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We construct infinite new classes of supersymmetric solutions of D � 11 supergravity that are warped
products of AdS3 with an eight-dimensional manifold M8 and have nonvanishing four-form flux. In order
to be compact, M8 is constructed as an S2 bundle over a six-dimensional manifold B6 which is either
Kähler-Einstein or a product of Kähler-Einstein spaces. In the special cases that B6 contains a two-torus,
we also obtain new AdS3 solutions of type IIB supergravity, with constant dilaton and only five-form flux.
Via the anti-de Sitter (AdS)-conformal field theory (CFT) correspondence the solutions with compact M8

will be dual to two-dimensional conformal field theories with N � �0; 2� supersymmetry. Our construction
can also describe noncompact geometries and we discuss examples in type IIB which are dual to four-
dimensional N � 1 superconformal theories coupled to stringlike defects.
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I. INTRODUCTION

In this paper we will construct infinite new classes of
supersymmetric solutions of D � 11 supergravity and
type IIB supergravity that contain AdS3 factors and com-
pact internal spaces. Via the anti-de Sitter (AdS)-
conformal field theory (CFT) correspondence [1] these
solutions are dual to two-dimensional conformal field
theories with N � �0; 2� supersymmetry. Note that a sub-
class of the type IIB solutions was already discussed in [2].

Our construction is directly inspired by the supersym-
metric solutions found in [3]. Recall that these solutions
are warped products of AdS5 with a six-dimensional mani-
fold M6 and are all dual to N � 1 supersymmetric confor-
mal field theories in four dimensions. These solutions were
found in two steps. The first step consisted of classifying
the most general supersymmetric solutions of this form
using G-structure techniques. The second step involved
imposing a suitable ansatz on M6, namely, that M6 is a
complex manifold, and then showing that all such compact
M6 could be constructed in explicit form. Specifically M6

is an S2 bundle over a four-dimensional base which is
either (i) Kähler-Einstein with positive curvature i.e. S2 �
S2, CP2 or a del-Pezzo dPk with k � 3; . . . ; 8, or (ii) a
product: S2 � S2, S2 �H2, or S2 � T2, each factor with its
constant curvature metric. The last example with base S2 �
T2 is related, via dimensional reduction and T-duality, to a
family of type IIB solutions AdS5 � Yp;q where Yp;q are
new Sasaki-Einstein metrics on S2 � S3 [4]. These five-
dimensional Sasaki-Einstein metrics, and their generaliza-
tions [5], have been receiving much attention because the
dual conformal field theories can be identified [6–10]. It is
an important outstanding issue to elucidate the conformal
field theories dual to the other M theory solutions found in
[3].

It is natural to try and repeat the successful constructions
of [3] in different contexts. In [11] a complete classification
of the most general supersymmetric solutions of type IIB

supergravity consisting of warped products of AdS5 with a
five-dimensional manifold X5 was successfully carried
out.1 The Pilch-Warner solution [13] was recovered using
this formalism, but, as yet, it is unclear what additional
ansatz one should impose upon X5 in order to be able to
construct new explicit solutions. Furthermore, a detailed
classification of AdS5, AdS4, and AdS3 solutions of D �
11 supergravity with various amounts of supersymmetry
and vanishing electric four-form flux was given in [14].
While various known solutions were recovered, it again
proved difficult to find new classes of solutions.

In this paper we will construct solutions of D � 11
supergravity that are the warped product of AdS3 with an
eight-dimensional manifold M8 which are dual to confor-
mal field theories with N � �0; 2� supersymmetry. The
solutions, which have nonvanishing electric four-form
flux, do not fall within the classes studied in [14], so
require an appropriate generalization, which is discussed
in detail in Appendix A. By considering a suitable ansatz,
we will then show that we can indeed find infinite new
classes of explicit AdS3 solutions of D � 11 supergravity.
We find solutions in which M8 is an S2 bundle over a six-
dimensional base space B6 which is either a six-
dimensional Kähler-Einstein space, KE6, a product of
four- and two-dimensional Kähler-Einstein spaces, KE4 �
KE2, or a product of three two-dimensional Kähler-
Einstein spaces, KE2 � KE2 � KE2. There are various
possibilities for the signs of the curvature of the Kähler-
Einstein spaces, as we shall see. If these backgrounds are to
be bona fide M theory solutions one must also ensure that
the four-form flux is quantized. While we do not consider
this in general, the expectation is that this will restrict most
if not all of the parameters in the solutions to discrete
values. We show how this is indeed the case in a particular
class of solutions.

1For some recent further developments see [12].
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In the special case when M8 is an S2 bundle over a
KE4 � T2 or a KE2 � KE2 � T2 base space, we can di-
mensionally reduce and then T-dualise to give solutions of
type IIB supergravity (this is analogous to how the AdS5 �
Yp;q solutions were found in [3]). These type IIB solutions
are warped products of AdS3 with a seven manifold M7,
have constant dilaton and nonvanishing five-form flux. For
those arising from KE4 � T

2, we will show that there are
two families of regular solutions for any positively curved
KE�4 . One family was first presented and analyzed in some
detail in the type IIB context in [2]. Of the second family,
taking the special case where KE�4 � CP2, the IIB solu-
tion describes the near-horizon limit of D3-branes wrap-
ping a holomorphic Riemann surface embedded in a
Calabi-Yau four-fold that was first constructed in [15]
(generalizing a construction of Maldacena and Núñez
[16]). For this family we calculate the central charge of
the dual CFT. Remarkably this is integral independent of
the choice ofKE�4 . The newD � 11 solutions arising from
a KE2 � KE2 � T

2 base space give rise to new type IIB
solutions generalizing these solutions and also those pre-
sented in [2].

Most of the paper will focus on solutions in which the
internal space is compact. However, generically our ansatz
also includes noncompact solutions. We will briefly dis-
cuss a class of these in the type IIB context, that is of the
form of a warped product AdS3 �M7 with noncompact
M7. These solutions include backgrounds that can be
interpreted as the backreacted geometry of probe D3-
branes in AdS5 � S5 with world volume AdS3 � S1, and
preserving 1

16th of the supersymmetry. The corresponding
dual field theory is N � 4 super Yang-Mills coupled to
stringlike defects preserving the superconformal group in
two dimensions. More generally, the S5 factor can be
replaced by a Sasaki-Einstein manifold, and the back-
reacted geometry corresponds to some four-dimensional
N � 1 SCFT coupled to stringlike defects.

The plan of the rest of the paper is as follows. We start by
motivating the ansatz for the 11-dimensional supergravity
fields in Sec. II. Section II B describes how the Killing
spinor equations reduce to one single second-order differ-
ential equation, and uses it to comment on the conditions
required to eliminate conical singularities in the metric.
The following sections describe the explicit solutions that
we have found. They are ordered in increasing complexity
of the base B6: Sec. III deals with B6 � KE6, Sec. IV with
B6 � KE4 � KE2, and Sec. V with B6 � KE2 � KE2 �
KE2. The type IIB solutions that arise when one of theKE2

factors is a T2 are discussed in Sec. VI. A discussion of the
new noncompact solutions of type IIB supergravity is
presented in Sec. VII and we conclude in Sec. VIII.
Finally, we have included three appendices. The technical
study of the Killing spinor equations has been relegated
from the text, and collected in Appendix A. In particular,
this appendix contains the classification of the relevant

AdS3 solutions using G-structures. Some properties of
KE4 spaces used in this paper are explained in
Appendix B. Finally, Appendix C describes how to relate
the orientations and parameters in M theory and IIB
supergravity.

II. ANSATZ AND SOLUTIONS

To explain our ansatz in a bit more detail, we recall that
the family of AdS5 solutions of [3] with M6 an S2 bundle
over an H2 � S2 base space contain a limiting solution in
which the geometry degenerates to H2 � S4. This particu-
lar solution was constructed previously by Maldacena and
Núñez and describes the near-horizon limit of
M-fivebranes wrapping a holomorphic two-cycle (cali-
brated by the Kähler two-form) inside a Calabi-Yau three-
fold [16]. Here the two-cycle is the H2 factor2 while the S4

factor corresponds to the four-sphere surrounding the
wrapped fivebranes. The metric for this ‘‘2-in-6 Kähler’’
solution contains an S4 factor twisted over the H2 base in a
specific manner, which can be deduced from probe five-
branes wrapping holomorphic cycles [16]. From this per-
spective, the solutions of [3] correspond to a generalization
where the S4 surrounding the brane is replaced by an S2

bundle over S2.
For us, a key observation is that the structure of the AdS5

2-in-6 Kähler solution [16] has many similarities with the
AdS3 solution of [17] corresponding to M-fivebranes
wrapping a Kähler four-cycle in a Calabi-Yau four-fold,
‘‘4-in-8 Kähler.’’ In both cases, of the five directions trans-
verse to the probeM-fivebranes wrapping such cycles, four
of them are tangent to the Calabi-Yau. Combined with the
fact that in both cases the fivebrane is wrapping a Kähler
cycle, this implies that in the D � 11 solution the four-
sphere is fibered over the base space in an almost identical
way, the only difference being that the H2 base is replaced
by a four-dimensional Kähler-Einstein manifold KE4 that
is negatively curved. We have summarized the probe-brane
configurations in Table I. Note that in the 4-in-8 case one
could also consider a probe membrane wrapping directions
orthogonal to the Calabi-Yau without further breaking the
supersymmetry.

Thus, inspired by the fact that the 2-in-6 Kähler solution
is a single member of a family of solutions where the S4 is
replaced by an S2 bundle over S2, we are motivated to find
new warped AdS3 �M8 solutions where M8 is a bundle
over KE4, with fibres which are themselves S2 bundles
over S2. Or rather, in analogy with [3], the structure should
actually simplify to an S2 bundle over S2 � KE4. In the
specific 4-in-8 Kähler solution of [17] the KE4 had nega-
tive curvature. However, following the success of [3] we
can also seek solutions that are S2 bundles over more

2It is possible to take a quotient of H2 to obtain any compact
Riemann surface with genus greater than one while still preserv-
ing supersymmetry [16].
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general bases B6. Specifically we will consider B6 � KE6,
B6 � KE2 � KE4, or B6 � KE2 � KE2 � KE2, with the
various factors having positive, negative, or zero curvature.

A. Ansatz

We start with the ansatz for the bosonic fields ofD � 11
supergravity, discussing each choice for B6 in turn. In all
cases we assume the metric is a warped product:

 ds2 � !2�ds2�AdS3� � ds2�M8��; (2.1)

where ds2�AdS3� is the metric of constant curvature on
AdS3 with unit radius.
Case 1 B6 � KE2 � KE2 � KE2

In this case we assume that ds2�M8� has the form

 ds2�M8� �
X3

i�1

hids2�Ci� � f3dr2 � f4�D �2;

(2.2)

and the four-form is given by
 

G4 � g3J1 ^ J2 � g1J2 ^ J3 � g2J3 ^ J1

� �g4J1 � g5J2 � g6J3� ^ dr ^D 

� g7dr ^ volAdS3
: (2.3)

Here ds2�Ci� is locally a constant curvature metric
on S2, H2, or T2 for ki � 1,�1, or 0, respectively,
and Ji � volCi is the corresponding Kähler-form
on Ci. The ansatz depends on 13 functions hi, f3,
f4, g1; . . . ; g7, ! which are functions of r only.
Thus, in general, the isometry group will be, at
least, SO�2; 2� �U�1�, the first factor correspond-
ing to the symmetries of AdS3 and the latter to
shifts of the fiber coordinate  (we will see later
that, for compact M7,  is a periodic coordinate).
Note that using the freedom to change the r coor-
dinate we can choose f3 as we like. We also have

 D � d � P (2.4)

with

 dP �
X3

i�1

Ri �
X3

i�1

kiJi; (2.5)

where Ri is the Ricci-form for Ci. Thus, the twist-
ing of the fiber with coordinate  is associated to
the canonical U�1� bundle over the six-
dimensional base space B6 given by C1 � C2 �
C3. Indeed in the compact complete solutions that
we will construct r,  will parametrize a two-
sphere and topologically we will have an S2 bundle
over C1 � C2 � C3 that is obtained by adding a
point to the fibers in the canonical line bundle. This
is entirely analogous to the solutions in [3].

Case 2 B � KE4 � KE2

In this case we assume
 

ds2�M8� � h1ds2�KE4� � h3ds2�C3� � f3dr2

� f4�D �2;

G4 �
g3

2
J ^ J� g1J ^ J3 � �g4J� g6J3�

^ dr ^D � g7dr ^ volAdS3
; (2.6)

where now J is the Kähler-form of KE4. Note that
in terms of the functions hi, gi and parameters ki,
this can be viewed as a special case of the previous
ansatz

 k1 � k2; h1 � h2;

g1 � g2; g4 � g5:
(2.7)

The 4-in-8 Kähler solution of [17] is contained
within this ansatz. More specifically, we shall
show that it is recovered in the B6 � KE4 � KE2

class (2.7) when KE4 has negative curvature (k1 �
k2 � �1) and C3 � S2 (k3 � 1). For this particu-
lar solution, the r,  coordinates parametrize a
two-sphere but when combined with the two-
sphere C3 give rise to a four-sphere. The metric
for this solution is then a warped product of the
form AdS3 � KE4 � S

4. From a physical point of
view the four-sphere surrounds the fivebrane that is
wrapped on the negatively curved3 KE4.

Case 3 B6 � KE6

In this case the ansatz is even simpler
 

ds2�M8� � h1ds
2�KE6� � f3dr

2 � f4�D �
2;

G4 �
g1

2
J ^ J� g4J ^ dr ^D 

� g7dr ^ volAdS3
; (2.8)

where here J is the Kähler-form of KE6. Again in

TABLE I. Arrays describing the probe brane setups in M
theory. In both situations, of the 5 transverse directions to the
M5-branes, 4 are tangent to the CY and 1 lies in flat space.

‘‘2-in-6’’ 0 1 2 3 4 5 6 7 8 9 10

CY3 � � � � � �

M5 � � � � � �|���{z���}
H2

‘‘4-in-8’’ 0 1 2 3 4 5 6 7 8 9 10

CY4 � � � � � � � �

M5 � � � � � �|���������������{z���������������}
KE4

3Note that solutions for fivebranes wrapping positively curved
Kähler-Einstein spaces, i.e. k2 � 1 were also found in [17] but
they did not have an AdS3 factor in the near-brane limit.
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terms of the functions and parameters, this is a
special case of the original ansatz with

 k1 � k2 � k3; h1 � h2 � h3;

g1 � g2 � g3; g4 � g5 � g6:
(2.9)

Finally, our ansatz leads to type IIB backgrounds
when one of the cycles inB6 is a torus. By reducing
to IIA along one of the torus directions and
T-dualizing along the other, we obtain type IIB
solutions with constant dilaton and only five-form
flux. To be explicit, let C3 � T2. The 11-
dimensional four-form decomposes naturally as
 

G4 � F4 � F2 ^ volT2 ;

F4 � g3J1 ^ J2 � �g4J1 � g5J2� ^ dr ^D 

� g7dr ^ volAdS3
;

F2 � g2J1 � g1J2 � g6dr ^D : (2.10)

Note that both F2 and F4 are closed by virtue of the
closure of G4. In particular, we can write locally
F2 � dA1 for some one-form potential A1. Having
made this decomposition, the IIB background
reads (for a few more details see Appendix C)
 

ds2 � �!6h3�
1=2�ds2�AdS3� � ds2�M7��;

F5 � �1� ?�F4 ^Dz; (2.11)

where
 

ds2�M7� � h1ds
2�C1� � h2ds

2�C2� � f3dr
2

� f4D 2 �
1

!6h2
3

Dz2; (2.12)

and

 Dz � dz� A1: (2.13)

For our ansatz, explicitly we have

 ? �F4 ^Dz� �
h3g3!3

����������
f3f4

p

h1h2
volAdS ^ dr ^D 

�
h2h3g4!

3

h1

����������
f3f4

p volAdS3
^ J2

�
h1h3g5!

3

h2

����������
f3f4

p volAdS3
^ J1

� g7h1h2h3!3

�����
f4

f3

s
J1 ^ J2 ^D :

(2.14)

Note that (as explained in Appendix A), taking
!3 > 0, we have

����������
f3f4

p
< 0. Also note that these

IIB backgrounds will have an isometry group at
least as large as SO�2; 2� �U�1� �U�1�, the U�1�
factors acting as shifts of the coordinates  , z.

B. The BPS condition and global construction

Let us now turn to the conditions imposed by supersym-
metry, the Bianchi identities, and the equations of motion.
The derivation is technically involved and relies on a key
gauge choice for the function f3. We have presented some
details in Appendix A. Remarkably, we find that all con-
ditions boil down to solving the second-order nonlinear
equation for a function H�r�:
 

0 � �4�H0�2 � 4H�2H00 � 4kidi � 4kicir� 3k1k2k3r
2�

�
Y3

i�1

�
k1k2k3

ki
r2 � 4rci � 4di

�
: (2.15)

Here ci and di are six integration constants that appear in
the analysis. Given a solution of (2.15) one can construct
the full 11-dimensional supergravity solution as follows
 

hl �
2H00 � 4kidi � 4kicir� 3k1k2k3r

2

4�4dl � 4clr�
k1k2k3

kl
r2�

; l � 1; 2; 3;

f3 � �
2H00 � 4kidi � 4kicir� 3k1k2k3r

2

16H
;

f4 � �H
2H00 � 4kidi � 4kicir� 3k1k2k3r

2Q3
i�1�

k1k2k3

ki
r2 � 4rci � 4di�

;

!6 �
4
Q3
i�1�

k1k2k3

ki
r2 � 4rci � 4di�

�2H00 � 4kidi � 4kicir� 3k1k2k3r2�2
: (2.16)

If we define the function f via

 f �
4H0

2H00 � 4kidi � 4kicir� 3k1k2k3r2 ; (2.17)

then the first three components of the flux are given by

 g1 � �
1
2�f�k2h3 � k3h2� � k2k3r� � c1;

g2 � �
1
2�f�k3h1 � k1h3� � k3k1r� � c2;

g3 � �
1
2�f�k1h2 � k2h1� � k1k2r� � c3:

(2.18)

The next three components are given by
 

�4g4 � �2fh1�
0 � k1; �4g5 � �2fh2�

0 � k2;

� 4g6 � �2fh3�
0 � k3; (2.19)

while the electric piece is
 

g7 �
f3

2h1h2h3
��!6 � f2��k1h2h3 � perm:�

� f�k1k2h3 � perm:�r� 2fcihi�;

where ‘‘�perm:’’ means adding the other two terms in-
volving the obvious permutations of 1, 2, and 3. The
explicit expression for the Killing spinors are given in the
appendix. We find that the solution generically preserves
1=8 supersymmetry and is dual to a two-dimensional con-
formal field theory with N � �0; 2� supersymmetry.
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We have not managed to find the most general solution
to the differential equation (2.16) for H. However, we have
found a rich set of polynomial solutions that lead to regular
and compact solutions, which we will discuss in detail in
the next section.

Our principal interest is the construction of compact
solutions. As mentioned earlier, our procedure will be to
require r,  to parametrize a two-sphere fibered over a
compact base B6:

 

S2
r; ! M8

� #
B6

: (2.20)

This is achieved if the range of r is restricted to lie in a
suitable finite interval, r1 	 r 	 r2, and  is a periodic
coordinate. Clearly, the range of the coordinate r is re-
stricted by the poles of f3 which must be zeroes of the
function H. Generically, the poles of f3 are also the zeroes
of f4 and so the �r;  � part of the metric can indeed form an
S2 provided that one can remove potential singularities at
each of the zeroes r� of H. If such a generic H has a linear
behavior at r� we find that, after a change of coordinates
r � r���, the �r;  � part of the metric takes the form

 ds2 � d�2 � ��2d 2; (2.21)

with

 � �
4�H0�r���

2Q3
i�1�

k1k2k3

ki
r2
� � 4r�ci � 4di�

; (2.22)

where H0�r�� is the value of H0 at the corresponding zero.
Now, using the differential equation (2.15), and evaluating
it at a zero of H, one deduces the remarkable fact that � �
1 at all poles. Thus, for such generic H, the condition for
the absence of conical singularities at the poles of the S2

formed by �r;  � is just � � 2�.
For such H, we have complete metrics on M8, then,

provided that the warp factor ! and the metric functions hi
remain finite and nonzero within the interval r1 	 r 	 r2.
Topologically, M8 is a two-sphere bundle over a six-
dimensional base, B6, where B6 � KE6, KE4 � KE2, or
KE2 � KE2 � KE2. This S2-bundle is obtained from the
canonical line bundle over B6 by simply adding a point ‘‘at
infinity’’ to each of the fibers.

C. Flux quantization

Given a regular compact solution, the final condition
that we have a bona fide solution of M theory is the
quantization of the four-form flux G4. In our ansatz (2.1)
we took AdS3 to have unit radius, thus we should first
reinstate dimensions by rescaling the metric and back-
ground by powers of L, the actual radius of the AdS3 space,

 d~s2
11 � L2ds2

11; ~G4 � L3G4: (2.23)

In our conventions, the quantization condition [18] for the

four-form is that we have integer periods

 N�D� �
Z
D

�
1

�2�lP�3
~G4 �

1

4
p1�M11�

�
2 Z; (2.24)

where lP is the 11-dimensional Planck length (see
Appendix C), D is any four-cycle of the 11-dimensional
manifold M11, and p1�M11� is the first Pontryagin class of
M11. The subtlety here is the shift by 1

4p1�M11�which is not
necessarily an integral class.

For our solutions M11 � AdS3 �M8, and the relevant
four-cycles lie in M8. Thus, written in terms of cohomol-
ogy the condition becomes

 

1

�2�lP�3
� ~G4� �

1

4
p1�M8� 2 H4�M8;Z�; (2.25)

where � ~G4� denotes the cohomology class of ~G4 on M8.
Given the fibration structure (2.20) it is relatively easy to
find an expression for p1�M8� in terms of classes on B6.
One way to view the fibration (2.20) is as a complex space
formed by the anticanonical line bundle L of B6 together
with a point r � r1 added at infinity of each C fiber to
make them into spheres. One finds

 p1�M8� � �
p1�B6� � �

p1�L�

� �
�c1�B6�
2 � 2c2�B6�� � �


�c1�B6�
2�;

(2.26)

where the second term in the first line comes from the
twisting of the fibration. In the second line we have used
the complex structures on TB6 and L to rewrite the
Pontryagin classes in terms of Chern classes.

As we will see in the next section all our new solutions
will be of the form

 B6 � B4 � C; (2.27)

where C is some Riemann surface. Given the projections
�1:M8 ! B4 and �2:M8 ! C we then have �
c1�B6� �
�
1c1�B4� � �
2c1�C� and �
p1�B6� � �
1p1�B4� �
�
2p1�C� � �
1p1�B4�. Hence
 

p1�M8� � �
1�2c1�B4�
2 � 2c2�B4�� � 2�
1c1�B4�

^ �
2c1�C�

� �
1�4c1�B4�
2 � 24��OB4

�� � 4�
1c1�B4�

^ �
2��OC�; (2.28)

where the alternating sum of Hodge numbers ��OM� �P
p��1�ph0;p�M� is the holomorphic Euler characteristic.

(For B4 [19,20] we have ��OB4
� � 1

12 �c1�B4�
2 � c2�B4��,

while for a Riemann surface it is half the Euler number
��OC� �

1
2� � 1� g, where g is the genus.)

From (2.28) we see that 1
4p1�M8� is in fact integral for

our new examples. Thus in the following we may neglect
the 1

4p1�M8� term in (2.25) and simply require that
� ~G4�=�2�lP�3 is integral.
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III. THE CLASS B6 � KE6

Let us begin with the simplest case: B6 � KE6. As
explained above, we need to impose the conditions (2.9),
which imply c3 � c2 � c1 and d3 � d2 � d1. We are
therefore left with only two integration constants, say c1,
d1, and also the constant k1 specifying the curvature of the
KE6. We discuss the cases k1 � 0 and k1 � 0 separately.

A. B6 � KE
�
6

From (2.18) we see that when k1 � 0 we can shift the
coordinate r to set c1 � 0. Having done this, we are left
with only one independent constant, say d1. Our polyno-
mial solution for H is

 H � k1�
1
4r

4 � 2d1r
2 � 4d2

1�; (3.1)

which leads to the following metric
 

ds2 � !2

�
ds2�AdS3� �

4d1 � 3r2

4�r2 � 4d1�

�
k1ds

2�KE6�

�D 2 �
dr2

r2 � 4d1

��
;

with

 !6 �
4�r2 � 4d1�

3

�3r2 � 4d1�
2 : (3.2)

Demanding that the metric is positive definite implies that
we must take k1 � 1, choose d1 < 0 and restrict the range
of r so that r2 	 4jd1j=3. However, at r2 � 4jd1j=3, the
warp factor ! diverges and hence there are no compact
regular solutions in this class.

B. B6 � CY3

If k1 � 0 we have B6 � CY3 (this includes B6 � T6 and
B6 � CY2 � T

2). We have only found one single regular
solution, for which

 H � �4r2 � 1; (3.3)

and ci � 0, di � �1. This leads to constant metric func-
tions:

 h1 � h2 � h3 � ! � 1: (3.4)

A redefinition y � 2r then yields
 

ds2 � ds2�AdS3� � ds
2�CY3�

�
1

4

�
dy2

1� y2 � �1� y
2�d 2

�
;

G4 �
1

2
J ^ volS2 ; (3.5)

where volS2 � dy ^ d is the volume form of the round S2

parametrized by y,  . This solution is thus simply the well-
known AdS3 � S2 � CY3 solution that is dual to a (0, 4)
superconformal field theory. In the special case that CY3 is

CY2 � T
2 we can dimensionally reduce and T-dualise to

obtain the type IIB solution of the form AdS3 � CY2 � S
3

with nonzero five-form flux, which is the near-horizon
limit of two intersecting D3-branes and is dual to a (4, 4)
superconformal field theory.

IV. THE CLASS B6 � KE4 � KE2

The next to simplest case is when the base is B6 �
KE4 � KE2, which happens when we impose the condi-
tions (2.7). These imply that we have to set c2 � c1 and
d2 � d1, leaving a total of four independent constants,
fc1; c3; d1; d3g say, and the two curvature constants k1 and
k3 of KE4 and KE2, respectively. We proceed to consider
the cases k1 � 0 and k1 � 0 separately.

The case k1 � 0, which leads to B6 � K3� KE2 or
B6 � T4 � KE2, is rather special, as we cannot set to
zero any of the ci by shifting r. Thus the general solution
is specified by fc1; c3; d1; d3g and the KE2 curvature k3. We
have found the following cubic polynomial solution for H:

 H � �
4c3

3k3
r3 �

4�3c2
1 � d3�

k3
r2

�
4�6c1d1c

2
3 � 3d3�4c

2
1 � d3�c3�

3c2
3k3

r

�
4�c2

3d
2
1 � 4c1c3d3d1 � d

2
3�4c

2
1 � d3��

3c2
3k3

; (4.1)

which leads to the metric functions

 h1 � �
3�4c2

1 � d3 � c3r�
4k3�d1 � c1r�

;

h3 � �
3�4c2

1 � d3 � c3r�
4k3�d3 � c3r�

;

!6 � �
16�d1 � c1r�

2�d3 � c3r�

9�4c2
1 � d3 � c3r�

2 ;

f3 �
3�4c2

1 � d3 � c3r�
4Hk3

;

f4 � �
3H�4c2

1 � d3 � c3r�

16k3�d1 � c1r�2�d3 � c3r�
:

(4.2)

Unfortunately, we have not been able to prove the exis-
tence of positive definite metrics leading to compact solu-
tions for any choice of fc1; c3; d1; d3; k3g.

However, if k1 � 0, then we can set c3 � 0 by shifting r.
Thus the general solution is specified by fc1; d1; d3g and the
KE4 and KE2 curvatures k1 and k3. We have found the
following quartic polynomial solution for H:

 H �
X4

n�0

pnr
n; (4.3)

where

GAUNTLETT, MAC CONAMHNA, MATEOS, AND WALDRAM PHYSICAL REVIEW D 74, 106007 (2006)

106007-6



 p4 �
1

4
k2

1k3;

p3 � �
2

3
k1c1;

p2 �
3d2

1k
2
1

2d1k1 � d3k3
� 2d1k1 � d3k3;

p1 �
8c1d1d3

2d1k1 � d3k3
;

p0 �
4d3�4d3c

2
1 � �2d1k1 � d3k3�

2�

3k2
1�2d1k1 � d3k3�

:

(4.4)

The corresponding expressions for the metric functions
are:

 h1�
3k2

1�4d
2
1�k3�2d1k1�d3k3�r

2�

4�2d1k1�d3k3��4d1�r�4c1�k1k3r��
;

h3��
3k2

1�4d
2
1�k3�2d1k1�d3k3�r

2�

4�2d1k1�d3k3��k2
1r

2�4d3�
;

!6�
4�2d1k1�d3k3�

2�k2
1r

2�4d3��4d1�r�4c1�k1k3r��2

9k4
1�4d

2
1�k3�2d1k1�d3k3�r

2�2
;

f3��
3k2

1�4d
2
1�k3�2d1k1�d3k3�r

2�

16H�2d1k1�d3k3�
;

f4�
3Hk2

1�4d
2
1�k3�2d1k1�d3k3�r

2�

�2d1k1�d3k3��4d3�k2
1r

2��4d1�r�4c1�k1k3r��2
:

(4.5)

We have found positive definite metrics that lead to com-
pact solutions in the classes where k1k3 � �1, i.e. KE�4 �
S2 and KE�4 �H

2, and k3 � 0, i.e. KE�4 � T
2. We now

proceed to discuss them separately.

A. B6 � KE
�
4 � S

2 and the solution of [17]

Let �k1; k3� � ��1; 1�. In this section we argue that there
exists a range of the constants fc1; d1; d3g for which the
expressions (4.5) yield positive definite metrics and com-
pact M8. To show this we first note that the special point in
the fc1; d1; d3g space defined by

 c1 � 0; d1 � �9=16; d3 � �27=16; (4.6)

is actually the 4-in-8 Kähler solution of [17] discussed in
Sec. II. Indeed, defining y � 2r=3 we have

 !6 � 3� y2; h1 �
3

4
;

h3 � f4 �
3�1� y2�

4�3� y2�
; f3 �

3

4�1� y2�
:

A further change y � cos� leads to the 4-in-8 Kähler
solution of [17]:

 

ds2�M8� �
3

4

�
ds2�KE�4 � � d�

2

�
sin2�

3� cos2�
�ds2�S2� �D 2�

�
: (4.7)

If the range of  is taken to be 4� then, at fixed � the S2

and  parametrize a round three-sphere and together with
� parametrize a four-sphere. Clearly, this solution is regu-
lar and compact (provided KE�4 is). We can recover the
solution in the coordinates used in [17] by defining con-
strained coordinates YA on the S4, satisfying YAYA � 1, via

 Y1 � iY2 � sin� cos
�
2
e�i=2���� �;

Y3 � iY4 � sin� sin
�
2
e��i=2���� �; Y5 � cos�;

(4.8)

where �, � are polar coordinates for the S2 appearing in
(4.7).

It can be easily checked that for values of the constants
sufficiently close to (4.6), the metric is still regular and
positive definite for values of r between the two relevant
roots of H. The topology of these nearby solutions is
however not KE�4 � S

4. The function h3 now does not
go to zero. Instead, by virtue of the general properties
discussed in Sec. II B, taking the period of  to be 2�,
the  -circle fibers over r form a smooth S2. Globally the
manifold is constructed by fibering this S2 over B6 �
KE�4 � S

2. Noting that we can still use the scaling sym-
metry of the 11-dimensional equations of motion to set
either d1 or d3 to a fixed value, we conclude that the
expressions (4.5) (with k1 � �k3 � �1) lead to a two-
parameter family of solutions that include the solution of
[17] as a special case in which the topology changes. This
family of solutions thus realizes expectations of Sec. II.

B. B6 � KE
�
4 �H

2

We repeat the analysis of the previous section in the
�k1; k3� � �1;�1� class. A very simple regular and com-
pact solution occurs at the point

 c1 � 0; d1 � d3 � �1=4; (4.9)

where the metric is
 

ds2 � !2

�
ds2�AdS3� �

3�1� r2�

4�1� r2�
ds2�KE�4 � �

3

4
ds2�H2�

�
9�1� r2�

4q�r�
dr2 �

q�r�

4�1� r2�2
D 2

�
; (4.10)

with

 !6 �
4�1� r2�2

9�1� r2�
; q�r� � 1� 6r2 � 3r4: (4.11)

It can be readily checked that the quartic polynomial q�r�
has only two real roots of opposite sign r2 � �r1, with
absolute value less than one, and that q�r� is positive
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between these two. Although the analysis of Sec. II B does
not apply because the expansion near the roots is not linear,
one can still show that if the range of r is restricted to lie
between them, the metric is positive definite, and r1, r2 are
the north/south poles of the S2 formed by �r;  �. Note that
one can easily obtain compact solutions by the standard
procedure of taking the quotient of H2 by a discrete ele-
ment of SL�2;Z�, to obtain a Riemann surface with genus
greater than one. As shown in Appendix A 1, the Killing
spinors are independent of the coordinates on H2, and are
therefore preserved in the quotient procedure.

Having concluded that this solution is regular and com-
pact, one can now check that for values of the constants
sufficiently close to (4.9), the metric is still regular and
positive definite between the two relevant roots of H. By
virtue of the general properties discussed in Sec. II B, the
 -circle always fibers over an interval parametrized by r to
form a smooth S2. Thus, noting that we can still use the
scaling symmetry of the 11-dimensional equations of mo-
tion to set either d1 or d3 to a fixed value, we conclude that
the expressions (4.5) (with k1 � �k3 � 1) lead to a two-
parameter family of deformations of the solution (4.10).

C. B6 � KE
�
4 � T

2

To study this class, we just need to set k3 � 0 in the
KE4 � KE2 expressions (4.4) and (4.5). It can then be seen
that we cannot have d1 � 0, so it can be set to �1 by
rescaling r. Further inspection reveals that we need to set
k1 � 1, d1 � �1 in order to have a metric with the right
signature and so we are led to consider only KE�4 spaces.

We will consider the cases when c1 � 0 and when c1 �

0 separately. The solutions in this section are of particular
interest because one can use dimensional reduction and
T-duality to relate them to new type IIB solutions. This will
be discussed in Sec. VI below.

1. c1 � 0 solutions

Setting c1 � 0, the metric and the warp factor read

 

ds2�M8� �
3

8
ds2�KE�4 � �

3

2�r2� 4d3�
ds2�T2�

�
9dr2

4�3r2� 16d3�
�
�3r2� 16d3�D 2

16�r2� 4d3�
;

!6 �
16�r2� 4d3�

9
:

(4.12)

A further rescaling allows us to choose d3 � 0;�1. When
d3 � 0 the solution is singular. However, when d3 � �1
the solution is regular. For example, when d3 � 1, the
coordinate change r � �4=

���
3
p
� cosh� leads to the mani-

festly regular metric and warp factor

 

ds2�M8� �
3

8
ds2�KE�4 � �

9

8�4cosh2�� 3�
ds2�T2�

�
3d�2

4
�

3sinh2�D 2

4�4cosh2�� 3�
;

!6 �
64�4cosh2�� 3�

27
:

2. c1 � 0 solutions

When c1 � 0 we can rescale it to 1. Defining

 y � 1� r; a � 1� 4d3; (4.13)

the 11-dimensional background reads

 ds2 � !2�ds2�AdS3� � ds2�M8��;

G4 � F4 � F2 ^ volT2 ;
(4.14)

with
 

!6�
16

9
y2�y2�2y�a�;

8

3
ds2�M8��

1

y
ds2�KE�4 ��

4ds2�T2�

�y2�2y�a�

�
6dy2

q�y�
�

q�y�D 2

6y2�y2�2y�a�
;

F4�
y�a

8y
J^J�

a

8y2J^dy^D �
8y
3
dy^volAdS3

;

F2�
a�y

2�y2�2y�a�
J�

y2�2ay�a

2�y2�2y�a�2
dy^D ;

(4.15)

and where q�y� is the cubic polynomial

 q�y� � 4y3 � 9y2 � 6ay� a2: (4.16)

Again one can show that this leads to a family of regular
solutions parametrized by a. We will discuss this in more
detail in the IIB dual formulation in Sec. VI.

V. THE CLASS B6 � KE2 � KE2 �KE2

In this section we consider the base space to be a product
B6 � KE2 � KE2 � KE2 space. This case is the most
general in the sense that it is associated with the most
general polynomial solution of the differential equa-
tion (2.16). We have found that the integration constants
fci; dig have to be constrained in order for polynomial
solutions to exist. This constraint reads
 

0 � d1�k
2
1d1 � 4c2c3��k2c2 � k3c3�

� 2k1d1�k
2
2c2d2 � k

2
3c3d3� � perm: (5.1)

The solution for H is then a quartic polynomial whose
coefficients are rather long expressions involving the con-
stants fci; dig and the curvatures ki. We know however that
these expressions must be symmetric under permutations
of the indices f1; 2; 3g. Indeed, the only symmetric combi-
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nations appearing in H are

 k � k1k2k3; Ec � kici; Ed � kidi; Ecc � k1k2c1c2 � perm; Edd � k1k2d1d2 � perm;

Ecd � k1c1�k2d2 � k3d3� � perm; Eccc � c1c2c3; Eccd � c1c2d3 � perm; Eddc � d1d2c3 � perm:
(5.2)

Using these definitions H reads

 H �
X4

n�0

pnr
n; (5.3)

with

 

p4 �
1
4k;

p3 � �
2
3�Ec � c4�;

p2 � f3Eddck2 � 4�Ec�c4 � 2Ec� � 6Ecc��4Eccc � Ecd� � �3�4Eccc � Ecd�Ed � 2c4�E2
d � 4Eccd � Edd�

� Ec�2E2
d � 4Eccd � Edd��k� 8�E3

c � 3EccEc � c4�E2
c � 2Ecc��Edg�4c4�E2

c � 4Ecc � Edk���1;

p1 � f��2E2
d � 4Eccd � Edd�E

2
c � �Ed��4Eccc � Ecd � 2c4Ed� � Eddck�Ec � 4Ecc�E

2
d � 4Eccd � Edd�

� 2c4��4EcccEd � EcdEd � Eddck�g�c4�E
2
c � 4Ecc � Edk��

�1;

p0 � f8EddcE
2
c � �2E

3
d � 4EccdEd � EddEd � 4c4Eddc�Ec � 24EccEddc � Ed�12EcccEd � 2c4�E

2
d � 4Eccd � Edd�

� 3�EcdEd � Eddck��g�c4��3E2
c � 12Ecc � 3Edk��

�1;

(5.4)

where c4 is either of the two roots of

 c2
4 � k2

1c
2
1 � k

2
2c

2
2 � k

2
3c

2
3 � k1k2c1c2 � k2k3c2c3

� k3k1c3c1: (5.5)

One can readily check that all the solutions presented in
the previous sections follow from this quartic polynomial
by imposing the appropriate conditions discussed in
Sec. II. In addition, (5.4) leads to interesting generaliza-
tions. Recall that in the class of solutions with B6 �
KE4 � KE2, we found positive definite metrics in the cases
B6 � KE�4 �H

2, B6 � KE�4 � S
2, and B6 � KE�4 � T

2.
For these, (5.4) leads to a generalization where the KE4

splits into two KE2 spaces with different radii (but with
both still having the same sign of the curvature). We leave a
more detailed analysis of these generalizations to future
work.

On the other hand, the quartic polynomial (5.4) also
provides a generalization of the KE�6 solutions presented
in Sec. III, where the KE6 splits into three KE2 spaces with
different radii but still with the same sign of the curvature.
Recall that we only found singular metrics in the KE�6
class. Unfortunately, the situation does not seem to im-
prove by considering the more general solution (5.4) as we
have not been able to find any regular metrics in the
KE�2 � KE

�
2 � KE

�
2 class, nor any positive definite met-

rics in the KE�2 � KE
�
2 � KE

�
2 class. However, we have

not carried out a systematic analysis of all possibilities.

VI. SOLUTIONS OF TYPE IIB STRING THEORY

In Sec. IV C above we presented two classes of solutions
with B6 � KE�4 � T

2: the c1 � 0 solutions with d3 �
0;�1 and the c1 � 1 solutions parametrized by a. By
dimensional reduction on one leg of T2, and T-duality on
the other, these can be transformed into new solutions of
type IIB supergravity with only the five-form flux excited.
As such these should provide new examples of the AdS-
CFT correspondence where the N � �0; 2� two-
dimensional CFT arises from a configuration of D3-branes.

The IIB duals of the second family with c1 � 1 were
discussed in some detail in [2]. So below we mostly focus
on the c1 � 0 solutions, analyzing the regularity of the
solutions, the conditions for integral flux, and deriving an
expression for the central charge of the dual CFT. We show
that this family includes a solution first constructed in [15]
which describes D3-branes wrapping a Kähler two-cycle in
a Calabi-Yau four-fold. Turning to the c1 � 0 solutions, we
demonstrate how quantization of the G4 flux in 11 dimen-
sions is, as expected, related to the regularity and flux
quantization in the dual type IIB configuration discussed
in [2].

We also note here that the following analysis can also be
applied to the analogous solutions in B6 � KE2 � KE2 �
T2 class, but we shall leave the details to future work.

A. c1 � 0 solutions

Dualizing the solution (4.12) to type IIB, using the
formulae at the end of Sec. II, one finds the metric takes
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the form

 ds2
IIB � ds2�AdS3� �

3
4ds

2�H2� �
9
4ds

2�SE5�; (6.1)

where4

 ds2�H2� �

�
r2 �

16d3

3

�
�1
dr2 �

�
r2 �

16d3

3

�
dz2; (6.2)

is the constant curvature metric on H2 (irrespective of
whether d3 � 0;�1), and

 ds2�SE5� �
1
6�ds

2�KE�4 � �
2
3�D � rdz�

2�: (6.3)

Finally, the five-form flux reads, for the case d3 � 0,

 

gsF5 �
3
32��J ^ J� J ^ dr ^ dz� ^ �D � rdz�

� �14J� 2dr ^ dz� ^ volAdS3
: (6.4)

All other fluxes vanish.
We first observe that, at fixed z and for a given KE�4

manifold, ds2�SE5� is a regular Sasaki-Einstein metric. We
will see shortly that we can also consider quasiregular
Sasaki-Einstein manifolds for which KE�4 is an orbifold.
We also note that in order to obtain a compact solution, we
need to take the quotientH2=� by an element � of SL�2;Z�
(the Killing spinors are independent of the H2 coordinates
and are therefore preserved in the quotient procedure).

It is also interesting to point out that irrespective of
whether d3 � 0, �1 we get the same type IIB solution.
We noted earlier that in the D � 11 solutions d3 � 0 was
singular, but d3 � �1 were regular. This is not a contra-
diction, because in obtaining the D � 11 solutions from
the type IIB solutions we are T-dualizing on different U�1�
directions of H2.

We now turn to examine the conditions for the general
solutions to be globally well defined. Note that (6.1) is the
metric on a compact seven-manifold M7 which is, locally,
a U�1� fibration over B6 � �H2=�� � KE�4 . The U�1�
fibration is characterized by the first Chern class c1�M7�.
If we let  have period � � 2�l, then from (6.3) we find

 c1�M7� � l�1RKE�4
� l�1volH2=�: (6.5)

We will have a proper U�1� fibration if c1�M7� 2
H2�B6;Z�. Since the cohomology of KE�4 and hence of
B6 contains no torsion classes, this global condition is
equivalent to the periods of c1�M7� being integral.
Explicitly, suppose a convenient basis for H2�B6;Z� is
provided by fH2=�;�ag, where �a is a basis of
H2�KE

�
4 ;Z�, then we require

 

1

2�

Z
�a

c1�M7� �
mna
l
2 Z;

1

2�

Z
H2=�

c1�M7� �
�
l
2 Z;

(6.6)

where � is the Euler number of the Riemann surfaceH2=�,
m is the Fano index of the KE�4 space, and the integers na
are coprime (see Appendix B for further details).
Therefore, we deduce that the maximum value that l can
take is

 l � hcffm; j�jg: (6.7)

For example, if KE�4 � CP2, then m � 3. If, furthermore,
the Euler number of H2=� is divisible by 3, then we can
take l � 3. For fixed z, the S1 fibration over the KE�4 is
then, topologically, an S5. However, for a general choice of
H2=�, the largest possible l is l � 1, which leads to S5=Z3.

By considering, for example, the family of Yp;q Sasaki-
Einstein metrics [4] on S3 � S2, one can follow a similar
argument to show that M7 is still regular when KE�4 is
replaced by the orbifold base of a quasiregular Yp;q.
However, the construction does not appear to work for
irregular Yp;q metrics. To check the regularity it is natural
to change coordinates on Yp;q to the parameterization
where Yp;q is manifestly a U�1� bundle over a base which
is itself an S2 bundle over S2. Given the form of (6.1) and
(6.3), in this coordinate system, M7 similarly becomes a
U�1� fibration over an S2 fibration now over S2 �H2=�.
One can then check the regularity of the U�1� and S2 fibers
over H2=�. One finds that the whole space can be made
regular, but generically one must make the size of the U�1�
fibration nonmaximal, that is consider Ynp;nq for some
positive integer n and �p; q� coprime (that is a Zn quotient
of Yp;q). One would expect that a similar construction
would work for any quasiregular Sasaki-Einstein space.

Let us now compute the central charge for these solu-
tions. We will follow the same steps as in [2]. We first
reinstate dimensions by rescaling the metric and back-
ground

 d~s2 � L2ds2; ~F5 � L4F5: (6.8)

The quantization condition for the five-form in type IIB is

 N�D� �
1

�2�ls�
4

Z
D

~F5 2 Z; (6.9)

where D is any five-cycle of M7.
NowH5�M7;Z� is generated by two types of five-cycle:

D0, the U�1� fibration over the KE�4 space, and Da, the
five-cycles obtained from the U�1� fibration over H2=��
�a. From (6.9), we obtain

 N�D0� � �
3L4

64�l4sgs
Ml; N�Da� �

3L4

64�l4sgs
�lmna;

(6.10)

4We have rescaled the metric by a factor of �3=8�1=2 and hence
the five-form by �3=8�2 with respect to our general IIB formula
(2.11). We have also rescaled z by a factor of 2.
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where

 M �
1

�2��2
Z
KE�4

R ^R: (6.11)

Noting that M is always divisible by m2, and hence, in
particular, by m, the condition that all the fluxes are the
minimal possible integers becomes the following quanti-
zation condition on the AdS3 radius:

 

3L4

64�gsl
4
s
�

n
mlh

; h � hcf
�
M
m
; j�j

�
; (6.12)

leaving N�D0� � �
M
mhn and N�Da� �

�
hnan. For n � 1 we

obtain the minimal D3-brane setup that creates the back-
ground, with higher values of n corresponding to n copies
of this minimal system.

We can now determine the central charge c of the dual
two-dimensional SCFT. It is well known [21] that c is fixed
by the AdS3 radius L and the Newton constant G�3� of the
effective three-dimensional theory obtained by compacti-
fying type IIB supergravity on M7:

 c �
3L

2G�3�
: (6.13)

Using the same conventions as in [2], we obtain the follow-
ing expression:

 c �
36Mj�j

m2h2l
n2; (6.14)

which, remarkably, gives an integer number irrespective of
the choice of KE�4 and H2=�.

In the special case that we choose KE�4 � CP2 we find
that we have recovered the type IIB solution that corre-
sponds to D3-branes wrapping a holomorphic H2-cycle (or
H2=�-cycle) inside a Calabi-Yau four-fold. This solution
was first found in [15] and generalizes the solutions of [16].
From this perspective we have shown that the solutions of
[15] (at least for noncompact H2) can be dualized and
uplifted to regular solutions in D � 11. Note that the S5

in this solution is the S5 that surrounds the D3-branes. We
have thus also shown that we can replace5 this S5 with any
regular or quasiregular Sasaki-Einstein metric.

B. c1 � 0 solutions

The reduction to type IIB of the B6 � KE�4 � T
2 solu-

tions with c1 � 0 gives precisely the solutions we pre-
sented in [2]. The metric (2.12) on the seven-dimensional

IIB manifold M7 is given by

 

ds2�M7� �
3

8y
ds2

KE4
�

9dy2

4q�y�
�

q�y�D 2

16y2�y2 � 2y� a�

�
y2 � 2y� a

4y2 Dz2; (6.15)

where, as above, q�y� � 4y3 � 9y2 � 6ay� a2 and Dz �
dz� A1, with F2 � dA1 given in (4.15) or explicitly

 Dz � dz�
a� y

2�y2 � 2y� a�
D : (6.16)

The global analysis of [2] proceeded in two steps. First we
showed that �y;  � form an S2 fibration B6 over the base
KE4. We then showed that z formed a U�1� fibration over
B6.

In this section we will show how this analysis translates
into conditions on the M theory solution. Note first that the
S2 of the M theory solution is only fibered over the KE�4
part of B6 � KE�4 � T

2. From this perspective we can
write M8 � B6 � T

2 where B6 is the same manifold
that appears in the IIB solution: �y;  � form an S2 fibration
over KE4 in 11 dimensions. Thus the global analysis of B6

is the same. Explicitly, it is regular and compact for values
of a 2 �0; 1� if the range of y is restricted to lie between the
first two roots of q�y�.

The second part of the IIB global analysis performed in
[2] translates, however, not into geometry but quantization
of the G4 flux in 11 dimensions, as we will now show. To
this aim, we first reinstate dimensions by rescaling the 11-
dimensional metric and background,

 d~s2
11 � L2ds2

11; ~G4 � L3G4: (6.17)

Note that this implies an analogous rescaling of the IIB
metric and five-form. As discussed in Sec. II C, for all our
examples, the quantization condition for ~G4 is that for any
four-cycle D we have

 N�D� �
1

�2�lP�3
Z
D

~G4 �
L3

�2�lP�3
Z
D
G4 2 Z: (6.18)

Recall that, upon reduction and T-duality along the T2, the
surviving direction of the torus becomes the z-circle fi-
bered over B6. In [2] we denoted by l the resulting radius
of this circle measured in units of L, and we studied the
conditions for the fibration to be a proper U�1� bundle;
namely, that the periods of its first Chern class be integer
numbers. Thus, in the IIB language, we require

5We can analogously replace the S7 in the D � 11 solutions
describing membranes wrapping holomorphic curves in Calabi-
Yau five-folds that were constructed in [22], by a seven-
dimensional regular or quasiregular Sasaki-Einstein manifold.
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 P�C� �
1

2�l

Z
C
F2 2 Z; (6.19)

where C is a two-cycle in H2�B6;Z�.
We can now use the standard relations between 11-

dimensional and type IIB parameters (see Appendix C)

 RIIB � lL � l3P=R1R2; l2s � l3P=R1; gs � R1=R2:

(6.20)

From the first relation we have

 P�C� �
LR1R2

2�l3P

Z
C
F2 �

L3Vol�T2�

�2�lP�3
Z
C
F2

�
L3

�2�lP�3
Z
C�T2

G4 � N�C� T2�; (6.21)

where we have used Vol�T2� � �2��2R1R2=L2 since the
volume is measured in units of L. Thus the integrality of
the IIB periods is equivalent to the quantization of the flux
through the four-cycles D � C� T2 in the M theory
solution.

In the IIB solution we also needed to ensure that the flux
of F5 through any five-cycle D of M7 is appropriately
quantized. The only nontrivial cycles arise as S1 fibrations
over a nontrivial four-cycle D in H4�B6;Z�. Now, recall
that the IIB five-form is

 gsF5 � L4�1� ?��F4 ^Dz�; (6.22)

where z parametrizes the S1. The quantization condition
reads

 NIIB�D� �
�
L

2�ls

�
4 Z

D
g�1
s F4 ^ dz �

L4l

�2��3gsl4s

Z
D
G4;

(6.23)

for D 2 H4�B6;Z� and where in going to the final ex-
pression we have integrated over the S1 fiber and used the
expression (6.22). Using the relations (6.20) we directly see
that

 NIIB�D� � N�D�; (6.24)

so that the quantization of F5 is equivalent to the quantiza-
tion of G4 through four-cycles D in B6. Notice that the
ratio of the two radii of the torus is unfixed, corresponding
to the fact that the IIB dilaton can take any constant value.

VII. NONCOMPACT SOLUTIONS

So far we have focused on solutions where the internal
space is compact as this leads to new examples of the AdS-

CFT correspondence. However, our analysis can also be
used to find new solutions where M7 is noncompact. In
this section we will initiate a study of such solutions,
restricting our attention to the class of type IIB solutions
with c1 � 0 that were first presented in [2] and briefly
discussed above in Sec. VI B.

It is convenient to introduce the coordinates  �  0 �
z0, z � 2z0 so the local class of solutions (6.15) parame-
trized by a can be written

 

ds2 �
9

4
L2

�
4y
9
ds2�AdS3� �

y
q�y�

dy2 �
q�y�

9y2 dz
02

�
1

6
ds2

KE4
�

2

3
�D 0 � A�2

�
;

A �
a
y
dz0; (7.1)

with

 gsL�4F5 � J ^
�

3

32
J ^ �D 0 � A� �

3a

34y2 dy ^D 
0

^ dz0
�
� volAdS3

^

�
2ydy ^ dz0 �

a
4
J
�
:

(7.2)

For the compact solutions, y ranged between y1 and y2, the
two smallest roots of the cubic q�y�. For the noncompact
solutions, we instead take y3 	 y <1, where y3 is the
largest root of the cubic.

Let us first consider the case when a � 0 giving y1 �
y2 � 0 and y3 � 9=4. By implementing the coordinate
change y � �9=4�cosh2�, the metric becomes

 ds2 � 9
4L

2�cosh2�ds2�AdS3� � d�
2 � sinh2�dz0

� 1
6�ds

2
KE4
� 2

3�D 
0�2��: (7.3)

Remarkably, we have just recovered the AdS5 � SE5 so-
lutions of type IIB supergravity, where SE5 denotes a five-
dimensional Sasaki-Einstein manifold. In particular, if
KE4 � CP2 we obtain AdS5 � S5.

We next observe that for general a, as y! 1 the solu-
tion behaves as if a � 0 and hence the solutions are all
asymptotic to AdS5 � SE5. Furthermore, for generic a (not
equal to 0 or 1) when the three roots yi are distinct, we see
that as y approaches y3 the potential conical singularity can
be removed by taking the period of z0 to be
2��6y3=2

3 =q0�y3��. With this period the noncompact solu-
tions are regular: they are fibrations of SE5 over a five-
dimensional space which is a warped product of AdS3 with
a disc parametrized by y, z0.
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To interpret these solutions we consider for simplicity
the case when SE5 � S5. There are probe D3-branes in
AdS5 � S5 whose world volume is AdS3 � S1. Following
[23], in terms of intersecting branes, one such configura-
tion [24] is just two flat D3-branes intersecting over a
string, where the geometry AdS5 � S5 corresponds to the
near-horizon limit of one of the branes, while the second
brane is treated as a probe. However, such a configuration
preserves 1

4 of the supersymmetry of Minkowski space,
whereas our configurations preserve 1

16 th. A configuration
with the correct supersymmetry would be four D3-branes
intersecting over a string, with the geometry corresponding
again to the near-horizon limit of one of the branes.
Specifically, if �z1; z2; z3� are complex coordinates in the
R6 space transverse to this background brane, the other
three probe branes could lie in the orthogonal holomorphic
two-planes z1 � z2 � 0, z2 � z3 � 0, and z3 � z1 � 0.
These probe branes are a generalization of those studied
in [23] which corresponded to defect CFTs. It is natural to
interpret our new solutions as the backreacted geometry of
such probe branes and dual to a four-dimensional N � 4
super Yang-Mills theory coupled to stringlike defects
which preserve the N � �0; 2� two-dimensional supercon-
formal subgroup of PSU�2; 2j4�. One might expect the
backreacted geometry of such branes to be localized in
CP2 corresponding to the positions of the three probe
branes. However, in our solutions the CP2 is still manifest.
Hence our geometries seem to correspond to probe D3-
branes that have been ‘‘smeared’’ over the CP2. In terms of
intersecting branes, instead of three probe branes, one is
considering a uniform superposition of flat probe branes
spanning all holomorphic two-planes6 in C3. More gener-
ally, the solutions where the S5 factor is replaced by SE5

can similarly be interpreted as the gravity duals of a
general N � 1 SCFT coupled to stringlike defects.

We make a final observation about the a � 1 case, for
which q�y� has a double root at y � 1. By expanding the
solution near y � 1 we find, again remarkably, that the
solution is asymptotically approaching the solutions dis-
cussed in Sec. VI A. In particular, for the special case when
KE4 � CP2, this is the solution found in [15] that de-
scribes the near-horizon limit of D3-branes wrapping a
holomorphic H2=� in a Calabi-Yau four-fold. Thus, in
this special case, our full noncompact solution interpolates
between AdS5 � S5 and the solution [15], while preserving
an AdS3 factor.

VIII. SUMMARY AND CONCLUSIONS

In this work we have found new infinite classes of
supersymmetric warped AdS3 �M8 solutions of 11-
dimensional supergravity. The new compact solutions are

all S2 bundles over six-dimensional base spaces B6 which
are products of Kähler-Einstein spaces. The explicit solu-
tions are obtained by solving the single second-order dif-
ferential equation (2.15), for which we have found the most
general polynomial solution. The most general polynomial
solution arises for the case when B6 � KE2 � KE2 � KE2

and gives the quartic solution (5.4). The solutions for B6 �
KE4 � KE2 and B6 � KE6 can then be obtained from this
general solution as special cases. The new compact regular
classes of solutions can be summarized as follows:

(i) The first class is whenB6 � KE�2 � KE
�
2 �H

2. In
the special limit where the two KE�2 radii coincide,
the same class can also describe solutions with
B6 � KE�4 �H

2, as discussed in Sec. IV B.
(ii) The second class is when B6 � KE�2 � KE

�
2 � S

2.
In the special limit where the two KE�2 radii coin-
cide, this class can also describe solutions with
B6 � KE�4 � S

2, as discussed in Sec. IVA. The
latter include the solution [17] originally found in
gauged supergravity, describing M5 branes wrap-
ping a Kähler four-cycle in a Calabi-Yau fourfold.

(iii) The third class is when B6 � KE�2 � KE
�
2 � T

2.
In the special limit where the two KE�2 radii coin-
cide, this class can also describe solutions with
B6 � KE�4 � T

2, as discussed in Sec. IV C. This
class is particularly interesting because it leads to
type IIB backgrounds with constant dilaton and
only five-form flux. Focusing on the IIB solutions
arising from the B6 � KE�4 � T

2 case, in
Sec. IV C 1, we showed how these lead to general-
izations of the solutions corresponding to D3
branes wrapping an H2=� in a CY3 found in [15],
whereas in Sec. IV C 2 we showed how to recover
the infinite IIB families presented in [2]. The IIB
solutions arising from the B6 � KE�2 � KE

�
2 � T

2

case provide generalizations that would be interest-
ing to explore further.

The general polynomial solution to the differential equa-
tion (2.15) thus gives rise to an extraordinarily rich five-
parameter family of solutions. The most general solution
involves eight integration constants and it would be inter-
esting to know if this larger family includes any additional
regular solutions.

Despite the long expressions involved in the most gen-
eral polynomial solution, we gave a simple argument in
Sec. II B (covering most cases) that the metric is regular.
Therefore, the solutions presented here always lead to good
11-dimensional supergravity backgrounds. However, as M
theory backgrounds, we still need to make sure that the
fluxes of the four-form field strength are integral. We have
only discussed the implications of this condition for the
solutions where B6 � KE�4 � T

2. As we discussed in
Sec. IV C 2 this requires appropriately discretizing both
the volume of the torus and the parameter of the solution,
leading to an infinite discrete series of AdS3=CFT2 ex-
amples. Though the most general case is more difficult to

6A given plane is parameterized by zi � �iw for generic
constants �i and parameter w 2 C.

NEW SUPERSYMMETRIC AdS3 SOLUTIONS PHYSICAL REVIEW D 74, 106007 (2006)

106007-13



analyze, we expect that most, if not all, of the parameters of
the solution will also need to be discretized. It would be
interesting to check this expectation since if it were not
true, we would be led to predict the existence of exactly
marginal deformations of the dual CFTs.

It would be very interesting if the dual conformal field
theories to our new solutions could be identified. The
solutions in the third class above that have a type IIB
description seem the most promising, since the CFTs
must arise from the gauge theories living on D3-branes.
A key check of any proposal will be to recover the central
charges that were calculated here and in [2] for the case
when B6 � KE4 � T

2.
We also found some intriguing noncompact solutions. In

particular, there were type IIB solutions in the B6 �
KE4 � T

2 class that, in the simplest case, appear to be
dual to the two-dimensional defect CFTs arising on probe
D3-branes with world volume AdS3 � S

1 embedded in
AdS5 � S5. More generally, the S5 factor could be replaced
with SE5 such that the geometries appear dual to defect
CFTs in more general N � 1 field theories. This also
seems to be a profitable avenue for further investigation.
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APPENDIX A: CONDITIONS FOR
SUPERSYMMETRY

In this appendix we determine the conditions for the
ansatz (2.1), (2.2), and (2.3) to be a supersymmetric solu-
tion to the equations of motion ofD � 11 supergravity. For
completeness and by way of comparison, we shall consider
two equivalent approaches. First we substitute directly into
the Killing spinor equations, given a particular ansatz for
the Killing spinor. This is the most straightforward ap-
proach and gives the explicit dependence of the spinor on
the coordinates. In the second approach we useG-structure
techniques. In particular, we follow the general analysis of
[14]. This has the advantage of giving generic conditions
for a general class of AdS3 compactifications. Substituting
our particular ansatz then gives a comparatively easy way
of obtaining the relevant differential equations. It also
motivates a particular gauge choice for the function f3.

We shall use the conventions of [25]. In particular the
Killing spinor equations are

 �rb �
1

288��b
a1...a4 � 8	a1

b �a2...a4�Ga1...a4
�
 � 0: (A1)

In addition we need to ensure that the Bianchi identity and
the equations of motion for the four-form G4 are satisfied

 dG4 � 0; d 
 G4 �
1
2G4 ^G4 � 0: (A2)

As we will see below, the Killing spinors of the AdS3

solutions we construct define a preferred local SU�3�
structure. Consequently, by the arguments of [26], it is
sufficient to impose just the Bianchi identity, since all field
equations are then identically implied by the supersymme-
try conditions.

1. Killing spinor analysis

Let us start with the Bianchi identity. Given our ansatz, it
implies the following three equations

 g01 � k3g5 � k2g6; g02 � k3g4 � k1g6;

g03 � k2g4 � k1g5:
(A3)

The Killing spinor equation is more involved. We will use
the following orthonormal frame

 e� � !~e�; ea � A1~ea; ei � A2~ei;

em � A3~em; er � Bdr; e � C�d � ~P�;

with

 Ai � !h1=2
i ; B � !f1=2

3 ; C � !f1=2
4 ; (A4)

where we have introduced the index notation

 AdS 3: � � f~0; ~1; ~2g; C1: a � f1; 2g;

C2: i � f3; 4g; C3: m � f5; 6g:

The Kähler forms for the Ci are given by

 J1 � e1 ^ e2; J2 � e3 ^ e4; J3 � e5 ^ e6:

(A5)

Our orientation is fixed by 
~0 ~1 ~2 123456r � 1, where the
indices refer to the vielbein basis. It will be useful to define

 �9 � �123456r � �~0 ~1 ~2: (A6)

A straightforward calculation then shows that the
Killing spinor equations take the following form, where
all indices are tangent space indices:
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(A7)

The hats on the covariant derivatives indicate the covariant
derivatives on the AdS3 and KE2 spaces.

To proceed, we assume that the Killing spinors are of the
form

 
 � ��r�e��r��r�9e�1=2� �r �9
0; (A8)

where 
0 satisfies the projections

 �12
0 � �34
0 � �56
0; �9
0 � 
0: (A9)

In addition 
0 must satisfy

 r̂ �
0 �
1
2���9
0; r̂a
0 �

1
2Pa�r 
0;

r̂i
0 �
1
2Pi�r 
0; r̂m
0 �

1
2Pm�r 
0:

(A10)

The first of these equations can be solved using the Killing
spinors on AdS3, while the other three are solved using the
Killing spinors on Ci. Note that the integrability conditions
for the last three equations are consistent with the projec-
tions imposed in (A9). The projections imply that we
preserve 1=8 of the supersymmetry. Two of the four super-
symmetries are Poincaré supersymmetries and the other
two are special conformal supersymmetries. Writing the
metric on AdS3 in horospherical coordinates, the former
are eigenstates of ��, the �-matrix along the AdS radial

direction [27]. But given that all the spinors preserved in
our backgrounds are also eigenstates of �9, we deduce that
those that become Poincaré supersymmetries all have the
same chirality with respect to the Minkowski conformal
boundary, and hence the solutions are dual to conformal
field theories with (0, 2) supersymmetry.

Another interesting property that follows from (A10),
and that we have used repeatedly in the main text, is that
the Killing spinors are independent of the coordinates on
the two-cycles Ci. Essentially, the terms on the right-hand
sides of (A10), which arise from the connection on the
normal bundle to the cycles, cancel the spin connection
terms inside the covariant derivatives r̂. Note that this
statement ceases to be true, in general, when any two of
the cycles are replaced with a KE4 space.

Plugging our spinor ansatz into the Killing spinor
equations (A7) leads to two differential equations for
��r�, ��r� plus a set of algebraic constraints on the spinor.
The equation for ��r� can be solved exactly,

 ��r� � !1=2�r�; (A11)

whereas the equation for � reads
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1

B
�0 �

1

2!
�

1

4BC

�
g4

A2
1

�
g5

A2
2

�
g6

A2
3

�
: (A12)

The remaining algebraic conditions (coming from the

AdS3, Ci, and  directions) can all be written in the form

 P AdS3

 � PCi
 � P  
 � 0; (A13)

with

 P AdS3
�

!0

2B!
�

g7

6B!3 �9 �
1

12

�
g3

A2
1A

2
2

� perm
�

�r �
�

1

2!
�

1

12BC

�
g4

A2
1

� perm
��

�r�9;

P  �

�
1

2C
�
Cki
4A2

i

�
g7

12B!3

�
�

C0

2BC
�9 �

1

6BC

�
g4

A2
1

� perm
�
�r �

1

12

�
g3

A2
1A

2
2

� perm
�
�r�9;

PC1
�

1

6

�
�g1

A2
2A

2
3

�
2g3

A2
1A

2
2

�
2g2

A2
3A

2
1

�
�

1

6BC

�
g5

A2
2

�
g6

A2
3

�
2g4

A2
1

�
�9 �

A01
BA1

�r �
�
g7

6B!3 �
k1C

2A2
1

�
�r�9;

PC2
�

1

6

�
�g2

A2
3A

2
1

�
2g3

A2
1A

2
2

�
2g1

A2
2A

2
3

�
�

1

6BC

�
g4

A2
1

�
g6

A2
3

�
2g5

A2
2

�
�9 �

A02
BA2

�r �
�
g7

6B!3 �
k2C

2A2
2

�
�r�9;

PC3
�

1

6

�
�g3

A2
1A

2
2

�
2g1

A2
2A

2
3

�
2g2

A2
3A

2
1

�
�

1

6BC

�
g4

A2
1

�
g5

A2
2

�
2g6

A2
3

�
�9 �

A03
BA3

�r �
�
g7

6B!3 �
k3C

2A2
3

�
�r�9:

(A14)

Note that the algebraic equations (A14) have all the same
structure

 �a0 � a1�9 � a2�r � a3�r�9�e
��r�9e1=2 �r 
0 � 0:

(A15)

After multiplying from the left by e���r�9 , we find that this
is solved provided that

 a0 � a1 cos2�� a2 sin2� � 0;

a3 � a2 cos2�� a1 sin2� � 0:
(A16)

In this way, we obtain ten equations from (A14). To solve
the Killing spinor equation we also need to solve an 11th
Eq. (A12). In addition to solving these 11 differential
equations for the metric and four-form functions we also

have further three differential equations coming from the
Bianchi identities (A3).

At this stage, the problem still seems formidable.
However, we may progress as follows. To begin we use
seven of the 11 equations to determine the flux functions
g1; . . . ; g7 in terms of the metric functions and their first
derivatives. Specifically, we use the conditions arising
from PCi and P  . In making further progress we found
it extremely useful to work in the gauge

 f1=2
3 �

1

!3 sin2�
: (A17)

In this gauge the expressions for the gi are given by

 

g1 �
!3

3f1=2
3 h1

�cot2���f3f4�
1=2��2k1h2h3 � k2h3h1 � k3h1h2� � cos2��3h01h2h3 � �h1h2h3�

0��

� sin2��3h01h2h3 � 2�h1h2h3�
0 � 6h1h2h3!0=!��;

..

.

g1�3 �
!3 csc2�

2f1=2
4 h2h3

�2�f3f4�
1=2h1��h2h3 � f4�k2h3 � k3h2�� � cos2���f4h1�

0h2h3 � f4h1�h2h3�
0��;

..

.

g7 �
!3

h1h2h3
���f3f4�

1=2�k1h2h3 � perm� � cos2���h1h2h3�
0 � 6h1h2h3!0=!��; (A18)

with the appropriate permutations to obtain g2, g3 and g5, g6. We then used these to express the quantities

 

�
g4

A2
1

� perm
�
;

�
g3

A2
1A

2
2

� perm
�
; (A19)

in terms of the metric functions and their first derivatives. After inserting these expressions into the remaining four Killing
spinor equations we obtain a system of four coupled first-order ordinary differential equations (ODEs) for the metric
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4 cot2�

X
i

ki
hi
;
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�
sin2��0 �

cos2�
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4
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�
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�
�

1

sin2�

�
f1=2

4
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X
i

ki
hi
�

3

4f1=2
4

�
�

1

2
:

These equations are not all independent, and in fact reduce
to one algebraic condition7

 f1=2
4 � �

sin2�
2

; (A20)

and two differential conditions:
 

log�!12sin22�h1h2h3�
0 � �

4 cos2�

!3sin22�
;

�!3 cos2��0 � 2� g7:

(A21)

It is convenient, therefore, to define

 f � !3 cos2�; (A22)

and trade � for f.
The next step is to integrate the Bianchi identities (2.18).

From the expressions for the flux components one obtains

 k3g5 � k2g6 � �
1
2�f�k2h3 � k3h2� � k2k3r�0;

g1 � �
1
2f�k2h3 � k3h2� � �!

6h2h3�
0;

(A23)

together with permutations of (1, 2, 3). We may therefore
integrate the Bianchi identities twice to find

 g1 � �
1
2�f�k2h3 � k3h2� � k2k3r� � c1;

g2 � �
1
2�f�k3h1 � k1h3� � k3k1r� � c2;

g3 � �
1
2�f�k1h2 � k2h1� � k1k2r� � c3;

(A24)

and

 0 � !6h1h2 �
1
4k1k2r

2 � c3r� d3;

0 � !6h2h3 �
1
4k2k3r2 � c1r� d1;

0 � !6h3h1 �
1
4k3k1r

2 � c2r� d2;

(A25)

for some constants ci, di. The expression for g7 now takes
the form

 

g7 �
f3

2h1h2h3
��!6 � f2��k1h2h3 � perm:�

� f�k1k2h3 � perm�r� 2fcihi�: (A26)

It thus remains to solve the two coupled first-order
equations (A21). The function redefinitions

 H � !6h1h2h3�!6 � f2�; I � 4!6h1h2h3f; (A27)

allows us to decouple them, at the expense of having to
solve one single second-order differential equation
 

I � �H0;

0 � �4�H0�2 � 4H�2H00 � 4kidi � 4kicir� 3k1k2k3r
2�

�
Y3

i�1

�
k1k2k3

ki
r2 � 4rci � 4di

�
: (A28)

From any solution of this second-order ODE we can re-
construct the full solution. The explicit formulae are re-
corded in the main text.

2. G-structure analysis

In this appendix we use the G-structure techniques of
[14] to derive, first, a set of general supersymmetry con-
ditions for a class of AdS3 backgrounds, and then consider
the restriction to the specific ansatz (2.1), (2.2), and (2.3).
The conditions are derived as a limit of class of warped
R1;1 supersymmetric Minkowski backgrounds. The discus-
sion follows exactly that in [14], except that here we
include an electric flux component.

The class of Minkowski backgrounds is defined by the
set of projections on the Killing spinors. The solutions of
interest are related to M5-branes wrapping holomorphic
four-cycles in a Calabi-Yau fourfold (4-in-8 Kähler solu-
tions) with N � �0; 2� supersymmetry. We start by consid-
ering the geometry with the M5-brane viewed as a probe in
the special holonomy spacetime R1;2 �MSU�4�. We can
choose a frame fe�; e�; e1; . . . ; e9g, with R1;2 spanned by
fe�; e�; e9g, such that the four special holonomy Killing
spinors satisfy

 �1234
 � �3456
 � �5678
 � �
: (A29)

7Note that (A20), together with (A17), imply that
����������
f3f4

p
�

�1=2!3. This sign is important, for example, when checking the
equations of motion for the four-form.
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The SU�4� structure can be written as

 

~J � e12 � e34 � e56 � e78;

~� � �e1 � ie2� ^ �e3 � ie4� ^ �e5 � ie6� ^ �e7 � ie8�;

(A30)

where ei1...in � ei1 ^ . . . ^ ein . The projection on the probe
brane can be written ���1234
 � �
 or equivalently

 ���
 � 
: (A31)

Together these projections define an �SU�4� 32 R8� � R
structure [28], or equivalently, a pair of �Spin�7� 32 R8� �
R structuresK � e�, �M � K ^ v, � � K ^�with� �
�� and v � e9 where

 �� � �
1
2
~J ^ ~J Re ~�: (A32)

We define a class of ‘‘wrapped-brane’’ geometries as
warped R1;1 �M9 backgrounds where the Killing spinors
satisfy the same projections as the probe brane geometry.
The metric is assumed to have the form

 ds2 � L�1ds2�R1;1� � ds2�M9�; (A33)

so e� � L�1du and e� � dv, while, preserving the
Minkowski symmetries, we split the flux as

 G4 � e�� ^ E2 � B4: (A34)

Note that unlike the discussion in [14] we keep some
electric flux E2 as well as magnetic flux B4.

A necessary condition for supersymmetry is that the
�Spin�7� 32 R8� � R calibration conditions [25] are satis-
fied, namely,

 dK � 2
3i�M

G4 �
1
3i� ? G4; d�M � iKG4;

d� � iK ? G4 ��M ^G4:
(A35)

Substituting for the pair of structures �� one finds the
conditions
 

L�1dL � 2
3ivE2 �

1
6i~J^~J ?9 B4; Re ~� ^ B4 � 0;

Ld�L�1v� � E2; d�L�1 Re ~�� � 0;
1
2Ld�L

�1 ~J ^ ~J� � ?9B4 � v ^ B4;

(A36)

where the orientation on M9 is defined by volM9
� e1...9.

Generically, since the Killing spinors for supersymmetric
spacetimes satisfying these conditions define a preferred
local �SU�4� 32 R8� � R structure, given our metric ansatz

one must impose the Bianchi identity and the �� 9
component of the four-form field equations to ensure that
all field equations are satisfied [29].

To obtain conditions for supersymmetric AdS3 �M8

spacetimes, one specializes the conditions (A36) by assum-
ing the warping and metric have the form

 L � e2R!�2; ds2�M9� � !2�dR2 � ds2�M8��:

(A37)

This matches the ansatz (2.1) with the radial coordinate R
combining with the R1;1 factor to give a unit radius AdS3 in
Poincaré coordinates. To preserve the AdS3 symmetries
one assumes in addition that

 E2 � !dR ^ E1 (A38)

and that B4 has no component along dR.
In general the radial direction will only lie partly along

v. If the orthogonal component lies along a unit one-form û
then writing v � !v̂ we have

 dR � cos2�v̂� sin2�û; �̂ � � sin2�v̂� cos2�û;

(A39)

where we have also introduced �̂, the unit one-form or-
thogonal to dR. Note that the angle � is the same angle
defined in the Killing spinor analysis above. This decom-
position defines a (local) SU�3� structure on M8, defined
by �̂, together with a second unit one-form ŵ � Jû, a two-
form J, and three-form �. The relation to the original
SU�4� structure is

 !�2 ~J � J� ŵ ^ û; !�4 ~� � � ^ �ŵ� iû�:

(A40)

The metric on M8 can be written as

 ds2�M8� � ds2�MSU�3�� � �̂
2 � ŵ2; (A41)

where ds2�MSU�3�� is the metric defined by the SU�3�
structure �J;��.

Given the relations (A40), reducing the conditions (A36)
one finds

 d�!3 sin2��̂� � 0; (A42)

 d�!6 sin2� Im�� � �2!6�Re� ^ ŵ� cos2� Im� ^ �̂�

(A43)

together with

 d�!3 cos2�� � 2!3 sin2��̂ � �!3E1; 6!�1d! � �2 cos2�E1 �!
�3 sin2�iJ^ŵ ?8 B4;

d
�
!6

�
1

2
J ^ J� cos2�J ^ ŵ ^ �̂

��
� !3 sin2��̂ ^ B4;

�d�!6 sin2�J ^ ŵ� � 2!6

�
1

2
J ^ J� cos2�J ^ ŵ ^ �̂

�
� !3 ?8 B4 �!3 cos2�B4;

(A44)

and the algebraic constraints
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 Im� ^ B4 � 0; ŵ ^ Re� ^ B4 � 0;

4!3 sin2�i�̂E1 � �iJ^J � 2 cos2�iJ^ŵ^�̂� ?8 B4 � 12!3;

(A45)

where the orientation on M8 is given by volM8
� 1

6J ^
J ^ J ^ �̂ ^ ŵ. Note that this is not necessarily a minimal
set of conditions: one expects that there is redundancy
among these relations.

In addition, one must impose the Bianchi identity forG4,
which, given (A44) requires that we impose

 dB4 � 0: (A46)

For the specialization to AdS3, the preferred local structure
group defined by the Killing spinors of the wrapped-brane
spacetime is reduced from �SU�4� 32 R8� � R to SU�3�. We
may read off from the results of [26] that for the AdS3

spacetimes it is sufficient to impose just the Bianchi iden-
tity in addition to the supersymmetry conditions, and all
field equations are then identically satisfied.

Let us now compare our general conditions with the
specific ansatz (2.1), (2.2), and (2.3) relevant to our solu-
tions. The identification is

 J � h1J1 � h2J2 � h3J3;

� � �h1h2h3�
1=2�1 ^�2 ^�3;

�̂ � f1=2
3 dy; ŵ � f1=2

4 D ;

(A47)

where �i are the holomorphic one-forms on Kähler-
Einstein spaces Ci. Substituting into the conditions
(A42)–(A46) one can relatively quickly derive the super-
symmetry conditions given in the previous section. Rather
than repeat that calculation in detail, let us make a couple
of observations. From (A42), one notes that, quite generi-
cally for any AdS3 solution, one can introduce a coordinate
y such that

 �̂ �
dy

!3 sin2�
: (A48)

This is precisely the gauge condition (A17) we chose in
analyzing the Killing spinor equation and was the motiva-
tion for this choice. Using this gauge, it is easy to see, for
instance, that the �̂ component of (A43) gives the first
differential equation in (A28).

APPENDIX B: SOME PROPERTIES OF KE4
SPACES

In the main text we make use of a few properties of four-
dimensional Kähler-Einstein spaces. Let us summarize and
explain them here. For some more details see
Refs. [19,20,30]

Given a Kähler metric on a complex manifold M one
can always construct the Ricci form R by contracting the
Riemann tensor with J. This two-form gives the curvature
of a holomorphic line bundle L known as the anticanonical

bundle. The first Chern class c1�M� of M is just the first
Chern class of L. It is given by 1

2�R, is necessarily
integral, and depends only on the choice of complex struc-
ture on M. In the special case where the metric is also
Einstein it is easy to show that the Ricci form is propor-
tional to the Kähler-form J,

 R � kJ: (B1)

In this paper we normalize the metric such that k � 0,�1.
If k � 0 the metric is Calabi-Yau.

Suppose we have a minimal set of two-cycles f�ag
which generate H2�M;Z�. This means that any element
of the homology can be written as ma�a for some set of
integers ma. It is possible that H2�M;Z� includes torsion
elements. These are elements � such that � itself is non-
trivial but p� � 0 in cohomology for some p 2 Z. If we
ignore this subtlety (in fact none of the manifolds we are
interested in will have torsion) then the integrality of
c1�M� is equivalent to the integrality of the periods

 n��a� �
Z

�a

c1�M� �
1

2�

Z
�a

R 2 Z: (B2)

In some cases, the anticanonical bundle can be written as a
(positive) multiple tensor product of another line bundle,
that is L �N m for m 2 Z�. In general the maximal
possible m is known as the Fano index. It implies that
c1�M� � mc1�N � and hence n��a� � mna where na �R

�a
c1�N �. Since m is maximal, the na must be coprime.

Recall that, in d dimensions, c1�M� 2 H2�M;Z� is
Poincaré dual to a �d� 2�-cycle �L in Hd�2�M;Z�.
This means by definition that the integers n��a� are given
by the intersection number of �L with �a

 n��a� � �L ��a: (B3)

Note that in d � 4, �L 2 H2�M;Z� and so can be written
as �L � msa�a for some set of integers sa 2 Z.

Of specific interest here are those four-dimensional
complex manifolds KE�4 which admit a positive-curvature
Kähler-Einstein metric. The list is in fact finite: only CP2,
S2 � S2 and the del-Pezzo surfaces dPk for k � 3; . . . ; 8
are allowed. These latter spaces are CP2 blown-up at k
distinct points. None of these spaces have torsion classes.
In four dimensions, in addition to the Fano indexm and the
periods na, one can also consider the integer

 M �
Z
KE�4

c1�KE�4 � ^ c1�KE�4 �

� m2
Z
KE�4

c1�N � ^ c1�N � � �L ��L 2 Z: (B4)

Note that by construction M is always divisible by m2.
These are all the quantities which will enter our discussion.

For completeness, it is straightforward to listm, fnag and
M for each of the allowed KE�4 spaces. For CP2 the
situation is very simple: H2�CP2;Z� � Z and is generated
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by a single class, known as the hyperplane class H. A
representative curve in this class is just the S2 given by
say z1 � 0 in homogeneous coordinates �z1; z2; z3�. It is
easy to see thatH �H � 1. One finds that �L � 3H and so
m � 3, n1 � 1, and M � 9.

If KE�4 � S2 � S2 things are equally straightforward.
Now H2�S

2 � S2;Z� � Z2, and is simply generated by the
classes H1 and H2 corresponding to each of the two-
spheres. The only nonzero intersection is H1 �H2 � 1.
One finds �L � 2�H1 �H2� and so m � 2, n1 � n2 �
1, and M � 8.

For dPk recall that in four dimensions blowing up re-
places a point on the manifold with a two-sphere. Thus
H2�dPk;Z� � Zk�1 and is generated byH, the image of the
hyperplane class after blowing up CP2, together with the
exceptional two-spheres Ei, for i � 1; . . . ; k, at the k
blown-up points. The only nonzero intersections are H �
H � 1 and Ei � Ej � �	ij. One finds �L � 3H � E1 �

. . .� Ek and so m � 1 while ni � 1 and nk�1 � 3 (if we
label �i � Ei and �k�1 � H). In addition M � 9� k.

APPENDIX C: REDUCTION TO TYPE IIB

Consider a solution of 11-dimensional supergravity in-
variant under a T2 action of the form

 ds2
11 � ds2

9 � f
2ds2�T2�; G4 � F4 � F2 ^ volT2 ;

(C1)

with orientation

 
11 � 
9 ^ volT2 ; (C2)

where 
9 defines an orientation on ds2
9. The Bianchi iden-

tity, dG4 � 0, and the 11-dimensional equation of motion
for the four-form, d ? G4 �

1
2G4 ^G4 � 0, decompose as

 dF2 � 0; dF4 � 0;

d�f2 ?9 F4� � F2 ^ F4 � 0;

d�f�2 ?9 F2� �
1

2
F4 ^ F4 � 0;

(C3)

where ?9 is the Hodge dual with respect to ds2
9.

After dimensional reduction and T-duality, we find the
following metric and five-form for type IIB supergravity

 ds2
10 � fds2

9 �
1

f3 �dz� A1�
2;

F5 � �1� ?�F4 ^ �dz� A1�

� F4 ^ �dz� A1� � f
2 ?9 F4

(C4)

with dA1 � F2. Observe that the orientation in ten dimen-
sions is given by

 
10 � 
9 ^ dz; (C5)

so that closure of F5 indeed follows from (C3).
It is also useful to note here the standard relations

between 11-dimensional M theory parameters and the
ten-dimensional type IIB parameters [31]. Following
Polchinski [32], we define the 11-dimensional Planck
length lP by 22

11 � �2��
8l9P. For a square torus, with sides

length 2�R1 and 2�R2 the string length ls, and type IIB
coupling are given by

 l2s � l3P=R1; gs � R1=R2: (C6)

The radius RIIB of the IIB circle is given by

 RIIB � l3P=R1R2: (C7)
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