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The main objective of this paper was to obtain the two-dimensional order and disorder thermal
operators using the Thermofield Bosonization formalism. We show that the general property of the two-
dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a
product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature.
The general correlation functions of the order and disorder thermofields are obtained.
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The operator realization for bosonization of fermions in
1� 1 dimensions at zero temperature (T � 0) corresponds
to a mapping of a Fermi field algebra into a Bose field
algebra. This algebraic isomorphism defines a one-to-one
mapping of the corresponding Hilbert space of states. At
T � 0, it is not evident that the operator bosonization
survives at nonzero temperatures. By one side, in the
fermionic theory, a unitary operator depending on the
Fermi-Dirac statistical weigh implements the transforma-
tion that promotes the Fermi field algebra into a Fermi
thermofield algebra. On the other hand, in the bosonized
version of the theory, another unitary operator depending
on the Bose-Einstein statistical weight implements the
transformation that promotes the Bose field algebra into a
Bose thermofield algebra. In this way, the surviving of the
operator bosonization at T � 0 dependes on the ‘‘transmu-
tation’’ from Fermi-Dirac to Bose-Einstein statistics.
Indeed, in an amazing way this statistical transmutation
occurs, as shown in Ref. [1]. The operator formulation for
bosonization of massless fermions in 1� 1 dimensions, at
finite, nonzero temperature T is presented in Ref. [1]. The
thermofield bosonization has been achieved in the frame-
work of the real time formalism of Thermofield Dynamics.
The well known Fermion-Boson correspondences in 1� 1
dimensions at zero temperature are shown to hold also at
finite temperature [1].

In Ref. [2] the two-dimensional Fermi field operator
with generalized statistics at T � 0 is considered as a
product of order and disorder variables. The main purpose
of the present paper is to fill a gap in the literature, by
providing the generalization for finite temperature of the
two-dimensional order and disorder operators within the
Thermofield dynamics approach [3–8]. We use the
Thermofield Bosonization formalism, introduced in
Ref. [1], to construct Fermi thermofields out of order and
disorder thermal operators, which satisfy an algebra analo-
gous to the dual algebra of order and disorder variables in
statistical mechanics, as it was first discussed by Kadanoff
and Ceva [9]. This streamlines the presentation of the
thermofield bosonization discussed in Ref. [1].

Within the Thermofield Dynamics approach [3–8] a
Quantum Field Theory at finite temperature is constructed
by doubling the numbers of degrees of freedom. This is
performed by introducing the ‘‘tilde’’ operators corre-
sponding to each of the operators describing the system
considered. This fictitious system is an identical copy of
the original system under consideration, which entails a
doubling of the Hilbert space of states. To begin with, let us
consider the Fermi field doublet � �x�; ~ �x�� of the two-
dimensional massless Thirring model at T � 0 [1,10]
which is defined by the Lagrangian density
 

L � i � ��@� �
g2

2
� � �� �� � �� �

�

�
�i~� ��@� ~ �

g2

2
�~� �� ~ ��~� �� ~ �

�
: (1)

The bosonized Fermi field doublet � �x�; ~ �x�� at zero
temperature, which provides the operator solution of the
quantum equations of motion, is constructed as a product
of an order and a disorder operators,1

  �x� � f�"���x���x�; (2)

 

~ �x� � f�"� ~��x� ~��x�; (3)

where f�"� is an appropriate normalization factor and the
order and disorder operators at zero temperature (T � 0)
[2] are given in terms of Wick-ordered exponentials

 � �x� �: eia�
5��x�:; (4)

 � �x� �: eib
R
1

x1 dz
1@0��x0;z1�:; (5)

and the corresponding tilde operators,

 

~��x� �: e�ia�
5 ~��x�:; (6)

 ~��x� �: e�ib
R
1

x1 dz
1@0

~��x0;z1�:: (7)
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1We have suppressed constant multiplicative factors and Klein
factors that are present in the bosonized form of  [1].
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The ‘‘tilde conjugation’’ is defined by ~c� � c� ~� and the
fields ��x� and ~��x� are free massless scalar fields. The
scale dimension of  � ~ � is given by

 d �
a2 � b2

4�
: (8)

The massless Thirring model is obtained with

 a �
�
2
; b �

2�
�
; (9)

where

 �2 �
4�

1� g2

�

: (10)

The canonical free massless Fermi field operator is
obtained with g � 0, �2 � 4� (a � b �

����
�
p

).
Since at T � 0 the order and disorder operators (4)–(7)

are given in terms of Wick-ordered exponentials of a free
massless scalar field,

 W�x� �: ei���x�:; (11)

in order to obtain the corresponding thermal operators we
shall consider the Wick-ordered exponential of a free
scalar field at finite temperature W�x;��. Following
Ref. [1] the thermal Wick exponential is obtained from
the exponential at T � 0 by performing the following
transformation [1],

 W�x;�� � U�1������W�x�U������; (12)

where the operator U������ is defined in terms of the
bosonic creation and annihilation operators by,

 U��� � e�iQ��� � e�
R
�1

�1
dp1�a�p1�~a�p1��ay�p1�~ay�p1����jp1j;��;

(13)

the Bogoliubov parameter ��jp1j; �� is implicitly defined
by

 sinh��jp1j;�� �
e��jp

1j=2�����������������������
1� e��jp

1j
p ; (14)

 cosh��jp1j;�� �
1�����������������������

1� e��jp
1j

p ; (15)

and the Bose-Einstein statistical weight is

 NB�jp
1j;�� � sinh2��jp1j;�� �

1

e�jp
1j � 1

: (16)

The transformed annihilation operators are given by,

 a�p1;�� � U����a�p1�U���

� a�p1� cosh��jp1j;�� � ~ay�p1� sinh��jp1j;��;

(17)

 ~a�p1;�� � U����~a�p1�U���

� ~a�p1� cosh��jp1j;�� � ay�p1� sinh��jp1j;��:

(18)

Using (12) we obtain the order and disorder thermal
operators f��x;��;��x;��; ~��x;��; ~��x;��g, which are
given in terms of the free massless scalar thermofields
��x;�� and ~��x;��,

 � �x;�� � �Z��;�0��1=2: eia�
5��x;��:; (19)

 � �x;�� � �Z��;�0�1=2: eib
R
1

x1 dz
1@0��x0;z1;��:; (20)

 

~��x;�� � �Z��;�0��1=2: e�ia�
5 ~��x;��:; (21)

 ~��x;�� � �Z��;�0��1=2: e�ib
R
1

x1 dz
1@0

~��x0;z1;��:: (22)

The factor Z��;�0� plays a role of a wave function renor-
malization for the thermal Wick-ordered exponentials [1],

 Z ��;�0� � e��a
2�b2=4��z��;�0�; (23)

where �0 is an infrared (IR) cut-off and the IR divergent
factor z��;�0� is the mean number of particles having
momenta p in the range ��0;1�,

 z��;�0� �
Z 1
�0

dp
p
NB�p;��: (24)

As shown in Ref. [1] the superselection rule associated
with the thermal Wick exponential ensures the indepen-
dence of physical quantities of the IR cut-off �0.

As in the T � 0 case [2], the operators ��x0; y1;�� and
~��x0; y1;�� produce the following transformations on the
thermal fields ��x;�� and ~��x;��, respectively,

 � �x0; y1;��:��x;�� ! ��x;�� � b��y1 � x1�; (25)

 ~��x0; y1;��: ~��x;�� ! ~��x;�� � b��y1 � x1�: (26)

This transformation is a symmetry of the bosonized
thermal Thirring model, which is described by a free
massless scalar thermofield [1]. The thermal operators
(19)–(22) satisfy the equal-time ‘‘dual’’ order and disorder
field algebra,
 

��x0; x1;����x0; y1;�� � ��x0; y1;����x0; x1;��

	 eiab�
5��y1�x1�; (27)

 

~��x0; x1;�� ~��x0; y1;�� � ~��x0; y1;�� ~��x0; x1;��

	 eiab�
5��y1�x1�; (28)

where � is the step function. The commutation between �
� ~�� and � � ~�� produces a dislocation in the field ��x; ��
� ~��x;��� if � � ~�� is to the right of � � ~�� and leaves it
unchanged otherwise. The operator��x;�� � ~��x;��� does
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not change the field ~��y;�� (��y;���,

 ���x;��; ~��y;��� � 0; 8 �x; y�; (29)

 � ~��x;��;��y;��� � 0; 8 �x; y�: (30)

As in the T � 0 case, the bosonized Fermi thermofields
are local ‘‘dyon’’ fields written in terms of order and
disorder thermal variables,

  �x;�� � f�"���x;����x;��; (31)

 

~ �x;�� � f�"� ~��x;�� ~��x;��: (32)

The general correlation functions of the thermal opera-
tors ��x;�� and ��x;�� are defined with respect to the
Fock vacuum j~0; 0i � j~0i 
 j0i and are given in terms of
the light-cone coordinates x� � x0 � x1 by

 �
0;~0j

Yn
i�1

��xi;��
Yn
j�1

��yj;��
Yn
k�1

��� �xk;��
Yn
‘�1

��� �y‘;��j~0; 0
�

�
Yn
i<i0
�F�x�i � x

�
i0 ;��F�x

�
i � x

�
i0 ;���

�a2=4���5
xi
�5
x
i0
Yn
j<j0
�F�y�j � y

�
j0 ;��F�y

�
j � y

�
j0 ;���

b2=4�

	
Yn
k<k0
�F� �x�k � �x�k0 ;��F� �x

�
k � �x�k0 ;���

�a2=4���5
�xk
�5

�x
k0
Yn
‘<‘0
�F� �y�‘ � �y�‘0 ;��F� �y

�
‘ � �y�‘0 ;���

b2=4�

	
Yn
i;k

�F�x�i � �x�k ;��F�x�i � �x�k ;�����a
2=4���5

xi
�5

�xk

Yn
j;‘

�F�y�j � �y�‘ ;��F�y�j � �y�‘ ;�����b
2=4��

	
Yn
i;j

�F�x�i � y
�
j ;����ab=4���5

xi �F�x�i � y
�
j ;�����ab=4���5

xi

Yn
i;‘

�F�x�i � �y�‘ ;�����ab=4���5
xi �F�x�i � �y�‘ ;����ab=4���5

xi

	
Yn
j;k

�F�y�j � �x�k ;�����ab=4���5
�xk �F�y�j � �x�k ;����ab=4���5

�xk

Yn
k;‘

�F� �x�k � �y�‘ ;����ab=4���5
�xk �F� �x�k � �y�‘ ;�����ab=4���5

�xk ;

(33)

where the temperature and spacetime dependences are
given by

 F�z�;�� �
�
�

sinh
�
�
�
�z� � i��

�
: (34)

Formally, in the limit T ! 0 we recover the general
order- disorder correlation functions of the standard mass-
less Thirring model.

Using the thermofield bosonization we have shown how
the T � 0 order and disorder fields in 1� 1 dimensions
generalize to the case of nonzero temperature. In this way
the massless Fermi thermofield can be viewed as a product
of thermal order and disorder operators. This streamlines
the presentation of Ref. [1].

Let us finally remark that the use of two-dimensional
order and disorder thermal operators will certainly be
relevant in the generalization for finite temperature of other
models where at zero temperature general statistics fields
play a role, as for instance the X-Y model. Notice that the
order-order thermal correlation function is given by
 

h��x;�����0;��i �
��
�
�

�
2

sinh
�
�
�
�x0 � x1�

�

	 sinh
�
�
�
�x0 � x1�

�	
��a2=4��

: (35)

The low temperature limit of the Euclidian version of the
correlation function (35) is

 h��x����0�i � jxj��a
2=2��; (36)

and corresponds to the order-order correlation function
of the continuous limit of the low temperature regime of
the X-Y model [2,11]. In Ref. [2] the Kadanoff and Ceva
prescription [9] has been generalized for the computation
of order- disorder variables correlation functions in the
Ising model for continuous quantum field theories with
U�1� symmetry. Since the low temperature limit of the
Euclidian version of the order-order thermal correlation
function (35) is the continuous limit of the X-Y model
given by (36), it should be very interesting to investigate
whether one can relate the Euclidian version of the corre-
lation function (35) with the continuous limit of the order-
order correlator of the X-Y model for other temperature
domain. This question and other related problems are the
subject of our present investigation.
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