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We propose a method of construction of a cubic interaction in massless higher spin gauge theory both in
flat and in AdS space-times of arbitrary dimensions. We consider a triplet formulation of the higher spin
gauge theory and generalize the higher spin symmetry algebra of the free model to the corresponding
algebra for the case of cubic interaction. The generators of this new algebra carry indexes which label the
three higher spin fields involved into the cubic interaction. The method is based on the use of oscillator
formalism and on the Becchi-Rouet-Stora-Tyutin (BRST) technique. We derive general conditions on the
form of cubic interaction vertex and discuss the ambiguities of the vertex which result from field
redefinitions. This method can in principle be applied for constructing the higher spin interaction vertex
at any order. Our results are a first step towards the construction of a Lagrangian for interacting higher spin
gauge fields that can be holographically studied.
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I. INTRODUCTION

Classical higher spin gauge theories should describe
consistent dynamics of free and interacting massive and
massless particles with arbitrary values of spin (e.g. [1] for
recent reviews of various aspects of higher spin field
theory). One of the leading directions in this area is de-
voted to constructing a Lagrangian formulation for higher
spin fields in flat and AdS space-times of arbitrary dimen-
sions. Other than being a fascinating topic by itself, higher
spin field theory has attracted a significant amount of
attentio n due to its close relations with string—and
M-theories. Also we point out the interesting links of
higher spin field theory with holography ideas.

The study of higher spin (HS) gauge theories is notori-
ously difficult and demanding. Already for free HS gauge
fields it is highly nontrivial to construct Lagrangians that
yield HS field equations with enough gauge invariance to
remove nonphysical polarizations—ghosts—from the
spectrum. Moreover, the requirement of gauge invariance
restricts severely the possible gravitational backgrounds
where free fields with spin greater than two can consis-
tently propagate. Up to date, only constant curvature back-
grounds—Minkowski, de Sitter (dS), and anti-de Sitter
(AdS) spaces—are known to support the consistent propa-
gation of HS gauge fields.

Interacting HS gauge fields are much harder to deal
with. An important landmark was reached with the under-
standing of [2,3] (see also [4]) that the AdS background
can accommodate consistent self-interactions of massless
HS fields. An important property of this construction is that

the coupling constants of massless HS interactions are
proportional to positive powers of the AdS radius and
therefore this picture admits no flat space-time limit. This
picture has two crucial features; the presence of an infinite
tower of massless HS fields and nonlocality.

Studies of HS gauge fields can be grouped into two
broad classes according to the particular formulation of
HS gauge theory they use. In the Vasiliev formulation
(‘‘Frame-like formulation’’) a massless HS field with
spin s is encoded into generalized spin- connections
!A1;A2;...;As�1;B1;B2;...;Bs�1
� and the free part of the theory is a

generalization of the MacDowell—Mansouri formulation
of gravity [5]. An alternative formulation (‘‘metriclike’’
formulation), due to Fronsdal, uses conventional tensor
fields ��1;�2;...�3

�x� to construct the free gauge invariant
Lagrangian both for flat space-time [6] and for 4-
dimensional AdS space [7] (see [8] for field equations
and [9,10] for Lagrangians in an arbitrary number of
dimensions). It was recently shown that this formulation
results from a partial gauge fixing of Maxwell—like geo-
metric equations [11,12].

In this work we undertake the first step towards con-
structing explicitly the interaction vertex for HS gauge
fields in AdS in the ‘‘metriclike’’ formulation. Some fea-
tures of higher spin interaction have previously been
studied in flat space both in covariant [13] and in the
light-cone [14,15] formalisms. These studies have shown
that for spin higher than two a group structure for non-
abelian gauge transformations fails to exist unless one
considers the full infinite tower of massless HS fields1

[17,18].
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1Two examples of a consistent self-interactions of three fields
of spin 3 was recently found in [16].
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The construction of consistent higher spin field interac-
tions is an old open problem of classical field theory.
However, there exist some new motivations for the study
of this problem. The first one is the holography of HS
gauge theories. It is believed to be the appropriate frame-
work for the holographic description of weakly coupled
gauge theories [19]. In fact, we believe that one can holo-
graphically translate the wealth of knowledge on weakly
coupled quantum field theories to information about HS
gauge theories [20,21]. A second motivation is stipulated
by the study of the tensionless limit of string theory. It is
widely believed that in the �0 ! 1 limit the true symme-
tries of string theory will emerge [22,23] and HS gauge
theories should play a prominent role. It is natural to
assume that a consistent tensionless limit can only be taken
in the presence of a dimensionful parameter such as space-
time curvature. For example, curvature provides an effec-
tive tension among string-bits which can compensate the
absence of tension providing a stringy tensionless limit.
Similar ideas appear in a number of recent works [24–27].

To construct the interaction vertex in AdS we use the
covariant BRST approach [28–30] of the ‘‘metriclike for-
mulation’’ to impose gauge invariance. The theory will be
formulated in terms of the HS functional—an analogue of
the string-field functional which contains an infinite tower
of massless fields with arbitrary integer spins. At the free
field level such a system describing totally symmetric
reducible representations has been considered in [10,31].
We extend those studies to the interacting level.

The techniques used in the approach under consideration
are analogous in some aspects to techniques of string-field
theory [32,33]. However there are some crucial differ-
ences. Unlike string-field theory, a world sheet description
of HS fields is not known and therefore there is no analogue
of the string overlap conditions, which restrict the argu-
ment of the cubic interaction vertex to be quadratic in the
oscillators. In our case, the interaction vertex is a general
polynomial of the oscillator and ghost variables.

We emphasize that our approach is in a sense perturba-
tive, the perturbation parameter being the dimensionful
coupling g, whose physical meaning we explain below.
That is the reason why our results in flat space-time and in
AdS do not contradict the known no-go theorems for
interacting HS gauge fields. To construct the fully gauge
invariant action, i.e. gauge invariant to all orders in g, one
probably has to add quartic and higher order interactions.
We expect that the fully gauge invariant action would
contain all the known features of interacting HS theories,
such as an infinite tower of fields of all spin and possibly
nonlocality. Also we point out that the symmetry algebra in
HS theory is not the Virasoro one as in string-field theory.
Throughout the paper we restrict to symmetric tensor
fields. This suffices if we do not include fermions and
fields with mixed symmetry [34,35]. We hope to address
such issues in a future work.

The paper is organized as follows: In Sec. II we review
the equations of motion, the Lagrangians and their gauge
transformations describing reducible representations of the
Poincaré and of the AdS group, using the triplet method for
the description of HS fields. In Sec. III we formulate the
general approach to constructing cubic interaction vertices
for massless higher spin fields in flat and AdS back-
grounds. We present the main equations of the BRST
analysis of the vertex, which are used to constrain the
form of the interaction vertex. We define the coefficients
of the vertex using an appropriate expansion in ghost and
‘‘matter’’ oscillators. We explain in addition that not all
possible interactions terms contain nontrivial information
about the cubic vertex. Some expansion coefficients lead to
total derivative terms, while some others lead to ‘‘fake’’
interactions which can be factored out using appropriate
field redefinitions. We deal separately with the flat and AdS
cases in Secs. IV and V respectively. In Sec. IV we dem-
onstrate how one can use our formalism to solve the
equations for gauge invariance of the vertex in the flat
case, after fake interactions have been taken into account.
These result can be used in the sequel to bring the vertex
into a form directly applicable on the one hand to holog-
raphy, and on the other hand to the high energy limit of
string theory. The AdS case involves some extra compli-
cations which we discuss in Sec. V. In the appendix we
present the detailed field redefinitions formulas used in
order to factor out fake interactions from the cubic vertex
in Sec. III.

II. FREE HIGHER SPIN GAUGE FIELDS IN FLAT
AND ADS SPACE-TIMES

There are many ways used in the literature to present the
theory of free HS gauge fields [1]. We believe that one of
the most elegant and clear descriptions of HS gauge fields
is the one based on the triplet construction which we
review below. This construction was developed in flat
space in [12] and in AdS in [10,31]. This system is named
bosonic triplet and describes the propagation of reducible
massless HS fields in flat and AdS backgrounds. The name
‘‘triplet‘‘ comes about because a gauge invariant descrip-
tion of massless fields with spins s; s� 2; s� 4; . . . re-
quires in addition to a tensor field � of rank s, the
presence of two auxiliary tensor fields. We denote them
as C (of rank s� 1) and D (of rank s� 2). After elimina-
tion of these auxiliary fields via the gauge transformations
and/or via their own equations of motion one is left
only with the degrees of freedom describing the physical
polarization of higher spin fields with spins s, s� 2, s� 4,
etc.

We restrict ourselves here to the case of totally symmet-
ric fields on D-dimensional AdS space-time. Such a tensor
of rank-s is the coefficient of the following state in a Fock
space
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 j��s�i �
1

�s�!
’�1�2...�s

�x���1� . . .��s�j0i: (2.1)

We will call the vector (2.1) a higher spin functional. To
describe the triplet we introduce the tangent-space valued
oscillators ��a; �a��, which satisfy

 ��a; �b�� � �ab; a; b � 0; . . . ;D� 1: (2.2)

The oscillators ����; ��� are obtained using the AdS
vielbein ea� and inverse vielbein E�a as

 �a � ea��
�; �� � E�a �a; ���;���� � g��;

(2.3)

with g�� being the AdS metric. The ordinary partial de-
rivative is now replaced by the operator [36],

 p� � �i�r� �!
ab
� �

�
a �b�; (2.4)

where!ab
� is the spin connection of AdS andr� is the AdS

covariant derivative. This operator satisfies the commuta-
tion relations
 

D�� � �p�;p�� ���r�;r���
1

L2 ��
�
������� ���;

�p�;�
��� � 0: (2.5)

The action of p� on the state (2.1) gives the AdS covariant
derivative r� as

 p�j��s�i � �
i
�s�!

��1� . . .��s�r�’�1�2...�s
�x�j0i:

(2.6)

We also write down for later use the left action of p� on
states

 h��s�jp� �
i
�s�!
h0j��1 . . .��sr�’�1�2...�s

�x�: (2.7)

Let us note also that the first term in the right hand side in
(2.5) gives zero when acting on states (2.1) since the later
has no free indexes. The reason behind the use of a cova-
riant derivative in (2.4) will be clear when considering the
case of interacting fields as we shall see below.

Next we introduce the following operators:
(i) The d’Alembertian operator

 l0 � g��p�p�; (2.8)

which acts on Fock-space states as

 l0j�
�s�i � �

1

�s�!
��1� . . .��s��’�1�2...�s

�x�j0i:

(2.9)

(ii) The divergence operator

 l � ��p�; (2.10)

which acts on a state in the Fock space as

 lj��s�i � �
i

�s� 1�!
��2� . . .��s�r�1

’�1
�2�3...�s

�x�j0i: (2.11)

(iii) The symmetrized exterior derivative operator,

 l� � ���p�; (2.12)

which acts on states in the Fock space as

 l�j��s�i � �
i

�s� 1�!
�����1� . . .��s�r�’�1�2�3...�s

�x�j0i: (2.13)

The latter is Hermitian conjugate to the operator l with
respect to the scalar product

 

Z
dDx

�������
�g
p

h��s�1 jj�
�s�
2 i: (2.14)

It is straightforward to obtain the following commutation
relations among the operators just introduced

 �l; l�� � ~l0; (2.15)

where the modified d’Alembertian ~l0 is defined as

 

~l 0 � l0 �
1

L2

�
�D�

D2

4
� 4MyM� N2 � 2N

�
;

(2.16)
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and
 

�My; l� � �l�; �~l0; l� �
2

L2 l�
4

L2 Nl�
8

L2 l
�M;

�N; l� � �l: (2.17)

Relations (2.17) form a closed algebra which is the base for
Lagrangian construction of the massless higher spin theory
in AdS space-time. We will call it higher spin symmetry
algebra in AdS space.

The operators

 N � ����� �
D

2
; M �

1

2
����; (2.18)

form an SO�1; 2� subalgebra of the total nonlinear algebra.

 �N;M� � �2M; �My; N� � �2My;

�My;M� � �N:
(2.19)

Having this algebra at hand one can construct the corre-
sponding nilpotent BRST charge. There are two distinct
options however, leading to different physical results. The
first option is to treat all operators, exceptN, as constraints.
In other words we introduce ghost and antighost variables
for each one of the operators, except of N. The operator N
can not be treated as a constraint since it is strictly positive
and it can not annihilate any physical state. Then, if one
builds the nilpotent BRST charge for this nonlinear algebra
one arrives to a Lagrangian description of a single higher
spin field in AdS [9].

In order to describe a triplet on AdS one has to follow
another line [10,31]—namely to introduce ghost and anti-
ghost variables only for the operators ~l0, l and l�. Then one
constructs a nilpotent BRST charge in the following way.
First one rewrites the second of the commutation relations
(2.17) in an equivalent way:

 �~l0; l� � �
1

L2 �6� 4N�l�
8

L2 Ml
�; (2.20)

i.e., pushing the operators l and l� to the right. Then one
uses the standard formula for the BRST charge,

 Q � cAGA �
1
2UAB

CcAcBbC; A; B � 1; 2; 3; (2.21)

where cA � �c0; c; c
�� and bA � �b0; b

�; b� are Grassman
odd ghost and antighost variables with ghost number �1
and �1 respectively. The ghost and antighost variables
satisfy the anticommutation relations fcA; bBg � �AB while
UAB
C are structure constants �GA;GB� � UAB

CGC. How-
ever since now we have structure functions rather than
structure constants, the naive BRST charge (2.21) will
not be nilpotent. Therefore one computes Q2 and adds
compensating terms to restore nilpotence. This procedure
leads to the BRST charge [10]

 

Q � c0

�
~l0 �

4

L2 N �
6

L2

�
� cl� � c�l� c�cb0

�
6

L2 c0c�b�
6

L2 c0b�c�
4

L2 c0c�bN

�
4

L2 c0b
�cN �

8

L2 c0c
�b�M�

8

L2 c0cbM
y

�
12

L2 c0c
�b�cb: (2.22)

Furthermore, we define the ghost vacuum as

 cj0igh � 0; bj0igh � 0; b0j0igh � 0: (2.23)

Therefore the total vacuum is given by the product

 j0i � j0i� 	 j0igh; �aj0i� � 0: (2.24)

The triplet of spin-s, (which involves symmetric tensors of
ranks s, s� 1, and s� 2), is now expressed through the
following states in this enlarged Fock space2

 j�i � j�1i � c0j�2i; (2.25)

where
 

j�1i �
1

s!
��1...�s

�x���1� . . .��s�j0i

�
1

�s� 2�!
D�1...�s�2

�x���1� . . .��s�2�c�b�j0i;

j�2i �
�i

�s� 1�!
C�1...�s�1

�x���1� . . .��s�1�b�j0i: (2.26)

We will call the vector (2.25) a higher spin functional as
well as the (2.1). The vacuum j0i and the state j�i have
ghost number zero. The corresponding gauge transforma-
tion parameter has ghost number �1

 j�i �
i

�s� 1�!
��1�2...�s�1

�x���1���2� . . .��s�1�b�j0i:

(2.27)

Then the Lagrangian, that has ghost number zero, is

 L �
Z
dc0h�jQj�i; (2.28)

and it is invariant under

 �j�i � Qj�i: (2.29)

Now it is straightforward to obtain the space-time
Lagrangian

2To avoid overloading the notation, the state j�i will denote
henceforth the triplet of spin-s, unless explicitly stated
otherwise.
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L �
1

2
���� sr 
�C� s�s� 1�r 
 CD

�
s�s� 1�

2
D�D�

s
2
C2 �

s�s� 1�

2L2 ��0�2

�
s�s� 1��s� 2��s� 3�

2L2 �D0�2 �
4s�s� 1�

L2 D�0

�
1

2L2 ��s� 2��D� s� 3� � s��2

�
s�s� 1�

2L2 �s�D� s� 2� � 6�D2: (2.30)

The equations of motion resulting from (2.30) are
 

�� � rC�
1

L2 f8gD� 2g�0

� ��2� s��3�D� s� � s��g;

C � r 
 ’�rD;

D � r 
 C�
1

L2 f�s�D� s� 2� � 6�D� 4�0 � 2gD0g:

(2.31)

In the equations above r
 gives the divergence and r acts
as the symmetrized covariant derivative. Further, the prime
00000 denotes the trace with respect to the AdS metric.
Taking the infinite radius limit L! 1, the Lagrangian
(2.30) and the equations of motion (2.31) reduce to their
flat space-time counterparts.

The Lagrangian is invariant under the gauge transforma-
tions

 �� � r�; �D � r 
�;

�C � ���
�s� 1��3� s�D�

L2 ��
2

L2 g�0;
(2.32)

by virtue of the standard formula for the AdS covariant
derivatives acting on a vector ��

 �r�;r���� �
1

L2 �g���� � g�����: (2.33)

Finally, we should make some comments regarding the
spectrum. Massless fields of spin-s in AdS saturate the
unitary bound for representations of the AdS isometry
group O�2;D� 1� (see e.g. [34] for detailed discussions).
Their wave equation has the form

 

�
��

1

L2 ��2� s��3�D� s� � s�
�
��1...�s

�x� � 0;

(2.34)

where s is the spin. Then, in complete analogy with the
case of flat space-time one can show that the triplet
Eqs. (2.31) correctly reproduce the unitary bound for all
physical modes i.e., after the diagonalization of the equa-
tions and gauge transformations we obtain the propagation
of massless fields with spins s; s� 2 . . . and proper unitary
bound for each of them separately. Next, imposing ‘‘by

hand‘‘ the extra condition

 �0 � 2D; (2.35)

one can completely eliminate the lower spin fields from the
triplet equations and one arrives to the so-called Fronsdal
equations in AdS [7]. Note that after imposing (2.35) the
parameter of gauge transformations is no more unre-
stricted, but rather satisfies the condition 	0 � 0. This extra
condition can be obtained, after partial gauge fixing [9,28]
as an equation of motion from a larger Lagrangian which
contains some additional auxiliary fields. To get a formu-
lation for free HS theory in flat space it is sufficient to tend
the parameter L to infinity in all relations corresponding to
AdS space.

III. METHOD OF CONSTRUCTING THE CUBIC
VERTEX FOR HIGHER SPIN GAUGE FIELDS

In this section we discuss a general construction of the
cubic HS vertex which is based on generalization of the
BRST method mainly used earlier only in free HS theory.
This approach is analogous in some aspects to vertex
construction in string-field theory, however, as we have
pointed out earlier, in our case there exists no analog of the
overlap conditions on the three-string interaction vertex
that would strongly restrict its form. In the case of interact-
ing massless HS fields the only guiding principle is gauge
invariance which manifests itself in the requirement of
BRST invariance of the vertex.

There is one crucial point regarding interacting HS
fields. It appears that a length parameter is necessary for
the construction of the interaction vertex, such that the
latter has the right dimensions. For HS field in flat space
there is no obvious candidate for this length parameter.
One possibility would be to consider HS gauge fields
emerging at the tensionless limit of string theory, in which
case the role of the above mentioned parameter is played
by the inverse of the string tension �0. On the other hand,
for HS fields in curved space-times such a dimensionful
parameter is naturally given by the inverse curvature. In
particular, in the case of HS gauge fields on AdS space-
times this parameter is naturally associated with the AdS
radius L. Notice that the zero radius limit of such a con-
struction is the large-curvature limit.

After these remarks we will proceed along the lines of
[17]. We wish to construct the most general cubic vertex
that includes both the case when all interacting fields have
the same spin (self interaction) as well as the case when the
interacting fields are different. For that we use three copies
of the higher spin functional defined in (2.25) as j�ii, i �
1, 2, 3. If we studied the quartic vertex we would use four
copies of the higher spin functional j�i and etc. The
tensors fields in j�ii are all at the same space-time point.
Then, the j�ii interacting among each other are expanded
in terms of the set of oscillators �i�� , ci�, and bi�
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��i�; �
j;�
� � � �ijg��;

fci;�; bjg � fci; bj;�g � fci0; b
j
0g � �ij;

(3.1)

in complete analogy to the free field case. The BRST
charge of our construction consists of three copies of the
free BRST change. The full interacting Lagrangian can be
written as [32,33]

 L �
X
i

Z
dci0h�ijQij�ii

� g
�Z

dc1
0dc

2
0dc

3
0h�1jh�2jh�3jjVi � H:c:

�
; (3.2)

where jVi is the cubic vertex and g is a dimensionless
coupling constant.3

It is straightforward to show that the Lagrangian (3.2) is
invariant up to terms of order g2 under the nonabelian
gauge transformations

 �j�1i � Q1j�1i � g
Z
dc2

0dc
3
0��h�2jh�3j

� h�3jh�2j�jVi� �O�g2�; (3.3)

 �j�2i � Q2j�2i � g
Z
dc3

0dc
1
0��h�3jh�1j

� h�1jh�3j�jVi� �O�g
2�; (3.4)

 �j�3i � Q3j�3i � g
Z
dc1

0dc
2
0��h�1jh�2j

� h�2jh�1j�jVi� �O�g
2�; (3.5)

provided that the vertex V satisfies the BRST invariance
condition

 

X
i

QijVi � 0: (3.6)

The gauge transformations (3.3), (3.4), and (3.5) are non-
linear deformations of previously considered abelian gauge
transformations. We assume here that the tensor fields
obtained after the expansion of the j�ii functionals in
terms of the oscillators �i�� are different from each other.
One can consider cases when two or all three HS func-
tionals contain the same tensor fields. We expect that in

such cases the general interaction vertex will exhibit addi-
tional symmetry properties.

In order to ensure zero ghost number for the Lagrangian,
the cubic vertex must have ghost number 3. We make the
following ansatz for the cubic vertex

 jVi � Vj�i123 (3.7)

where the vacuum j�i, with ghost number 3 is defined as
the product of the individual Hilbert space ghost vaccua

 j�i123 � c1
0c

2
0c

3
0j0i1 	 j0i2 	 j0i3: (3.8)

The function V has ghost number 0 and it is a function of
the rest of the creation operators as well as of the operators
pi�. In string-field theory the right-hand side of (3.8) is
multiplied by �D�

P
ipi� which imposes momentum con-

servation on the three-string vertex. In our case the analo-
gous constrain is to discard total derivative terms of the
lagrangian which is certainly true for flat and AdS space-
times. So in what follows we will impose ‘‘momentum’’
conservation in the sense described above.

The condition of BRST invariance (3.6) does not com-
pletely fix the cubic vertex. There is an enormous freedom
due to Field Redefinitions (FR) just like in any field theory
Langrangian. It is clear in the free theory case that any FR
of the form

 ��i � F��i�; (3.9)

gives a gauge equivalent set of equations of motion for the
fields �i. Lagrangians obtained from the free one after the
field redefinition (3.9) yield additional ‘‘fake interactions’’
and should be discarded. For the interacting case at hand
we see, from (3.6), that the modified gauge variation (3.3),
(3.4), and (3.5) can only determine the cubic vertex up to
~Q-exact cohomology terms:

 �jVi � ~QjWi; (3.10)

where ~Q �
P
iQi and jWi is a state with total ghost charge

2. We will see in what follows that this FR freedom can
lead into major simplifications for the functional form of
the vertex.

Next, we expand the vertex operator jVi and the function
jWi in terms of ghost variables or equivalently in terms of
the following two ghost quantities with ghost number zero:

 
ij;� � ci;�bj;�; �ij;� � ci;�bj0: (3.11)

These are 3� 3 matrices with no symmetry properties. For
the cubic vertex we have the expansion

3Each term in the Lagrangian (3.2) has length dimension �D.
This requirement holds true for each space-time vertex contained
in (3.2) after multiplication by an appropriate power of the length
scale of the theory, as discussed before.
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 jVi � fX1 � X2
ij


ij;� � X3
ij�

ij;� � X4
�ij�;�kl�


ij;�
kl;� � X5
ij;kl


ij;��kl;� � X6
�ij�;�kl��

ij;��kl;�

� X7
�ij�;�kl�;�mn�


ij;�
kl;�
mn;� � X8
�ij�;�kl�;mn


ij;�
kl;��mn;� � X9
ij;�kl�;�mn�


ij;��kl;��mn;�

� X10
�ij�;�kl�;�mn��

ij;��kl;��mn;�gj�i123; (3.12)

since the function V in (3.7) has ghost number zero. In our notation we put in parentheses pairs of indices which are
symmetric under mutual exchange. For example, X4

�ij�;�kl� is symmetric under �ij� $ �kl�. The coefficient X4
�ij�;�kl� is also

antisymmetric under i! k since fci;�; ck;�g � 0 but we have not indicated these symmetries in order to avoid clustering
notation.

In a similar manner we have the following expansion:

 jWi123 � fW1
i b

i;� �W2
i b

i
0 �W

3
i;jkb

i;�
jk;� �W4
i;jkb

i;��jk;� �W5
i;jkb

i
0�

jk;� �W6
i;�jk�;�lm�b

i;�
jk;�
lm;�

�W7
i;jk;lmb

i;�
jk;��lm;� �W8
i;�jk�;�lm�b

i;��jk;��lm;� �W9
i;�jk�;�lm�b

i
0�

jk;��lm;�

�W10
i;�jk�;�lm�;pnb

i;�
jk;�
lm;��pn;� �W11
i;jk;�lm�;�pn�b

i;�
jk;��lm;��pn;�

�W12
i;�jk�;�lm�;�pn�b

i;��jk;��lm;��pn;�gj�i123: (3.13)

for the FR functional W.

IV. THE CUBIC VERTEX IN FLAT SPACE-TIME

We consider HS fields in flat space-time first. Each
component of the vertex in (3.12) has an oscillator expan-
sion in terms of matter oscillators �i;�� and derivatives pi�,
where the latter act to the left. As we have done throughout
the paper we will restrict our study to the case of totally
symmetric massless higher spin fields and therefore we
have only to consider three different sets of oscillators and
momenta.

A. Flat space-time generators and their algebra for the
interacting case

The interaction vertex glues together three Hilbert
spaces and for this reason it is convenient to define, in
complete analogy to the free case, the following generators
 

lij � ��ipj�; lij;� � ��;i�pj�;

lij0 � p�ipj�; Mij �
1

2
��i�j�;

Mij;� �
1

2
��;i��j�� ; Nij � ��;i��j� � �ij

D

2
:

(4.1)

We see that generators (4.1) are indexed by integers i, j �
1, 2, 3. The three values for i and j originate from the fact
that we consider three field interaction. In general case of
n-field interaction, we should take the same generators
with i, j � 1; 2 . . . ; n. Using the generators above one
can build all possible interaction terms between symmetric
higher spin fields. Therefore our ansatz for the vertex is that
of the most general polynomial made out from the opera-
tors lij0 , lij;�, and Mij;�. This corresponds to the usual
derivative expansion for the vertex, since the operators lij0
have dimensions �Length��2 and the operators lij;�, �ij;�

have dimension �Length��1. To make sense of such an
expansion one needs to introduce a physical length pa-

rameter. In flat space-times it is not clear where does such a
length scale may come from, nevertheless the hope is that it
would be connected to the length scale of a fundamental
theory such as string or M-theory.

The commutator algebra of the operators in (4.1) is
 

�lij; lkl;�� � �ikljl0 ;

�Nij; lkl� � ��ikljl;

�Mij;�; lkl� � �1
2��

jklil;� � �ikljl;��;

�Nij;Mkl� � ���ikMjl � �ilMkj�;

�Mij;Mkl;�� � �1
4��

jkNil � �jlNik � �ikNjl � �ilNjk�:

(4.2)

Algebra (4.2) generalizes the algebra of generators of the
free HS theory and can be called the symmetry algebra of
interacting HS theory. It is obvious that the diagonal sub-
algebra of (4.2)4 consists of three copies of the algebra
presented in (2.17) and (2.19).

Let us consider the constrains imposed by momentum
conservation on the vertex. Clearly, not all generators in
(4.1) are linearly independent once we consider the oper-
atorial equation

P
ip
�
i � 0, which means that we omit total

derivatives, as discussed in section III. A convenient set of
linearly independent generators is the following:
 

lij0 � �l
11
0 ; l

22
0 ; l

33
0 � � �l

1
0; l

2
0; l

3
0�

lij;� � �l1;�; I1;�; l2;�; I2;�; l3;�; I3;��;

li;� � lii;�;

I1;� � ��;1��p2
� � p3

��;

I2;� � ��;2��p3
� � p1

��

I3;� � ��;3��p1
� � p2

��

Mij;� � �M11;�;M22;�;M33;�;M12;�;M13;�;M23;��

(4.3)

4This algebra consists of generators �lii0 ; l
ii; lii;�;Mii;�;Mii;

Nii;�� for i � 1, 2, 3.
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Based on the above analysis we can write the most general form of the expansion coefficients Xl
�...�:

 

Xl�...� � Xln1;n2;n3;m1;k1;m2;k2;m3;k3;p1;p2;p3;r12;r13;r23�...�
�l10�

n1 . . . �l�;1�m1�I�;1�k1 . . . �M�;11�p1 . . . �M�;12�r12 . . . (4.4)

An analogous expansion can be written for Wl
�...� as well. It

is interesting to point out that the expansion in lij, lij;�, lij0
is an expansion in powers of space-time derivatives.
Therefore it is naturally to expect that the cubic vertex as
well as any interaction vertex will contain higher space-
time derivatives. In principle, this circumstance allows us
to develop a perturbation scheme for finding the vertex
keeping in the expansion derivatives up to some fixed
order.

An easy way to recognize interactions obtained from the
free Lagrangian (‘‘Fake interactions’’) due to field redefi-
nitions is the following [13]. Fake interactions vanish for
the fields obeying free equations of motion—which is
another way to state that the only nontrivial interaction
are in the cohomology of the BRST charge ~Q. Fake inter-

actions can in principle be completely eliminated using the
field redefinitions in (3.13). In Appendix A we demonstrate
how FR can bring the matrix element Xn... of the vertex in a
convenient form, both for analyzing the Eqs. (4.6) and for
writing the Lagrangian in a simpler form.

B. BRST invariance constraints for the cubic vertex

Using the explicit form of the BRST charges:

 Qi � ci0l
i
0 � c

ili;� � ci;�li � ci;�cibi0; �no sum�

(4.5)

and Eqs. (3.6) and (4.4) we arrive to the following set of
equations:

 

ci;��liX1 � ls;�X2
is � l

s
0X

3
is� � 0;

ci;�
jk;��liX2
jk � 2ls;�X4

�is�;�jk� � l
s
0X

5
jk;is� � 0;

ci;��jk;����jkX
2
ij � l

iX3
jk � l

s;�X5
is;jk � 2ls0X

6
�is�;�jk�� � 0;

ci;�
jk;�
lm;��liX4
�jk�;�lm� � 3ls;�X7

�is�;�jk�;�lm� � l
s
0X

8
�jk�;�lm�;is� � 0;

ci;�
jk;��lm;���2�lmX
4
�il�;�jk� � l

iX5
jk;lm � 2l�sX8

�is�;�jk�;lm � 2ls0X
9
jk;�is�;�lm�� � 0;

ci;��jk;��lm;����jkX5
ji;lm � l

iX6
�jk�;�lm� � l

s;�X9
is;�jk�;�lm� � 3ls0X

10
�is�;�jk�;�lm�� � 0:

(4.6)

To simplify the analysis of these equations we define the
operator:

 

~N � ��;i��i� � bi;�ci � ci;�bi: (4.7)

This operator commutes with the BRST charges Qi and its
eigenvalues count the degree of the Xl

�...�s in the �i;��
oscillator expansion. Namely, as it can be seen from the
Eq. (3.12), if the degree of the coefficient X1 in oscillators
�i;�� is K, then the rest of the coefficients have the follow-
ing degrees in the oscillators �i;��

 X1�K�; X2�K � 2�; X3�K � 1�; X4�K � 4�;

X5�K � 3�; X6�K � 2�; X7�K � 6�;

X8�K � 5�; X9�K � 4�; X10�K � 3�:

For example the first equation has degree K � 1, since lij

reduces the value of K by one, lij;� increases it by one and
lij0 leaves it unchanged.

There is yet another number which can be used in a way
similar to K. Namely if a term in the expansion of V has
powers of operators lij0 , lij;�, Mij;�, 
ij;�, and �ij;� equal
to s1, s2, s3, s4, and s5 respectively, then the total number

s � s1 � s2 � s3 � s4 � s5 is unchanged under the action
of the BRST charge.

The above observations can be used to classify Eqs. (4.5)
by their degree K and by the number s. This means that the
vertex can be expanded in a sum of contribution with fixed
degrees K and s as

 jVi �
X
K;s

jV�K; s�i: (4.8)

Therefore the Eq. (3.6) can be split into the infinite sets of
equations

 

X
i

QiV�K; s� � 0: (4.9)

for each value of K and s.

C. Determining the cubic vertex: An example

We will now show how the first of Eqs. (4.6) can be
solved resulting in recursive relations which determine the
expansion coefficients X2

�...� andX3
�...� in terms ofX1

�...�. Using
the notation in (A3) we can write the first equation of (4.6)
in the form:
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miX
1�ni:ni � 1; mi:mi � 1� �

ki
2
�ikl�X

1�nk:nk � 1; ki:ki � 1� � X1�nl:nl � 1; ki:ki � 1�� � piX
1�mi:mi � 1; pi:pi � 1�

�
1

4

X
l

rilX1�ril:ril � 1; ml:ml � 1� �
1

4

X
l

ril�limX1�ril:ril � 1; kl:kl � 1� �
X
s

X2
is�ms:ms � 1� �

X
s

X3
is�ns:ns � 1� � 0:

(4.10)

We have omitted all indices of the Xn... matrices which are
not relevant above. Let us look at the equation for i � 1.
Using the specific scheme described in (A4) we observe
that first term in (4.10) vanishes since it would require
nonzero matrix elements of the form X1

mi�1.... Collecting
all term with same exponents with respect to the gener-
ators, we find a set of equations between the various matrix
elements Xln1;n2...;�...�. Namely terms which have ni � mi �
0 give:

 r12X1
...k2;k3�1;...r12;r13�1;r23

� r13X1
...k2�1;k3;...r12�1;r13;r23

;

(4.11)

with the obvious restrictions that all indices of the matrix
elements must be positive integer numbers.

We can similarly analyze all other relevant terms. In the
table bellow we summarize our results for i � 1. The left
column shows the exponents of the generators which we
factor out from (4.10) and the right one the corresponding
equation between matrix elements resulting from this pro-
cess. Notice that we give the values of the ni, mi powers of
the generators (li0), (l�i), respectively, only. All other ex-
ponents in (4.10) that are not shown here are taken to be
arbitrary positive integer numbers. We have not included
some equations which are directly deduced by symmetry
from those bellow.

 

Performing the same analysis for i � 2, 3 in (4.10) one can
see that all X3

�ij�;mi�1 elements can be set equal to zero. In
addition the diagonal X3

ii elements vanish altogether. All
other ones X3

�ij�;mi�0 and X2
ij are determined in terms of one

single unknown matrix X1. There is only one constrain on
X1 at this level from (4.11). The remaining equations in
(4.6) are very similar to the one we just analyzed. It might
be possible to determine all Xn�2 matrix elements in
terms of a single infinite dimensional matrix X1.
However we postpone this rather lengthy analysis for a
future publication.

One can simply check that the solution given in [18]
emerges as a special case from the scheme described
above. In [18] the function V was taken to be of the form

 V � exp�Yijl
ij;� � Zij�

ij;��: (4.13)

Expanding the exponential in terms of �rs;� one can see

that the only nonzero functions are X1, X3, X6, and X10.
The requirement of the BRST invariance of the vertex
gives us the following conditions on the coefficients Yrs

and Zrs

 Zi;i�1 � Zi;i�2 � 0; (4.14)

 Yi;i�1 � Yii � Zii � 1=2�Zi;i�1 � Zi;i�2�; (4.15)

 Yi;i�2 � Yii � Zii � 1=2�Zi;i�1 � Zi;i�2�; (4.16)

Nevertheless, it is instructive to divide the exponent into
two parts and use the basis (4.3):

 �1 � ~YrI
r;� � Ẑrs�

rs;�; (4.17)

 �2 � ~Yrrlr;� � Zrr�rr;�; (4.18)

where compared to the basis in (4.13), Ẑrs is the off-
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diagonal part of Zrs,

 

~Y r �
1
2�rklY

kl ~Yrr � Yrr �
1
2�Yrs � Ysk�

�r; s; k� permutations of �1; 2; 3�
(4.19)

as one can check using (4.3). In �2 we have grouped all the
diagonal terms of the exponent. The important point is that
the two exponentials will lead into linearly independent
conditions under BRST invariance. To prove the BRST
invariance of the full vertex. it suffices to show that
exp��1� and exp��2� are separately invariant. Since ~Q�1

commutes with �1 we can easily show that

 

~Q exp��1�j�i123 � exp��1�� ~Q�1j�i123�: (4.20)

This implies that BRST invariance in (4.20) is equivalent to
 

~Q�1j�i123 �
X
i

ci;�
�
�

1

2
�ikl ~Yi�l

k
0 � l

l
0� � Ẑisl

s
0

�
j�i123

� 0; (4.21)

where we have used the commutation relations (A2). From
the condition above we find the solution

 

~Y i � �
1
2�iklẐ

kl; Ẑik � �Ẑil

�i; k; l� permutations of �1; 2; 3�:
(4.22)

In a similar manner we can show that BRST invariance of
exp��2� is equivalent to

 

~Q�2j�i123 �
X
i

ci;��Yiili0 � Ziil
i
0�j�i123 � 0 (4.23)

with solution

 Zrr � ~Yrr: (4.24)

We can easily verify, using the transformations in (4.19),
that the conditions (4.22) and (4.24) are equivalent to those
of (4.14). The two conditions (4.21) and (4.23) are obvi-
ously linearly independent in terms of ci;� and li0 and this is
the reason they can be satisfied independently. This shows
that the full vertex

 jVi � exp��1 ��2�j�i123 (4.25)

is BRST invariant with the coefficients satisfying (4.22)
and (4.24). Note that �2 is ~Q-exact, modulo terms which
vanish acting on the vacuum j�i123. This means that the
dependence of the vertex on �2 can be eliminated via a FR.
We can easily show that

 jWi � �Yjjb
j;� exp��1�

X1
l�0

�l
2

�l� 1�!
j�i123 (4.26)

leads to the FR

 �jVi � ~QjWi � ��exp��2� � 1� exp��1�j�i123 (4.27)

and gives V0 � exp��1�. This is the scheme (A5) we have
developed in the appendix to remove ‘‘fake interactions.’’
We should point out that the specific scheme does not
actually remove all diagonal ghost terms like �ii;�. Such
terms appear in the �-expansion of the exponent to qua-
dratic order and beyond. This is because terms like
�ik;��ji;� can be equivalently written as �ii;��jk;�. It is
only the li;� terms which are removed.

Having done all of the above, it is straightforward to
show that the first equation in (4.6) leads to the same
constrains as in (4.24). The ansatz V 0 � exp��1� is a
particular case of the general solution in with

 X1 � exp� ~YrI
�r�; X2

ij � 0;

X3
ij�

ij;� � ~Zij�ij;�X1;
(4.28)

and the matrix elements are

 X1
ni�mi�0;k1;k2;k3

�
1

k1!k2!k3!
: (4.29)

The remaining equations in (4.6) are rather straight forward
to solve in this particular case and determine X6 and X10 in
terms of X1. These agree with the expansion of V 0 in ghost
variables �ij;�.

V. THE CUBIC VERTEX ON ADS

To construct the vertex on AdS we use the same proce-
dure as in the flat case, in particular, we solve the same
Eq. (3.6). In this case, however, care is needed when trying
to extend the the algebra (4.2) to a nontrivial background.

A. AdS generators and their algebra in the
interacting case

In order to compute the algebra it is useful to recall how
various operators defined previously act on physical states.
For example operator l12

0 � p1
�p2

�, where p� is the opera-
tor (2.4), acts as follows:

 

l12
0 j�1i	 j�2i �

i
�s1�!

��1;1� . . .��s;1�r�’1
�1�2...�s1

�x�j0i1

	
i
�s2�!

��1;2� . . .��s;2�r�’2
�1�2...�s2

�x�j0i2:

The operators pi� act only on i -th Hilbert space and
therefore

 

�pi�; p
j
�� � �ij

�
��ri�;r

i
�� �

1

L2 ��
i;�
� �i� � �

i;�
� �i��

�

� �ijDi
��: (5.1)

The other operators are defined in an analogous way. For
example the operator l12 � ��;1p2

� acts as
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 l12j�1i 	 j�2i �
1

�s1 � 1�!
��2;1� . . .��s;1�’1�

�2...�s1
�x�j0i1 	�

i
�s2�!

��1;2� . . .��s;2�r�’2
�1�2...�s2

�x�j0i2;

the operator l12� � ��;1�p2
� acts as

 l12�j�1i 	 j�2i �
1

�s1�!
��;1���1;1� . . .��s;1�’1

�1...�s1
�x�j0i1 	�

i
�s2�!

��1;2� . . .��s;2�r�’2
�1�2...�s2

�x�j0i2;

and the operator M12 � 1
2�

�;1�2
� acts as

 M12j�1i 	 j�2i �
1

2

1

�s1 � 1�!
��2;1� . . .��s;1�’1�

�2...�s1
�x�j0i1 	

1

�s2 � 2�!
��2;2� . . .��s�’2

��2...�s2
�x�j0i2:

The definition of the diagonal operators is the same as (2.8), (2.10), and (2.12).
At this point we think it is instructive to present an explicit example of a computation. Let us compute the commutator

between l11 and l12� acting on j�1i 	 j�2i, where, for clarity, we take j�1i to be a vector and j�2i to be a scalar.

 

���;1p1
�; �

�;1�p2
��’

1
��

�;1�j0i1 	 ’
2j0i2 � �i��

�;1�p1
�;�

�;1���1
��

�;1� � ���;1; ��;1��p1
��

1
��

�;1���r��
2�j0i1 	 j0i2

� ���;1��r�’
1
���r�’

2�j0i1 	 j0i2 (5.2)

In obtaining the above result it was crucial that pi� com-
mutes with ��;j�.

Proceeding this way one obtains the algebra of operators

 lij0 � p�;ipj�; lij � ��;ipj�; lij;� � ��i;�pj�;

(5.3)

on AdS for the interacting case

 �lij; lmn;�� � �imljn0 � �
jn��m;�Dj

����i; (5.4)

 �lmn; lkl� � �nl��mDj
����k; (5.5)

 �lij0 ; l
mn� � �jn��mDj

��p�;i � �in��mDi
��p�;j; (5.6)

 �lij0 ; l
kl
0 � � �jkp�;iDj

��p�;l � �ikp
j
�Di

��p
l
�

� �jlp�;kDj
��p�;i � �ilp�;kDi

��p�j

�
�1�D�

L2 �ik�ijlil0 �
�1�D�

L2 �jl�ijlki0 (5.7)

supplemented by the part of the algebra (4.2) which in-
volves commutators ofMij,Mij;�, andNij. We will call the
algebra (5.4), (5.5), (5.6), and (5.7) the symmetry algebra of
interacting HS theory in AdS space-time.

The commutation relations above differ from the corre-
sponding flat space ones (4.2), in that they involve extra
terms which when acting on states give O�1=L2� contribu-
tions. These terms are subleading in the L! 1 limit,
hence the algebra (5.4) contracts to the flat space-time
algebra (4.2) in the small curvature limit. This implies
that free HS gauge fields in flat space-time can be viewed
as the zero curvature limit of free HS gauge fields on AdS.
However, the interacting HS gauge fields on AdS do not
have a smooth L! 1 limit since the interaction vertices
contain positive powers of L. Nevertheless, as we shall see

below, the functional form of the cubic vertex of HS gauge
fields on AdS differs from the cubic vertex in flat space-
time by terms which are subleading as L! 1.

From the explicit form (5.1) the first term �r�;r��
leaves the ‘‘scalar’’ Fock state invariant and only the
oscillator piece contributes, which can be written in terms
of the standard (4.1) generators. The algebra (5.4), (5.5),
(5.6), and (5.7) acting on states becomes:
 

�lij; lmn;�� � �imljn0 �
1

L2 �
jn
�
NmjNmi

� ��D� 1��ij � 1�Nmi

�
D

2
��mi � �mj�Nij �

D2

4
�mj�mi

� 4Mmj;�Mij
�
; (5.8)

 �lmn; lkl� �
1

L2 �
nl
��

D

2
� 1

�
��klMml � �mlMkl�

� NlmMkl � NklMml
�
; (5.9)

 

�lij0 ; l
mn� �

1

L2 �
jn�2lji;�Mmn � Njmlni�

�
1

L2 �
in�2lij;�Mmn � Nimlnj�

�
1

L2 ��
jn�jmlni�

�
1�

D

2

�

�
1

L2 ��
in�imlni�

�
1�

D

2

�

�
1

L2 ��
in�ijlni��1�D�; (5.10)
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�lij0 ; l
kl
0 � �

1

L2 �
jk�lji;�ljl � ljl;�lji� �

1

L2 �
ik�lij;�lil � lil;�lij� �

1

L2 �
jl�lji;�ljk � ljk;�lji� �

1

L2 �
il�lij;�lik � lik;�lij�

�
1

L2 �D� 1���jk�jl �
1

L2 �
ik�il�lij0 �

1

L2 �D� 1���ik�jklil0 � �
il�jllik0 �: (5.11)

We find it again useful to demonstrate how the calculations are done in the interacting case on AdS with an example.

 �l12; l22;��l12;�’1
��

�;1�j0i1 	 ’
2j0i2 � �2;�

� D2
���

1
�l

12;�’1
��

�1;�j0i1 	 ’
2j0i2

� �
1

L2

�
l22;�

�
N11 � 1�

D

2

�
� 2M12;�l12

�
’1
���;1�j0i1 	 ’2j0i2

�
i

L2 �
2;�
� �1;�

� �D’�1�r
�’2� � g

��’�1 �r�’2��j0i1 	 j0i2: (5.12)

There is only a p2
	 from the second Hilbert space involved

in the example above. In the first equality we used (5.4). In
the second equality we acted with D2

�� on the p2
	 of the

l12;� operator using (2.33) and (5.1). This was the only
‘‘tensor’’ operator in the 2nd Hilbert space, since ’2 is a
scalar. Consequently, we commuted operators �i
 and p2



past each other to bring the result to the second line of
(5.12). Finally we used the algebra of (5.8), (5.9), (5.10),
and (5.11) to complete the calculations since no other
‘‘vector’’ operator, in the the 2nd Hilbert space, was left
for l22� or l12 to act upon.

From the manipulations above we conclude the follow-
ing: The algebra of constraints being obviously more com-
plicated than in the case of flat space-time shares its main
property—namely it preserves the polynomial form of
(3.12), (3.13), and (4.4). Therefore we can proceed in an
analogous manner as in the flat case.

B. BRST invariance constrains for the cubic vertex
on AdS

The next step is to choose an expansion of the cubic
vertex in terms of the AdS generators (4.1) and (5.3). In the
AdS case the creation generators of (4.3) do not commute
among each other, unlike the flat case, as one can see from,

i.e., (5.6). Nevertheless, we can choose a standard ordering
as in (4.4). All other possible orderings can be brought in
the standard form (i.e., use an analogue of the Weyl order-
ing in quantum mechanics), using the algebra (5.4), (5.5),
(5.6), and (5.7) and the manipulations described in the
previous subsection, modulo 1

L2 terms5 that affect lower
dimension terms in the L2 expansion of Xn. These latter
terms can again be brought in the standard form following
the same procedure and finally be absorbed in the defini-
tion of the matrix elements with lower dimension than the
one we started from.

In addition although naively we do not have momentum
conservation in AdS space-time, we can still make use of
the equation

P
ip
�
i � 0, since it leads into total derivative

terms in the Lagrangian.
To conclude, one can construct the same linearly inde-

pendent set of generators as in (4.3). The expansion of the
coefficients is exactly the same as in (4.4) with all gener-
ators the AdS equivalent of the flat ones. Using the explicit
form of (A6) it is straightforward to write down the equa-
tions resulting from (3.6). They are the same as in flat case
with the substitution l0 ! l̂0 as in (A7) and some modifi-
cations analogous to those in (A8). The final result is

 

ci;�
�
liX1 � ls;�X2

is � l̂
s
0X

3
is �

16

L2 M
s;�X5

is;ss

�
� 0;

ci;�
jk;�
�
liX2

jk � 2ls;�X4
�is�;�jk� � l̂

s
0X

5
jk;is �

8

L2 ��jkMjX
3
jk � 6Ms;�X8

�ss�;�jk�;is�

�
� 0;

ci;��jk;�
�
��jkX

2
ij � l

iX3
jk � l

s;�X5
is;jk � 2l̂s0X

6
�is�;�jk� �

32

L2 M
s;�X9

ss;�jk�;�is�

�
� 0;

(5.13)

 

ci;�
jk;�
lm;�
�
liX4
�jk�;�lm� � 3ls;�X7

�is�;�jk�;�lm� � l̂
s
0X

8
�jk�;�lm�;is �

8

L2 �jkM
jX5

lm;ij

�
� 0;

ci;�
jk;��lm;�
�
�2�lmX4

�il�;�jk� � l
iX5

jk;lm � 2ls;�X8
�is�;�jk�;lm � 2l̂s0X

9
jk;�is�;�lm� �

16

L2 �jkM
jX6
�lm�;�ij�

�
� 0;

ci;��jk;��lm;����jkX
5
ji;lm � l

iX6
�jk�;�lm� � l

s;�X9
is;�jk�;�lm� � 3l̂s0X

10
�is�;�jk�;�lm�� � 0:

5The action of Di
�� on ‘‘tensors’’ produces terms proportional to 1

L2 as on can easily verify from (2.33) and (5.1).
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Combinations involving the operator l̂s0 should be under-
stood as follows. For example the term in the first equation
ci� l̂s0X

3
is is a result of an action of the operator ci�0 l̂

i
0 at

X3
mn��mn and using the expression (A7)

 

ci;�0 l̂i0X
3
mn�

mn;� � �ci;�
�
p�;sps� �

1

L2 ���
�;s��s��

2

�D��;s��s� � 6��;s��s�

� �2D� 6�s � 4Ms;�Ms�X3
is

�
1

L2 c
i;��4��;i��i� � �2D� 6�i�X3

ii:

(5.14)

The equations in (5.13) are more difficult to analyze com-
pared to flat case despite their apparent similarity. The
main reason is obvious from the algebra (5.4), (5.5),
(5.6), and (5.7) which has nontrivial commutators contain-
ingDi

��. This causes more a technical difficulty rather than
a conceptual one. It would be interesting to find a solution
in a closed compact form (if such a solution exists of
course) but at the present moment we are content to have
a well defined iteration procedure and a system of equa-
tions which can be straightforwardly solved via this
procedure.

VI. SUMMARY AND OUTLOOK

In the present paper we have addressed the problem of
constructing the cubic interaction vertex of higher spin
Theory in the ‘‘metriclike formalism‘‘ on D-dimensional
flat and AdS spaces. We have discussed the free equations
of motion for higher spin fields in flat and AdS space-times
in triplet formalism. The only principle we have followed
in this construction is the requirement of gauge invariance
of the Lagrangian. These equations describe reducible
representation of the Poincare and AdS groups. To obtain
an irreducible representation on has to add certain off-shell
constraints to the field equations.

Assuming the cubic interaction vertex to be a series in
ghost and oscillator variables we have obtained the equa-
tions which determine the vertex. We outlined the way how
these equations can be solved level by level in oscillator
expansions. The vertex obtained in this way contains a part
which produces ‘‘fake interactions’’ i.e. the ones which can
be obtained form the free field Lagrangian via field rede-
finitions. We have shown how in practice this trivial part of
the vertex can be factorized out by solving the cohomolo-
gies of the corresponding BRST operator which determines
a free part of the Lagrangian. As a result, the gauge
invariant formulation the Lagrangian contains alongside
physical modes some auxiliary fields as well. Finding the
form of the vertex is essentially based on the symmetry
algebras of interacting HS fields in flat (4.2) and AdS (5.4),
(5.5), (5.6), and (5.7) space-times.

There are several open problems to address namely
(i) Our results can used to focus on particular sets of

fields, having in mind holography. In particular, it
would be quite interesting to reproduce holographi-
cally the known results for the conformal 3-point
functions of fields with spin 1 and 2 [37].

(ii) A crucial test would be is to compare the cubic
interaction vertices obtained in the present approach
to the ones obtained in a ‘‘framelike’’ formulation
by Vasiliev [3].

(iii) Our approach can be used to discuss the interac-
tions of HS fermionic fields, as well as of HS fields
represented by tensors with mixed symmetry.

(iv) Finally, it would be very desirable if our calcula-
tions shed some light into the conjectured link of
HS gauge theory with the high energy behavior of
string theory in flat [22,23] and in AdS space-times.
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APPENDIX: FIELD REDEFINITIONS IN BRST
FORMALISM

In this appendix we will demonstrate how one can use
the FR freedom jWi to eliminate ‘‘fake interactions’’
and to bring jVi in a convenient form.

1. Equations for field redefinitions on flat space-time

A direct computation of (3.10) using (3.12), (3.13), and
(4.5), leads to the following transformations for the expan-
sion coefficients of the vertex:
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�X1 � li;�W1
i � l

i
0W

2
i ;

��X2
ij�


ij;� � �liW1
j � 2ls;�W3

s;ij � l
s
0W

4
i;js�


ij;�;

��X3
ij��

ij;� � ��ijW
1
i � liW

2
j � l

s;�W4
s;ij � 2ls0W

5
s;ij��

ij;�;

��X4
�ij�;�kl��


ij;�
kl;� � �liW
3
j;�kl� � 3ls;�W6

s;�ij�;�kl� � l
s
0W

7
l;�ij�;ks�


ij;�
kl;�;

��X5
ij;kl�


ij;��kl;� � �2�klW
3
l;ij � liW

4
j;kl � 2ls;�W7

s;ij;kl � 2ls0W
8
j;�kl�;�is��


ij;��kl;�;

��X6
�ij�;�kl���

ij;��kl;� � ���ij�W
4
j;�kl� � l�iW

5
j�;kl � l

s;�W8
s;�ij�;�kl� � 3ls0W

9
s;�ij�;�kl��


ij;��kl;�;

��X7
�ij�;�kl�;�mn��


ij;�
kl;�
mn;� � �liW
6
j;�kl�;�mn� � l

s
0W

10
n;�ij�;�kl�;ms�


ij;�
kl;�
mn;�;

��X8
�ij�;�kl�;mn�


ij;�
kl;��mn;� � �3�mnW
5
n;�ij�;�kl� � liW

7
j;�kl�;mn � 3ls;�W10

s;�ij�;�kl�;mn � 2ls0W
11
l;�ij�;ks;mn�


ij;�
kl;��mn;�;

��X9
ij;�kl�;�mn��


ij;��kl;��mn;� � �2�klW7
l;ij;�mn� � liW

8
j;�kl�;�mn� � 2ls;�W11

s;ij;�kl�;�mn� � 3ls0W
12
j;is;�kl�;�mn��


ij;��kl;��mn;�;

��X10
�ij�;�kl�;�mn���

ij;��kl;��mn;� � ���ijW
8
j;�kl�;�mn� � liW

9
j;�kl�;�mn� � l

s;�W12
s;�ij�;�kl�;�mn���

ij;��kl;��mn;�: (A1)

In order to analyze these equations we need to determine the action of operators li, li;�, li0 on the matrix elements Wl.
First let us write down the commutator relations for the basis in (4.3):

 �li; lj;�� � �ijlj0; �li; Ij;�� � �1
2�

ij�ikl�l
k
0 � l

l
0�;

�li;Mkl;�� � 3
2�

ik�kllk;� � 1
4��

lilk;� � �kill;�� � 1
4��

li�klmIk;� � �ik�lkmIl;��;
(A2)

with all other commutators vanishing. The indexes i, j, k run over the three Hilbert spaces. Based on the algebra above we
can deduce the following set of simple transformation rules:

 l0W�ni:ni� ! W�ni:ni � 1�; l�iW�mi:mi� ! W�mi:mi � 1�; (A3)

 

liW�ni:ni;mi:mi; ki:ki; pi:pi; rij:rij� ! miW�ni:ni � 1; mi:mi � 1� � piW�mi:mi � 1; pi:pi � 1�

�
ki
2
�ikl�W�nk:nk � 1; ki:ki � 1� �W�nl:nl � 1; ki:ki � 1��

�
1

4

X
l

rilW�ril:ril � 1; ml:ml � 1� �
1

4

X
l

ril�limW�ril:ril � 1; kl:kl � 1�:

Let us explain our notation in the above equation. We use
W�ni:ni� for an element which has an expansion as in
(4.4): Wni;...�l

i
0�
ni . . . . Then the transformation law in the

second equation above means that we have on the right-
hand side the expansion:W�ni:ni � 1� � Wni;...�l

i
0�
ni�1 . . . .

Analogously are defined the other quantities in (A3).
As we have already mentioned the li0 generators act on

states of the ith-Hilbert space as flat space-time Laplacian.
In addition the l�i operators act on the left, on bra states, as
divergences resulting in r���... terms. We will show that
an appropriate choice of the FR functions Wn, can be used
to eliminate most of the dependence, of the Xn coefficients,
on these operators.

From the first of (A1) and (A3) we can easily see that
using all of the W1

1;ni�0;mi�0 freedom we can eliminate
the m1 > 0 terms in X1 and we are left with the element
X1
ni�0;m1�0;m2;3�0. We can go on and use W1

2;ni�0;m1�0;m2;3�0

to eliminate m2 > 0 terms. Next we use some of the W1
3

freedom to restrict to X1
ni�0;mi�0. Notice that in the second

and third steps we have not used all the W1
2;3 freedom

available. Proceeding in a similar fashion we can show
that some of the W2

i freedom can be used to eliminate all
ni > 0 matrix elements of X1. Working carefully with the
remaining of (A1) we can eliminate most of the ni > 0 and
mi > 0 dependence of the Xn.... The nonvanishing matrix
elements for the specific scheme chosen are:

 X1
ni�0;mi�0...; X2

ni�0;mi�0...; X3
ni�0;mi�0;

X4
ni�0;mi�0...; X5

ni�0;mi�0;; X6
ni�0;mi�0;

X7
ni�0;mi�0...; X8

ni�0;mi�0...; X9
ni�0;mi�0...;

X10
ni�0;mi�0...:

(A4)

Another useful FR scheme is the following:

 X1
ni�0;mi�0...; X2

ni�0;mi�0...; X3
ni�0;mi�0;

X4
ni�0;mi�0...; X5

ni�0;mi�0;; X6
ni�0;mi�0;

X7
ni�0;mi�0...; X8

ni�0;mi�0...; X9
ni�0;mi�0...;

X10
ni�0;mi�0...:

(A5)
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We should emphasize that there are various FR schemes
like (A4) and (A5). We have chosen the specific scheme
because we believe it is a very economical off-shell
Lagrangian action where most redundant terms are absent.
Obviously two interaction vertices which differ by a FR are
equivalent on-shell.

2. Equations for field redefinitions on AdS

For AdS FR equations can be computed in an analogous
way as for flat case. Equation (2.22) can be written in the

following more compact form:

 Q � c0l̂0 � cl� � c�l�
8

L2 c0�
�M� 
M�� � c�cb0:

(A6)

With the BRST charge written in this form it is straightfor-
ward to compute the analogous of (A1) for the AdS case.
We only need to substitute

 

l0 ! l̂0 � p�p� �
1

L2 ���
�����2 �D����� � 6����� � 2D� 6� 4M�M� c�b�4����� � 2D� 6�

� b�c�4����� � 2D� 6� � 12c�bb�c� (A7)

in (A1) and compute the only modification coming from the third term of the last line in (A6). The final result is
 

�X1;AdS � �X1 �
8

L2 M
s;�W4

s;ss;

��X2;AdS
ij �
ij;� �

�
�X2

ij �
8

L2 ��ijMiW
2
i � 4Ms;�W7

s;ij;ss�

�

ij;�;

��X3;AdS
ij ��ij;� �

�
�X3

ij �
32

L2 M
s;�W8

s;�ss�;�ij�

�
�ij;�;

��X4;AdS
�ij�;�kl��


ij;�
kl;� �
�
�X4
�ij�;�kl� �

8

L2 ��ijMiW4
l;ki � 9Ms;�W10

s;�ij�;�kl�;ss�

�

ij;�
kl;�;

��X5;AdS
ij;kl �


ij;��kl;� �
�
�X5

ij;kl �
16

L2 ��ijMiW
5
i;kl � 6Ms;�W11

s;ij;�kl�;�ss��

�

ij;��kl;�;

��X6;AdS
�ij�;�kl���

ij;��kl;� �
�
�X6
�ij�;�kl� �

72

L2 M
s;�W12

s;�ss�;�ij�;�kl�

�
�ij;��kl;�;

��X7;AdS
�ij�;�kl�;�mn��


ij;�
kl;�
mn;� �
�
�X7
�ij�;�kl�;�mn� �

8

L2 �ijMiW
7
l;mn;ki

�

ij;�
kl;�
mn;�;

��X8;AdS
�ij�;�kl�;mn�


ij;�
kl;��mn;� �
�
�X8
�ij�;�kl�;mn �

16

L2 �ijMiW
8
l;�ki�;�mn�

�

ij;�
kl;��mn;�;

��X9;AdS
ij;�kl�;�mn��


ij;��kl;��mn;� �
�
�X9

ij;�kl�;�mn� �
24

L2 �ijMiW
9
i;�kl�;�mn�

�

ij;��kl;��mn;�;

��X10;AdS
�ij�;�kl�;�mn���

ij;��kl;��mn;� � ��X10
�ij�;�kl�;�mn���

ij;��kl;��mn;�:

(A8)
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