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Recently, gravitational microlensing has been investigated in the framework of the weak field limit of
fourth order gravity theory. However, solar system data (i.e. planetary periods and light bending) can be
used to put strong constraints on the parameters of this class of gravity theories. We find that these
parameters must be very close to those corresponding to the Newtonian limit of the theory.
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I. INTRODUCTION

Since many years different alternative approaches to
gravity have been proposed in the literature such as
MOND [1,2], scalar-tensor [3], conformal [4], Yukawa-
like corrected gravity theories [5–7], and so on (see papers
[8] for reviews). Very recently, it has been proposed [9–
11], in the framework of higher order theories of gravity—
also referred to as f�R� theories—a modification of the
gravity action with the form

 A �
Z
d4x

�������
�g
p

�f�R� �Lm�; (1)

where f�R� is a generic function of the Ricci scalar curva-
ture and Lm is the standard matter Lagrangian. For ex-
ample, if f�R� � R� 2� the theory coincides with
general relativity (GR) with the � term. In particular,
Capozziello et al. [10,11] considered power law function
f�R� theories of the form f�R� � f0R

n. As a result, in the
weak field limit [12], the gravitational potential is found to
be [10,11]:
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where

 � �
12n2 � 7n� 1�

������������������������������������������������������������������
36n4 � 12n3 � 83n2 � 50n� 1
p

6n2 � 4n� 2
:

(3)

The dependence of the � parameter on the n power is
shown in Fig. 1. Of course, for n! 1 it follows �! 1,
while for n � 1 the parameter � reduces to zero and the
Newtonian gravitational field is recovered. On the other

hand, while � is a universal parameter, rc in principle is an
arbitrary parameter, depending on the considered system
and its typical scale. Consider, for example, the Sun as the
source of the gravitational field and the Earth as the test
particle. Since Earth velocity is ’ 30 km s�1, it has been
found that the parameter rc varies in the range ’
1–104 AU. Once rc and � has been fixed, Capozziello
et al. [10] used them to study deviations from the standard
Paczynski light curve for gravitational microlensing [14]
and claimed that the implied deviation can be measured
[15]. It is clear that for gravitational microlensing one
could detect observational differences between GR and
an alternative theory (the fourth order gravity, in particu-
lar), so that one should have different potentials at the scale
RE (the Einstein radius) of the gravitational microlensing.
For the Galactic microlensing case RE is about 1 AU. This
is a reason why the authors [10] have selected rc at a level
of astronomical units to obtain observable signatures for
nonvanishing �. The aim of the present paper is to show
that solar system data (light bending and planetary periods)

 

FIG. 1. The parameter � as a function of n for fourth order
gravity.
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put extremely strong constraints on both rc and � parame-
ters making this alternative theory of gravity not so
attracting.

II. SOLAR SYSTEM CONSTRAINTS

A. Light bending constraints

As stated above, we now discuss some observational
consequences of the fourth order gravity, depending on
the choice of the parameters � and rc.

A constraint on the proposed theory can be derived by
considering the light bending effect in the Sun limb. It is
well known that in the parametrized post-Newtonian for-
malism the bending angle through which a electromagnetic
light ray from a distant source is deflected by a body with
mass m is [8,16]

 � �
�1� ��Gm

c2b
�1� cos��; (4)

where b is the impact parameter, � is the solar elongation
angle (between the Sun and the source as viewed from
Earth) and � is the post-Newtonian parameter. For GR,
� � 1 and for light rays at the Sun’s limb, �GR � 1:7500.
Recently, Shapiro et al. [17] measured the bending angles
for distant compact sources and concluded that light bend-
ing angles follow GR with a very high precision (� �
0:9998� 0:0004). In other words, this means that the
deflection of the light path is well described by the GR
theory. In particular, as radio observations of distant
sources have shown [18], the observed and expected bend-
ing angles are related by �obs � �1:001� 0:001��GR. In
the framework of the fourth order gravity theory, the de-

flection angle of light rays at the Sun’s limb depends on
both the parameters � and rc. We explore this dependence
in Fig. 2, by requiring that the expected value for the
bending angle is, at least, within 2� ( gray region) or
within 5� (light gray region) the observed value.
Inspecting the same figure, it is clear that only �-values
near zero (corresponding to a completely arbitrariness of
rc) are consistent with the observed deflection angles. We
therefore emphasize that �-values considered in [10,11]
(i.e. � � 0:25,0.43, 0.58, 0.75) are ruled out by light de-
flection data.

B. Planetary constraints

A stronger constraint on the fourth order gravity theory
can be obtained from the motion of the solar system
planets. Let us consider as a toy model a planet moving
on circular orbit (of radius r) around the Sun. From Eq. (2),
the planet acceleration a � �@��r�=@r is given by

 a � �
Gm

2r2

�
1�

�
r
rc

�
�
� �

�
r
rc

�
�
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: (5)

Accordingly, the planetary circular velocity v can be eval-
uated and, in turn, the orbital period P is given by

 P � PK
���
2
p �

1�
�
r
rc

�
�
� �

�
r
rc

�
�
�
�1=2

; (6)

where PK � �4�2r3=�Gm��1=2 is the usual Keplerian pe-
riod. In order to compare the orbital period predicted by the
fourth order theory with the Solar System observations, let
us define the quantity

 

�P
PK
�
jP� PKj
PK

� jf��; rc� � 1j (7)

being f��; rc� the factor appearing on the right-hand side
of Eq. (6) and multiplying the usual Keplerian period.
There is a question about a possibility to satisfy the plane-
tary period condition—vanishing the Eq. (7)—with �
parameter which is significantly different from zero.
Vanishing the right-hand side of Eq. (7) we obtain the
relation

 lnr � lnrc �
ln�1� ��

�
; (8)

so that Eq. (8) should be satisfied for all the planetary radii.
This is obviously impossible since the fourth order theory
defines � as a parameter, while the specific system under
consideration (the Solar system in our case) allows us to
specify the rc parameter. Hence the right-hand side of
Eq. (8) is fixed for the Solar system, implying that it is
impossible to satisfy Eq. (8) even with two (or more)
different planetary radii. Just for illustration we present
the function f��; rc� as a dependence on � parameter for
fixed rc and planetary radii r (see Fig. 3). As one can see
from Eq. (8) (and Fig. 3 as well) for each planetary radius

 

FIG. 2. Constraints on the fourth order theory parameters (�
and rc) arising from the deflection angle of light rays close to the
solar limb. The gray and light gray regions embed the part of the
parameter space allowed by solar system observations at the 2�
and 5� confidence level, respectively. It is worth noticing that
for scale reason we have not plotted values of rc up to 104 AU.
For these cases, the observations can be restored only for �! 0.
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r > rc there is� 2 �0; 1� satisfying Eq. (8), but the� value
depends on fixed rc and r, so that they are different for a
fixed rc and different r. Moreover, if we have at least one
radius r 	 rc, there is no solution of Eq. (8). Both cases
imply that the � parameter should be around zero. In Fig. 4
(left panel), the factor f��; rc� is given as a function of �
for the two limiting values of rc, 1 AU (dashed line) and
’ 104 AU (solid line), considered in [10]. As one can note,
only for � approaching zero it is expected to recover the
value of the Keplerian period. In the above-mentioned
figure, the calculation has been performed for the Earth
orbit (i.e. r � 1 AU).

Current observations allow also to evaluate the distances
between the Sun and the planets of the Solar System with a
great accuracy. In particular, differences in the heliocentric
distances do not exceed 10 km for Jupiter and amount to
180, 410, 1200 and 14000 km for Saturn, Uranus, Neptune
and Pluto, respectively [19]. Errors in the semimajor axes
of the inner planets are even smaller (see e.g. Table 2 in
[20]) so that the relative error in the orbital period deter-
mination is extremely low. As an example, the orbital
period of Earth is T � 365:256 363 051 days with an error
of �T � 5:0
 10�10 d, corresponding to a relative error

of �T=T less than 10�12. These values can be used in order
to constrain the possible values of both the parameters �
and rc introduced by the fourth order gravity theory. This
can be done by requiring that �P=PK & �T=T so that, in
the case of Earth, jf��; rc� � 1j & 10�12 which can be
solved with respect to � once the rc parameter has been
fixed to some value. For rc � 1 AU and rc � 104 AU
(i.e. the two limiting cases considered by Capozziello
et al. [10]) we find the allowed upper limits on the �
parameter to be 4:0
 10�12 and 3:9
 10�13, respectively,
(since �P=PK � ����1� ln�r=rc��=4). These results
can also be inferred from the middle and right panels of
Fig. 4.

A more precise analysis which takes into account the
planetary semimajor axes and eccentricities leads to varia-
tions of at most a few percent with respect to the results in
Fig. 4, since the planetary orbits are nearly circular.
Therefore, in spite of the fact that orbital periods of planets
are not generally used to test alternative theories of gravity
(since it is taken for granted that the weak field approxi-
mation of these theories gives the Newtonian limit), we
found that these data are important to constrain parameters
of the fourth order gravity theory.

 

FIG. 4. The factor f��; rc� is given as a function of � (left panel) for the two limiting values of rc, 1 AU (dashed line) and ’ 104 AU
(solid line), respectively. As one can note, only for � approaching 0 it is expected to recover the value of the Keplerian period. Here,
the calculation have been performed at Earth (i.e. r � 1 AU). In the middle and right panel, the quantity f��; rc� � 1 is given as a
function of � for rc � 104 AU and rc � 1 AU. Note that only for values of � close to 0 the Solar System observation can be restored
(see text for more details).

 

FIG. 3. The orbital period in units of the Keplerian one (the function f��; rc�) is given, as a function of �, in the case of Mercury
(dashed line), Venus (dotted line), Earth (solid line) for different rc (it is clear that f��; rc� !

���
2
p

for �! 1). If r > rc there is
� 2 �0; 1� satisfying Eq. (8), but the � values depend on fixed rc and r and they are different for a fixed rc and different r, so that it is
impossible to satisfy Eq. (8) if the number of planets is more than one. Moreover, if we have at least one radius r 	 rc, there is no
solution of Eq. (8).
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III. DISCUSSION

GR and Newtonian theory (as its weak field limit) were
verified by a very precise way at different scales. There are
observational data which constrain parameters of alterna-
tive theories as well. As a result, the parameter � of fourth
order gravity should be very close to zero (it means that the
gravitational theory should be very close to GR). In par-
ticular, the� parameter values considered for microlensing
[10], for rotation curves [11] and cosmological SN type Ia
[21] are ruled out by solar system data.

No doubt that one could also derive further constraints
on the fourth order gravity theory by analyzing other
physical phenomena such as Shapiro time delay, frequency
shift of radio photons [22], laser ranging for distant objects
in the solar system, deviations of trajectories of celestial

bodies from ellipses, parabolas and hyperbolas and so on.
But our aim was only to show that only � ’ 0 values are
not in contradiction with solar system data in spite of the
fact that there are a lot of speculations to fit observational
data with � values significantly different from zero.
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