	
1 q



2 ;

(D1)

where q1, q2 are the momentum of photons and �1
�, �2

� are
the polarization vectors of the photons,

 g����M
2
�; q

2
1; q

2
2� � Iu�M

2
�; q

2
1; q

2
2�g�;

g����M
2
�; q

2
1; q

2
2� �

5

3
Iu�M

2
�; q

2
1; q

2
2�g�u

�

���
2
p

3
Is�M

2
�; q

2
1; q

2
2�g�s :

(D2)

The loop integrals Ij�M2
P� are given by

 Ij�M2
P; q

2
1; q

2
2� �

1

2�2

Z 1

0
dx1

Z 1�x1

0
dx2

mj

m2
j � x1�1� x1 � x2�q2

1 � x2�1� x1 � x2�q2
2 � x1x2M2

P

: (D3)

The amplitudes for the processes ��!�!����� have the
form

 A�PV�� � g�egPV��M
2
P; q

2
1; q

2
2����	
�

�
1 �

�
2q

	
1 q



2 ; (D4)

here q1 and �1
� are the momentum and the polarization

vector of ��!� meson.
 

g����M2
�; q2

1; q
2
2� � Iu�M2

�; q2
1; q

2
2�g�;

g����M2
�; q2

1; q
2
2� � 3Iu�M2

�; q2
1; q

2
2�g�u ;

g�!��M2
�; q2

1; q
2
2� � 3Iu�M2

�; q2
1; q

2
2�g�;

g�!��M2
�; q2

1; q
2
2� � Iu�M2

�; q2
1; q

2
2�g�u:

(D5)

5We suppress flavor indices.
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