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Two-dimensional order and disorder thermofields
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The main objective of this paper was to obtain the two-dimensional order and disorder thermal
operators using the Thermofield Bosonization formalism. We show that the general property of the two-
dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a
product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature.
The general correlation functions of the order and disorder thermofields are obtained.
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The operator realization for bosonization of fermions in
1 + 1 dimensions at zero temperature (7" = 0) corresponds
to a mapping of a Fermi field algebra into a Bose field
algebra. This algebraic isomorphism defines a one-to-one
mapping of the corresponding Hilbert space of states. At
T # 0, it is not evident that the operator bosonization
survives at nonzero temperatures. By one side, in the
fermionic theory, a unitary operator depending on the
Fermi-Dirac statistical weigh implements the transforma-
tion that promotes the Fermi field algebra into a Fermi
thermofield algebra. On the other hand, in the bosonized
version of the theory, another unitary operator depending
on the Bose-FEinstein statistical weight implements the
transformation that promotes the Bose field algebra into a
Bose thermofield algebra. In this way, the surviving of the
operator bosonization at T # 0 dependes on the ‘“‘transmu-
tation”” from Fermi-Dirac to Bose-Einstein statistics.
Indeed, in an amazing way this statistical transmutation
occurs, as shown in Ref. [1]. The operator formulation for
bosonization of massless fermions in 1 + 1 dimensions, at
finite, nonzero temperature 7 is presented in Ref. [1]. The
thermofield bosonization has been achieved in the frame-
work of the real time formalism of Thermofield Dynamics.
The well known Fermion-Boson correspondences in 1 + 1
dimensions at zero temperature are shown to hold also at
finite temperature [1].

In Ref. [2] the two-dimensional Fermi field operator
with generalized statistics at 7 = 0 is considered as a
product of order and disorder variables. The main purpose
of the present paper is to fill a gap in the literature, by
providing the generalization for finite temperature of the
two-dimensional order and disorder operators within the
Thermofield dynamics approach [3-8]. We use the
Thermofield Bosonization formalism, introduced in
Ref. [1], to construct Fermi thermofields out of order and
disorder thermal operators, which satisfy an algebra analo-
gous to the dual algebra of order and disorder variables in
statistical mechanics, as it was first discussed by Kadanoff
and Ceva [9]. This streamlines the presentation of the
thermofield bosonization discussed in Ref. [1].
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Within the Thermofield Dynamics approach [3-8] a
Quantum Field Theory at finite temperature is constructed
by doubling the numbers of degrees of freedom. This is
performed by introducing the ‘tilde” operators corre-
sponding to each of the operators describing the system
considered. This fictitious system is an identical copy of
the original system under consideration, which entails a
doubling of the Hilbert space of states. To begin with, let us
consider the Fermi field doublet (¢(x), J(x)) of the two-
dimensional massless Thirring model at 7 =0 [1,10]
which is defined by the Lagrangian density

2
L= iy o+ @y )@y,
= ~ 2 = ~ = ~
= (-iyand + S @y i)

The bosonized Fermi field doublet ((x), J/(x)) at zero
temperature, which provides the operator solution of the
quantum equations of motion, is constructed as a product
of an order and a disorder operators,'

P(x) = f(e)a(x)m(x), 2)
P(x) = f(e)o(x)(x), 3)

where f(¢) is an appropriate normalization factor and the
order and disorder operators at zero temperature (7 = 0)
[2] are given in terms of Wick-ordered exponentials

o (x) = 70, )

" (X) —- eib fiol dzli?o(b(xo,zl):’ (5)
and the corresponding tilde operators,

(x) =: e iV’ d0), (6)

akx) =:e [ daodah. @)

'We have suppressed constant multiplicative factors and Klein
factors that are present in the bosonized form of ¢ [1].
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The “tilde conjugation” is defined by cdp = c*¢P and the
fields ¢(x) and ¢(x) are free massless scalar fields. The
scale dimension of ¢ (i) is given by

a’* + b?
dy = . 8
v 4 ®
The massless Thirring model is obtained with
B 2w
=—_, b=—, 9
a=3 B €))
where
dar
p* = 5 (10)
1 —&

The canonical free massless Fermi field operator is
obtained with g = 0, 8> = 47 (a = b = /7).

Since at T = 0 the order and disorder operators (4)—(7)
are given in terms of Wick-ordered exponentials of a free
massless scalar field,

W(x) =: eiroW): (11)

in order to obtain the corresponding thermal operators we
shall consider the Wick-ordered exponential of a free
scalar field at finite temperature W(x; 8). Following
Ref. [1] the thermal Wick exponential is obtained from
the exponential at 7 = 0 by performing the following
transformation [1],

W(x; B) = U~'To(B)IW(x)UL6(B)] 12)

where the operator U[6(B)] is defined in terms of the
bosonic creation and annihilation operators by,

U() = 120 = ¢~ [ Cdp'@phatph=a(phat (p)6dp'1.5)
(13)

the Bogoliubov parameter 6(|p'|, 8) is implicitly defined
by

e_.3|[71|/2
sinhf(|p!l; B) = ———, (14)
V1 — e APl
| 1
coshd(|p'; B) = ———, (15)
Nl
and the Bose-Einstein statistical weight is
N3(lp'l; B) = sinh®6(Ip'l; B) = (16)

eBIP'l — 1
The transformed annihilation operators are given by,
a(p'; B) = U(=0)a(p")U(6)

= a(p")coshd(|p'l; B) — at(p') sinh(|p'l; B),
(17)
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ap'; B) = U(=0)a(p")u()

= a(p') coshd(|p'l; B) — al (p') sinhé(|p'[; B).

(18)

Using (12) we obtain the order and disorder thermal

operators {o7(x; B), m(x; B), &(x; B), fu(x; B)}, which are
given in terms of the free massless scalar thermofields

¢(x; B) and (x; B),
o (v B) = [Z(B, p)]'/2: v’ d=h) (19)

(i B) = [Z(B, w12 & [0, (a0
o(x; B) = [Z(B; w)]'/2: emiar'dp), (2])

fux; B) = [Z(8; p)]2 &7 [ 000, 99

The factor Z(B, u') plays a role of a wave function renor-
malization for the thermal Wick-ordered exponentials [1],

Z(B; ') = e~ (@b AmB), (23)

where u' is an infrared (IR) cut-off and the IR divergent
factor z(B; u') is the mean number of particles having
momenta p in the range [u', ),

B = [~ LNytpi ), 4)

w P

As shown in Ref. [1] the superselection rule associated

with the thermal Wick exponential ensures the indepen-
dence of physical quantities of the IR cut-off w'.

As in the T = 0 case [2], the operators u(x°, y'; B) and

fi(x° y'; B) produce the following transformations on the
thermal fields ¢(x; B) and & (x; B), respectively,

(X% ¥ B):d(x; B) = p(x; B) + bO(Y' — &), (25)

A0,y B):d(x; B) — dlx; B) + bO(y' —x').  (26)

This transformation is a symmetry of the bosonized
thermal Thirring model, which is described by a free
massless scalar thermofield [1]. The thermal operators
(19)—(22) satisfy the equal-time ‘““dual’ order and disorder
field algebra,

o0 x"; BpE0 ¥ B) = u(x0 ¥ Bo(0 x5 B)
X eiubysﬁ(y]*xl)’ 27)

(0 x' B AR,y B) = p(x% ¥ BIa (0, x'; B)
X eiab'ysf)(y'—x')’ (28)

where 6 is the step function. The commutation between o
(¢) and p () produces a dislocation in the field ¢(x, B)
(¢(x; B)) if o (&) is to the right of m (ft) and leaves it
unchanged otherwise. The operator p(x; 8) (f(x; B8)) does
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not change the field ¢(y; B) (¢ (y; B)),
[o(;B), p(y; B]1=0, V (xy),

[6(x; B), m(y: B)] =0, V (x,y). (30)

As in the T = 0 case, the bosonized Fermi thermofields
are local “dyon” fields written in terms of order and
disorder thermal variables,

(29)
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y(x; B) = f(e)o(x; B)u(x; B), (31)

P(x; B) = f(e)a(x; B)(x; B).

The general correlation functions of the thermal opera-
tors pm(x; B) and o(x; B) are defined with respect to the
Fock vacuum |0, 0) = |0) ® |0) and are given in terms of
the light-cone coordinates x* = x° * x! by

(32)

<O,()I [[eC:B][roiB[]e @ B[] r GeBIO, 0>
i=1 j=1 k=1 t=1

a L 2 /amys S T _
= [lFa; = xp: BIFG = xfs B 7% TIFG; — v BFGT — yi @17

i<i J<j'

n n
e @AY e .
X [Py = 2 BFG — 5 @177 T]IFGy — 503 BIFG] — 365 BT/

k<k' <t

n

- (@ /4m)YS, ¥ - _ v am
X E[[Focr — 5 BFGF — 50 B ARG - S0 BFG — 58 B0

it

n n

_ _ 5 _ 5 _ — _ 5 — 5

X TG = y; s BICHDNF(G = yis BT AP TRy — 3 BT F (G — 375 B/
ij it

n

n

— —— —(ab/4m)y3 - ab/4m)y3 —— - ab/4m)y3 - — —(ab/4m)y?

X [TFG; — %0 B ™5 R — 50 I ™7 TR G — 57 BB G — 38 )17,
Jk

where the temperature and spacetime dependences are
given by
F(z*;B) = B sinh|:z (z= — ie)} (34)
T B

Formally, in the limit 7 — 0 we recover the general
order- disorder correlation functions of the standard mass-
less Thirring model.

Using the thermofield bosonization we have shown how
the 7 = 0 order and disorder fields in 1 + 1 dimensions
generalize to the case of nonzero temperature. In this way
the massless Fermi thermofield can be viewed as a product
of thermal order and disorder operators. This streamlines
the presentation of Ref. [1].

Let us finally remark that the use of two-dimensional
order and disorder thermal operators will certainly be
relevant in the generalization for finite temperature of other
models where at zero temperature general statistics fields
play a role, as for instance the X-Y model. Notice that the
order-order thermal correlation function is given by

(o(x: B)ar*(0: B)) — {(E)Z sinh[guo T x'ﬂ

o

% sinh[%(xo - xl)}_(az/m. (35)

kA€
(33)

The low temperature limit of the Euclidian version of the
correlation function (35) is

(o(x)o*(0)) = |x|~@/?m, (36)

and corresponds to the order-order correlation function
of the continuous limit of the low temperature regime of
the X-Y model [2,11]. In Ref. [2] the Kadanoff and Ceva
prescription [9] has been generalized for the computation
of order- disorder variables correlation functions in the
Ising model for continuous quantum field theories with
U(1) symmetry. Since the low temperature limit of the
Euclidian version of the order-order thermal correlation
function (35) is the continuous limit of the X-Y model
given by (36), it should be very interesting to investigate
whether one can relate the Euclidian version of the corre-
lation function (35) with the continuous limit of the order-
order correlator of the X-Y model for other temperature
domain. This question and other related problems are the
subject of our present investigation.
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