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I. INTRODUCTION

In non-Abelian gauge theories, the Coulomb gauge is
one of the most important ones. The theories with this
gauge are described in terms of physical fields, so that
the unitarity is manifest. In the Lagrangian second-order
formalism of Coulomb gauge perturbation theory, there
appear, at one-loop order and above, divergent energy
integrals of the form

 

Z dp0

2�
F�p; . . .�: (1.1)

Here p0 is the temporal component of the four-momentum
P� � �p0;p� and ‘‘. . .’’ indicates a set of external three
momenta of the amplitude under consideration. [We use
capital letter Q� to denote a four vector Q� � �q0;q� and
qj for denoting a three vector.]

The following results have been established on the en-
ergy divergence problem.

(1) In the calculation using the Hamiltonian, phase-
space, first order, form of Feynman rules, energy-
divergences like (1.1) do not appear [1] in the first
place.

(2) On the basis of a correspondence formula, which
equates amplitudes in a covariant gauge to those in a
gauge without ghosts, Cheng and Tsai [2] showed
that when all relevant contributions are added, can-
cellation should occur between the divergences like
(1.1) in the Coulomb gauge.

(3) With the aid of an interpolating gauge, which inter-
polates between a covariant gauge and the Coulomb
gauge, it was shown [3] in the phase-space formal-
ism that when all participating contributions are
added, cancellation occurs between the divergences
like (1.1). (See, also, [1].)

Furthermore, following two types of ill-defined integrals
appear:

 

Z dp0

2�
p0

p2
0 � p

2 � i0�
G�p; . . .�; (1.2)

 

Z dp0

2�
dq0

2�
p0

p2
0 � p

2 � i0�
q0

q2
0 � q

2 � i0�
H�p;q; . . .�:

(1.3)

The type (1.2) appears at one-loop order and above, and the
type (1.3) does at two-loop order and above.

In Coulomb-gauge QCD, one encounters a problem of
operator ordering in the Hamiltonian. This problem was
resolved by Christ and Lee [4], along the line of the earlier
work of Schwinger [5]: The quantum Hamiltonian is dif-
ferent from the classical Hamiltonian by special terms,
labeled V1 � V2. Since then, it has been shown that the
ill-defined integrals of the form (1.3) are connected [1,6]
with these V1 � V2 terms, and integrals of the form (1.2)
can be set equal to zero [6].

As mentioned above, when all relevant energy-diverging
contributions are added, energy divergences cancel out,
provided that the remaining three-momenta integrations
are convergent. It has been pointed out [7] that, in dealing
with the renormalization parts, difficulties arise in simul-
taneously handling the diverging energy integrations and
renormalizing the ultraviolet (UV) divergences. A formal
proof of cancellation of energy-divergences and algebraic
renormalizability is given in [3] with the aid of an inter-
polating gauge in the phase-space formalism. Recently,
this issue is studied [8] in an example in which quark-
loop subgraphs are inserted into the second-order gluon
self-energy graphs. As mentioned in (1) above, in the
phase-space formalism, two integrals over the internal
energies converge, provided that the internal three spatial
momenta are held fixed. It is found in [8] that, when one
first computes each subgraphs and performs renormaliza-
tion, energy-divergences reappear in the final energy inte-
grals. Thanks to the Ward identity, these energy-divergent
contributions are canceled out when all relevant contribu-
tions are added.

In this paper, generalizing the analysis in [8] to all orders
of perturbation theory, we give a proof of cancellation of
energy-divergences without spoiling the renormalizability
of the Coulomb-gauge QCD by using the Feynman rules
derived from the Lagrangian, second-order, formalism. In
dealing with the energy-divergences of the form (1.1),
extra V1 � V2 terms do not participate [6], and then we
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can use the Coulomb-gauge Feynman rules derived from
the Lagrangian formalism.

In Sec. II, we derive a power-counting formula for
divergent energy integrals. In Sec. III, we show that the
energy divergences, Eq. (1.1), are canceled out to all orders
of perturbation theory. In Sec. IV, for completeness, with
the help of the power-counting formula obtained in Sec. II,
we identify the diagrams that yields ill-defined energy
integrals (1.2) and (1.3). In Sec. V, we show that the
renormalization does not spoil the cancellation of energy
divergences.

II. PRELIMINARY

QCD in the Coulomb gauge is defined, with standard
notation, by the effective Lagrangian density
 

Leff � �
1

4
F��a Fa�� �

1

2�
�@iA

i
a��@jA

j
a�

� @i ��a��ab@
i � gfacbA

i
c��b

� � �i@6 �m� gtaA6 a� ; (2.1)

where ta � �a=2 and F��a � @�A�a � @�A
�
a �

gfabcA
�
b A

�
c . Here A�a denotes the gluon field and �a ( ��a)

denotes the (anti) FP-ghost field. We have introduced one
quark flavor � ; � �. Generalization to the case with several
quark flavors is straightforward. Generalization to other
non-Abelian gauge theories is also straightforward.

Throughout the sequel, we restrict ourselves to the
strict Coulomb gauge (�! 0). The propagators in the
Lagrangian formalism may be extracted from the bilinear
terms (in fields) of Leff in Eq. (2.1);
 

hTAia�x�A
j
b�y�i!

F:T
i�ab

�ij?�p�
P2 � i0�

� i�abDij�P�;

hTA0
a�x�A

0
b�y�i!

F:T
i�ab

1

p2 � i�abD00�p�;

hT�a�x� ��b�y�i!
F:T
� i�ab

1

p2 � i�ab ~D�p�:

(2.2)

Here, P2 � p2
0 � p

2 (p � jpj), �ij?�p� � �ij � pipj=p2,
and ‘‘F.T.’’ stands for taking the Fourier transformation.

Superficial degree of energy divergence

It is sufficient to deal with one particle irreducible dia-
grams. From them, we take a particular diagram G. We
introduce the following abbreviations;

(i) ‘‘A’’ for the spatial component of the gluon field, Aia,
which we call the transverse gluon (tgluon) in the
sequel,

(ii) ‘‘0’’ for the temporal component of the gluon field,
A0
a, which we call the ‘‘Coulomb,’’

(iii) ‘‘G’’ (‘‘ �G’’) for the (anti)FP-ghost,
(iv) ‘‘q’’ (‘‘ �q’’) for the (anti)quark.

We adopt the following notation to describe the diagramG:
 

Ii � number of internal lines of i

�i � A; 0; G; q�;

 

Ei � number of external lines of i

�i � A; 0; G; q and �q�;

 

V3A; V4A; VAA0; VA00; VAA00; VA �GG; VA �qq; V0 �qq

� number of vertices indicated by the suffices:

Let us find the superficial degree of energy divergence,
!�G�, ofG. When !�G� � �1, energy integral converges.
To !�G�, each loop contributes �1, each internal tgluon
line contributes �2, each internal quark line contributes
�1, and each ‘‘AA0’’ vertex contributes �1. Then, it is
clearly

 !�G� � L� 2IA � Iq � VAA0: (2.3)

From the topological structure of G, we have
 

L � IA � I0 � IG � Iq �
�X

i

Vi � 1
�
;

2IA � EA � 3V3A � 4V4A � 2VAA0 � VA00 � 2VAA00

� VA �GG � VA �qq;

2I0 � E0 � VAA0 � 2VA00 � 2VAA00 � V0 �qq;

2Iq � Eq and �q � 2VA �qq � 2V0 �qq;

2IG � EG � 2VA �GG: (2.4)

In the first equation, summation is taken over all types of
vertices in G, where we have used the fact that there is
energy conservation at each vertex but there is also one
overall energy conservation. Using the relations (2.4) in
Eq. (2.3), we obtain
 

!�G� � 1� 1
2�EA � VAA0 � VA00 � 2VAA00 � VA �GG�

� 1
2�EG � E0� �

1
2�5V3A � 6V4A � 3VA �qq � V0 �qq�:

(2.5)

FIG. 1. One-loop N-tgluon diagram.

A. NIÉGAWA, M. INUI, AND H. KOHYAMA PHYSICAL REVIEW D 74, 105016 (2006)

105016-2



The directions of the momenta of the external lines are
taken toward outside of the diagram G (cf., Fig. 1).
Equation (2.5) tells us that !�G� � 1.

III. CANCELLATION OF !�G� � 1 ENERGY
DIVERGENCES

A. Participating diagrams

The diagram G with !�G� � 1 yields the divergent
integral of the form (1.1). From Eq. (2.5) we learn that
the !�G� � 1 energy-divergence arises only when the
following three conditions are simultaneously met:

(C1) EA � VAA0 � VA00 � 2VAA00 � VA �GG,
(C2) E0 � EG � 0,
(C3) V3A � V4A � VA �qq � V0 �qq � 0.
These conditions lead to the following propositions:
(P1) Energy divergence arises only from the tgluon

amplitudes [(C2) and (C3)].
(P2) In an energy-divergent tgluon amplitude, the ver-

tices in (C1) above, VAA0, VA00, VAA00, and VA �GG,
are the external vertices, i.e., external-tgluon lines
go out from them. In particular, when one tgluon
goes out from a vertex VAA00, if any, in the diagram
G, no energy divergence arises [(C1)].

(P3) Energy divergent diagrams do not have internal
vertex [(P2) and (C3)].

Then,
(P4) Energy divergence can arise only from tgluon one-

loop diagrams, Fig. 1.

B. Structure of the building blocks of the tgluon
one-loop diagrams

Let us compute the amplitude for the diagram in
Fig. 2(a) that is a part of Fig. 1:

 

A2a � ��gfbce�p0 � q0
2�	

i�ij?�p�
P2 � i0�

�gfdae�q
0
1 � p

0�	

� ig2fbcefdae

�
1�

p2 � �q0
1 � q

0
2�p

0 � q0
1q

0
2

P2 � i0�

�
�ij?�p�:

(3.1)

The second term in the square brackets on the last line does
not yield the !�G� � 1 energy divergence. Here and
throughout the following we are concerned only with the
portions that participate in the !�G� � 1 energy diver-
gence. Then, we have

 A 2a ’ ig
2fbcefdae

�
�ij �

pipj

p2

�
; (3.2)

where ‘‘’’’ indicates that the right-hand side is the portion
of the left-hand side that leads to the energy divergent
contribution to the one-loop amplitudes under con-
sideration.

The amplitude for the diagram in Fig. 2(b) reads

 A 2b � �ig2�fbcefdae � fbdeface��ij �A�1�
2b �A�2�

2b :

(3.3)

We see from Eqs. (3.2) and (3.3) that the partial cancella-
tion occurs between A2a and A�1�

2b . Similar partial can-
cellation occurs between the contribution from the diagram
that is obtained from Fig. 2(a) by �a; i;Q1� $ �b; j; Q2�

and A�2�
2b . Thus, we have

 A 2a �A�1�
2b ’ �ig

2fbcefdae
pipj

p2 ��A2�: (3.4)

With understanding that Figs. 2(a) and 2(b) are always
combined into the form (3.4), we will forget Fig. 2(b) or
VAA00 hereafter.

The contribution from Fig. 2(c) reads

 A 2c � �gfbce�2p
j � qj2�	

i

p2 �gfdae�2p
i � qi1�	

� 4ig2fbcefdae
pipj

p2 : (3.5)

Here we have used the fact that, in the strict Coulomb
gauge adopted here, qi1�

i
r�q1� � 0 (r � 1, 2) and

qi1D
ik�Q1� � 0, where �ir�q1� and Dik�Q1� are, in respec-

tive order, the tgluon polarization vector and the propaga-
tor, Eq. (2.2), which are to be attached to A2c. Thus, qi1
may be dropped. Similarly, qj2 may be dropped.

In a similar manner, we have, for the contribution from
Fig. 2(d),

 A 2d � ��gfbce�pj � q
j
2�	
�i

p2 ��gfdaep
i	

� �ig2fbcefdae
pipj

p2 : (3.6)

We observe that, besides the difference between the overall
factors, the functional forms of A2, A2c, and A2d are the
same. We note that the integrand of a potentially energy

(a)

Q2 Q1

P ,

j i
ab

c de

(b)

Q2 Q1j i
ab

c d

(c)

Q2 Q1

P ,

j i
ab

c de

(d)

Q2 Q1

P ,

j i
ab

c de

FIG. 2. Lowest order four-point diagrams, each of which is a
part of Fig. 1. Here solid lines represent tgluons; dashed lines
represent Coulombs; and dot-dashed lines represents FP-ghost.
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divergent tgluon one-loop amplitude is independent of the
temporal component of the loop momentum.

Finally in this subsection, it should be emphasized that
the one-loop diagram that includes two or more adjacent
tgluon propagators does not yield energy divergence [cf.,
Eq. (2.1)].

C. Absence of overlapping energy divergences

Here, we show that no overlapping energy divergences
arise. Assume that, in the two-loop diagram depicted in
Fig. 3, both the left side one-loop (�L) and the right side
one-loop (�R) yield energy divergence. Then, from (P4)
above, four lines with momenta P, Q, P0, and Q0 are the
tgluon lines. Furthermore, from the observation at the end
of Sec. III B, the line with momentum P�Q is the A0 or
Coulomb line. Then, the vertex factor for the vertex at
which three lines with momenta P, Q, and P�Q meet
is proportional to p0 � q0. As can be seen from Eq. (3.1),
the ‘‘p0’’ (‘‘q0’’) part participates in the energy divergence
for �L (�R) but does not participate in the energy diver-
gence for �R (�L). Thus, the energy divergence does not
arise simultaneously from �L and �R.

D. Cancellation of !�G� � 1 energy divergences

One can read off from Eqs. (3.1), (3.2), (3.3), (3.4), and
(3.5) the relative factors for the Coulomb and the tgluon
propagators; 1:� 1, and the relative vertex factors for a
A00- and AA0-vertices; 1:� 1=2. To represent these rela-
tive factors, we introduce matrices

 P̂ �
�1 0
0 1

� �
; V̂ �

0 �1=2
�1=2 1

� �
: (3.7)

Here the first rows and columns correspond to ‘‘A’’ and the

second rows and columns to 0. V̂ 11 � 0 comes from the
fact remarked at the end of Sec. III B. Let A�G�

N be the sum
of N-point tgluon amplitudes for Fig. 1, where the loop
consists of Coulomb and/or tgluons lines. Then we obtain
for the !�G� � 1 energy-divergent contribution to A�G�

N

 A �G�
N ’ �Tr�P̂ V̂ �N	A�G0�

N ; (3.8)

where A�G0�
N is the contribution from Fig. 1, where all N

propagators are the Coulomb ones. Note that, for N � 2, a

symmetry factor 1=2 is necessary, which is included in
A�G�

N and A�G0�
N . Through mathematical induction, we

obtain

 �P̂ V̂ �N � 2�N
�N � 1 N
�N N � 1

� �
; (3.9)

so that

 A �G�
N ’ 21�NA�G0�

N : (3.10)

The tgluon amplitude A�FP�
N for the FP-ghost one-loop

diagrams is obtained from A�G0�
N through the following

operations [cf. Eqs. (3.5) and (3.6)]; (a) change the sign of
each propagator, (b) multiply a factor �1=2 for each
vertex, (c) multiply a factor 2, for 3 � N, that corresponds
to two diagrams with opposite circulation of fermion num-
ber, and (d) multiply �1 that comes from one fermion
loop. Thus, we obtain

 A �FP�
N � ��� 
 2 
 ���N 
 ��1

2�
N 
A�G0�

N

� �21�NA�G0�
N :

For 3 � N, the factor ‘‘2’’ in the midterm comes from (c)
above. For N � 2, as mentioned after Eq. (3.8), A�G0�

2

includes a symmetry factor ‘‘1=2,’’ while, A�FP�
2 does

not include a factor ‘‘1=2.’’ Then, the factor 2 is necessary
in the midterm. Thus, we see that A�G�

N cancels A�FP�
N :

 A N �A�G�
N �A�FP�

N ’ 0: (3.11)

E. Regularization

As mentioned above, A�G0�
N is independent of the tem-

poral component of the loop momentum and is of the form
(1.1),

 A �G0�
N �

Z
d3p

Z
dp0F�p; . . .�: (3.12)

Integration over p0 diverges. In order to rigorously handle
this integral we should introduce some regularization. It is
desirable to adopt the regularization that preserves the
BRST symmetry of the theory, so that the regularizing
quantum effective action � satisfies the Zinn-Justin equa-
tion, whose explicit form is not necessary for our purpose.
To our best knowledge, two candidates are available, i.e.,
the interpolating gauges [3], and the split dimensional
regularization [9].

Throughout this paper, we adopt the interpolating gauge
[3], which is defined by introducing the gauge condition

 	@0A
0
a � @iA

i
a � 0

(	 is a real parameter). The Coulomb gauge is obtained by
taking the limit 	! 0. 	 here plays a role of regularization
of the energy-divergent integrals in the Coulomb gauge.
For arbitrary 	, � satisfies the Zinn-Justin equation, which,FIG. 3. Two-loop tgluon diagram.
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in the limit 	! 0, turns out to be its Coulomb-gauge
counterpart.

Gluon- and ghost-propagators read
 

�ij�P� �
1

P2 � i0�

�
�ij �

p2 � 	�2� 	�p2
0

�P 
 P	 � i0��2
pipj

�
;

�00�P� �
p2

�P 
 P	 � i0
��2

;

�0i�P� � �i0 �
	p0p

i

�P 
 P	 � i0
��2

;

~��P� �
1

P 
 P	 � i0�
�
P 
 P	
p2 �00�P�;

(3.13)

where P	 � �	p0;p�.
In the following, we only keep the terms that turn out to

the ! � 1 energy-divergent ones, and we ignore the terms
that tend to 0 in the limit 	! 0. In place of Eqs. (3.4),
(3.5), and (3.6), we have, in respective order,

 A 2 ’ �ig2fbcefdae
p2 � 	�2� 	�p2

0

�P 
 P	 � i0��2
pipj; (3.14)

 A 2c ’ 4ig2fbcefdae
p2

�P 
 P	 � i0��2
pipj; (3.15)

 A 2d ’ ig2fbcefdae
	p2

0 � p
2

�P 
 P	 � i0
��2

pipj: (3.16)

For obtaining A2c for Fig. 2(c), we have used the fact that
qi1�

i
r�q1� � O�	� (r � 1, 2) and qi1D

ik�Q1� � O�	�, where
�ir�q1� and Dik�Q1� are, in respective order, the tgluon
polarization vector and the propagator, which are to be
attached to A2c. Then, qi1 that was present in Eq. (3.15)
[cf. Eq. (3.5)] turns out to be ofO�	� and leads to vanishing
contribution in the limit 	! 0. Similarly, qj2 that was
present in Eqs. (3.15) and (3.16) can be ignored.

In the interpolating gauge, two diagrams as depicted in
Fig. 4 also participate. Corresponding amplitudes read
 

A4a � �gfbce�2p� q2�
j	

i	p0pi

�P 
P	� i0
��2
�gfdae�q0

1�p
0�	

’ �2ig2fbcefdae
	p2

0

�P 
P	� i0��2
pipj ’A4b

Diagrams as depicted in Fig. 5 do not yield energy diver-
gence in the limit 	! 0.

Let us make a change of variable, p0 ! ~p0=
���
	
p

. Then,
ignoring the terms that lead to vanishing contribution in the
limit 	! 0, we have
 

A2 ’ �ig2fbcefdae�p2 � 2~p2
0�D

ij� ~P�; (3.17)

 

A2c ’ 4ig2fbcefdaep2Dij� ~P�; (3.18)

 

A2d ’ ig2fbcefdae�~p2
0 � p

2�Dij� ~P�; (3.19)

 A 4a ’A4b ’ �2ig2fbcefdac ~p2
0D

ij� ~P�; (3.20)

where ~P � �~p0;p� and

 D ij� ~P� �
pipj

� ~P2 � i0��2
:

From these equations, we obtain, in place of Eq. (3.7),

for P̂ and V̂ ,
 

P̂ i �
2~p2

i0=p
2
i � 1 ~p2

i0=p
2
i

~p2
i0=p

2
i 1

 !
;

V̂ �
0 �1=2

�1=2 1

 !
:

(3.21)

The contributions that turn out to !�G� � 1 energy-
divergent contributions in the limit 	! 0 are given by
[cf. Eq. (3.8)],

 A �G�
N ’

1���
	
p

Z d~p0

2�
Tr
�YN
l�1

�P̂ lV̂ �

�
A�G0�
N �O�	1=2�;

(3.22)

where A�G0�
N � �2�

���
	
p
��1

R
d~p0A

�G0�
N . Through mathe-

matical induction, one can show that

 Tr
�YN
l�1

�P̂ lV̂ �
N
�
� 21�N

YN
l�1

p2
l � ~p2

l0

p2
l

:

Then, Eq. (3.22) turns out to

 A �G�
N ’

21�N���
	
p

Z d~p0

2�

�YN
l�1

p2
l � ~p2

l0

p2
l

�
A�G0�
N �O�	1=2�:

(3.23)

(a)

Q2 Q1

P ,

j i
ab

c de

(b)

Q2 Q1

P ,

j i
ab

c de

FIG. 4. Lowest order four-point diagrams, each of which is a
part of Fig. 1.

(a)

Q2 Q1

P ,

j i
ab

c de

(b)

Q2 Q1

P ,

j i
ab

c de

FIG. 5. Lowest order four-point diagrams.
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The amplitude for the FP-ghost one-loop diagram is
obtained similarly as in Sec. III D using Eq. (3.13) or
Eq. (3.19):

 A �FP�
N ’ �

21�N���
	
p

Z d~p0

2�

�YN
l�1

p2
l � ~p2

l0

p2
l

�
A�G0�
N �O�	1=2�:

(3.24)

Then, we see that O�	�1=2� contributions to A�G�
N and

A�FP�
N are canceled out, and, in the limit 	! 0, we have

 A N �A�G�
N �A�FP�

N ’ 0:

Thus, Eq. (3.11) gets a sound foundation.
It should be emphasized that the diagrams in Fig. 4,

which are absent in the strict Coulomb gauge, participate
here.

Analysis with the split dimensional regularization leads
to the same result, which we do not reproduce.

IV. ILL-DEFINED INTEGRALS WITH !�G� � 0

In this section, for completeness, we briefly mention the
diagrams with !�G� � 0. From Eq. (2.5) together with the
observation in the last section, we see that !�G� � 0
energy divergences and ill-defined integrals arise from
the following diagrams (see, also, [1]):

(1) Gluon one-loop amplitudes, of which a number of
external Coulomb field is at most one.

(2) q- �q-tgluon one-loop amplitudes of the type as
shown in Fig. 6.

(3) Tgluon two-loop amplitudes (Fig. 3).
(4) Two-loop amplitudes of the type as depicted in

Fig. 7.
Now let us inspect Fig. 3. Cutting the line with momen-

tum P (or Q or P�Q), we obtain an one-loop diagram. If
! � 1 energy divergence arises from this one-loop dia-
gram, as has been proved in the previous section, it is
canceled out together with its relatives. Then, from
Fig. 3, integrals of the forms (1.2) and (1.3) emerge, which
are ill-defined ones. The integrals of the form (1.2) emerge
from (1)–(3), and the integrals of the form (1.3) emerge
from (3) and (4). As mentioned in Sec. I, the form (1.2) can
be set equal to zero, and the integrals of the form (1.3) are
connected with V1 � V2 terms of Christ and Lee [4].

This is, however, not the end of the story. As a matter of
fact, newcomers enter into the stage through renormaliza-
tion, i.e., the renormalization counterterms. In the next
section, we deal with this issue.

V. COMPATIBILITY OF CANCELLATION OF
ENERGY DIVERGENCES AND

RENORMALIZABILITY

A. Preliminary

We adopt the minimal subtraction scheme in dimen-
sional regularization and introduce the counter
Lagrangian density �Leff that includes different renormal-
ization constants. The effective QCD Lagrangian density
Leff with addition of �Leff in the strict Coulomb gauge
reads [10]

 

Leff � �Leff � �
Z31

2
�@�Aaj@

�Aja � @iA
j
a@jA

i
a� � Z32@0A

i
a@iA

0
a �

Z33

2
@iA

0
a@

iA0
a �

1

2�
�@iA

i
a��@jA

j
a�

� gZ11fabc�@iAaj �A
i
bA

j
c � gZ31fabc�@0Aia�A

0
bAci � gZ32fabc�@iA0

a�AbiA0
c �

g2

4
Z41fabcfadeAbiAcjAidA

j
e

�
g2

2
Z31fabcfadeA

0
bAciA

0
dA

i
e � ~Z3�@i ��a�@

i�a � gfabc�@i ��a�A
i
b�c

� Z2
� �i6@� �m� �m�� � gZ1

� taA
j
a
j � gZ2

� taA
0
a


0 ; (5.1)

FIG. 6. One-loop q- �q-tgluon(s) diagram. The double line rep-
resents a quark. Here each solid line that constitutes the loop is a
Coulomb or a tgluon.

FIG. 7. Two-loop tgluon diagram. The double line represents a
quark. Each solid line that constitutes the loop is a Coulomb or a
tgluon.
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where the limit �! 0 is understood to be taken. Z’s and
~Z’s in Eq. (5.1) obey the Slavnov-Taylor identities in the
narrow sense,

 

Z31

Z11
� ~Z3 �

Z11

Z41
�
Z32

Z31
�
Z33

Z32
�
Z2

Z1
: (5.2)

The counter-Lagrangian �Leff introduces new vertices,
which we call countervertices. Repeating the argument in
Secs. II and III on the superficial degree of energy diver-
gence, we find that the energy divergence arises from the
diagrams that are obtained from each energy-diverging
diagram Gi (i � 1; 2; . . . ) treated so far by inserting the
countervertices in all possible ways. Let A�j�

i (j �
1; 2; . . . ) be the amplitude for thus obtained jth diagram,
which may be computed from the Lagrangian density
Leff � �Leff in Eq. (5.1). Summing over all A�j�

i ’s, we
obtain A �

P
i�A

�0�
i �

P
jA

�j�
i �, where A�0�

i is the am-
plitude for Gi.

We now show that A is free from energy divergence.
Equation (5.1) tells us that the propagators and the vertex
factors extracted from Leff � �Leff are obtained from
their bare counterparts through the following replace-
ments:
 

Dij�P� ! Z�1
31 D

ij�P�; D00�p� ! Z�1
33 D

00�p�;

~D�p� ! ~Z�1
3

~D�p�; Vijkabc ! Z11V
ijk
abc;

Vij0abc ! Z31V
ij0
abc; Vi00

abc ! Z32Vi00
abc;

Vijklabcd ! Z41V
ijkl
abcd; Vij00

abcd ! Z31V
ij00
abcd;

~Viabc ! ~Viabc;

(5.3)

where Vijkabc is the three-tgluon vertex factor, Vij0abc is the
AiaA

j
bA

0
c-vertex factor, ~Viabc is the ��aA

i
b�c-vertex factor,

and so on. Explicit form of the quark propagator is not
necessary for our purpose.

We first show that the key equations (3.4) and (3.11) still
hold. From Eq. (5.3), we see that A2a, Eq. (3.2), and A�1�

2b ,
Eq. (3.3), turn out to be

 A 2a !
Z2

31

Z31
A2a � Z31A2a;

and

 A �1�
2b ! Z31A

�1�
2b ;

respectively. Then, the same partial cancellation as for
A2a and A�1�

2b in Sec. III occurs, and we obtain, in place
of Eq. (3.4),

 A 2a �A�1�
2b ! Z31�A2a �A�1�

2b � � Z31A2: (5.4)

Taking A�G0�
N as the reference amplitude, we have, in place

of the matrices P̂ and V̂ in Eq. (3.7),

 P̂ �
�Z�1

31 Z33 0
0 1

� �
;

V̂ �
0 �Z31Z�1

32 =2
�Z31Z

�1
32 =2 1

� �
:

Using the identities (5.2), we have, in place of Eq. (3.9),

 �P̂ V̂ �N � 2�N
�N � 1 N�Z32=Z31�

�N�Z31=Z32� N � 1

� �
:

Then, we see that the relation (3.10) holds as it is:

 A �G�
N ’ 21�NA�G0�

N :

The tgluon amplitude for the FP-ghost one-loop diagrams
is obtained using Eq. (5.3),

 A �FP�
N � �21�N 1

~ZN3

��
Z33

Z32

�
N
A�G0�

N

�
� �21�NA�G0�

N ;

where use has been made of Eq. (5.2). Thus, A�G�
N cancels

A�FP�
N :

 A �G�
N �A�FP�

N ’ 0: (5.5)

B. Proof of Eq. (5.5) with the aid of the regularization by
an interpolating gauge

The effective QCD Lagrangian density with addition of
the counter Lagrangian density in the interpolating gauge,
	@0A0

a � @iAia � 0, reads

 

Leff � �Leff � �
Z31

2
�@�Aaj@�A

j
a � @iA

j
a@jAia� � Z32@0Aia@iA0

a �
Z33

2
@iA0

a@iA0
a �

1

2�
�~@�A

�
a ��~@�A�a�

� gZ11fabc�@iA
a
j �A

i
bA

j
c � gZ12fabc�@

0Aia�A
0
bAci � gZ13fabc�@

iA0
a�AbiA

0
c �

g2

4
Z41fabcfadeAbiAcjA

i
dA

j
e

�
g2

2
Z42fabcfadeA

0
bAciA

0
dA

i
e � ~Z31�@i ��a�@

i�a � 	 ~Z32�@0 ��a�@
0�a � gfabc�~@� ��a�A

�
b �c

� Z2
� �i6@� �m� �m�� � gZ 11

� taA
j
a
j � gZ 12

� taA0
a
0 ; (5.6)
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where ~@� � �	@0;r� and �! 0 is understood to be taken.
Z’s and ~Z’s obey

 

Z31

Z11
� ~Z31 �

Z11

Z41
�
Z32

Z12
�
Z33

Z13
�

Z2

Z 11
�� D�; (5.7)

 

Z31

Z12
� ~Z32 �

Z12

Z42
�
Z32

Z13
�

Z2

Z 12
�� D0�: (5.8)

These equations are derived in a similar manner as in [10].
A few comments are in order.

(i) Diagrammatic analysis shows that ��A�� three-point
function is UV finite, as it does in the Landau gauge.

(ii) In the strict Coulomb-gauge limit, 	! 0, D0 � 1.
Gluon- and ghost- propagators can be read off from

Eq. (5.6):

 

�ij �
1

Z31

1

P2 � i0�

�
�ij �

p2 � 2	�Z32=Z33�p
2
0 � 	

2�Z31=Z33�p
2
0

�p2 � �Z31=Z32�	p
2
0 � i0

��2
pipj

�

�
1

Z31

1

P2 � i0�

�
�ij �

p2 � 2	�D0=D�p2
0 � 	

2�D0=D�2p2
0

�p2 � �D0=D�	p2
0 � i0

��2
pipj

�
;

�00 �
Z31

Z2
32

p2

�p2 � �D0=D�	p2
0 � i0

��2
;

�0i � �i0 �
Z31

Z2
32

	p0p
i

�p2 � �D0=D�	p2
0 � i0

��2
;

~� �
1

	 ~Z32p
2
0 �

~Z31p
2 � i0�

�
1

~Z31

1

	� ~Z32= ~Z31�p
2
0 � p

2 � i0�

�
1

~Z31

�D0=D�	p2
0 � p

2

�p2 � �D0=D�	p2
0 � i0

��2
;

(5.9)

where use has been made of Eqs. (5.7) and (5.8). Through
the same manner as above leading to Eq. (3.21), we obtain
for P̂ i and V̂ ,

 P̂ i �
�D=D0�2�2�D0=D�~p2

i0=p
2
i � 1	 ~p2

i0=p
2
i

~p2
i0=p

2
i 1

� �
;

V̂ �
0 �Z12=�2Z13�

�Z12=�2Z13� 1

� �

�
0 �D0=�2D�

�D0=�2D� 1

� �
where ~pi0 �

���
	
p
pi0. Matrix multiplication yields

 P̂ iV̂ �
1

2
Ai � 1 D=D0

�D0=D Ai � 1

� �
;

where

 Ai � 1� �D0=D�~p2
i0=p

2
i :

Mathematical induction yields
 YN

i�1

�P̂ iV̂ � �
1

2N
����N �N


N ����N

0@ 1A;
����N �

�YN
i�1

Ai

��
1�

XN
i�1

1

Ai

�
;

�N � �
�
D
D0

�
2

N �

D
D0

�YN
i�1

Ai

�XN
i�1

1

Ai
:

Then, in place of Eq. (3.23), we obtain

 A �G�
N ’

21�N���
	
p

Z d~p0

2�

�YN
l�1

p2
l � �D

0=D�~p2
l0

p2
l

�
A�G0�
N :

Using Eqs. (5.6), (5.7), (5.8), and (5.9), we obtain, in place
of Eq. (3.24),

 A �FP�
N ’ �

21�N���
	
p

Z d~p0

2�
1

~ZN31

�YN
l�1

p2
l � �D

0=D�~p2
l0

p2
l

�




�
Z33

Z13

�
N
A�G0�
N

� �
21�N���
	
p

Z d~p0

2�

�YN
l�1

p2
l � �D

0=D�~p2
l0

p2
l

�
A�G0�
N :

Then cancellation occurs between A�G�
N and A�FP�

N , and
then, removing the regulator 	! 0, we have

 A �G�
N �A�FP�

N ’ 0:

Thus, Eq. (5.5) gets a sound foundation.

C. Compatibility of cancellation of energy divergences
and renormalizability

What we have shown above is that, when the renormal-
ization counterterms are included to all orders of perturba-
tion theory, energy-divergent contributions are canceled
out. Then, by expanding Z’s and ~Z’s in powers of g2,
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energy-divergent contributions are canceled order by order
in perturbation theory.

Armed with this proposition, we are now in a position to
show that the cancellation of energy divergences are com-
patible with the renormalizability of the theory.

We are concerned with the tgluon N-point one-loop
amplitudes AN (N � 2; 3; . . . ). Let A�M�

N be the
O�gN�M� contribution to AN and Gi (i � 1; 2; . . . ) be
the set of one-loop diagrams that contributes to A�0�

N . For
regularizing the energy divergence, we employ the inter-
polating gauge, and to handle the UV divergence we
employ the dimensional regularization by continuing the
spacetime dimensionality from 4 to d. Then, for 	 � 0 and
d � 4, all contributions to AN are free from energy- and
UV-divergences.

(I) O�gN�: As shown in Sec. III, A�0�
N is free from

energy divergence, i.e., finite in the limit 	! 0.
For 5 � N, A�0�

N is finite in the limit d! 4 (UV
finite). For 2 � N � 4, A�0�

N is written in the form,

 A �0�
N �

1���
	
p F �0�N � G�0�N �O�	

1=2�:

Algebraic renormalizability (for arbitrary 	) de-
scribed above in conjunction with Eqs. (5.6), (5.7),
and (5.8) indicates that F �0�N and G�0�N are finite in the
limit d! 4 (UV finite). Furthermore, thanks to the
above proof of cancellation of energy divergences,
we have F �0�N � 0, so that, by removing the regulator
	! 0, we see that A�0�

N ( � G�0�N ) is free from
energy divergence and UV finite.

(II) O�gN�2�: Through inserting a single one-loop re-
normalization part into each diagram Gi in all pos-
sible ways, we obtain a set of diagrams G�j�i
(j � 1; 2; . . . ). Let �A�2�

N �
�j�
i be the amplitude for

G�j�i : A�2�
N �

P
i;j�A

�2�
N �
�j�
i . As mentioned in

Sec. III C, no overlapping energy divergence arises
in �A�2�

N �
�j�
i . Energy divergences and/or UV diver-

gences that arise from one-loop subdiagrams have
already been managed at the first stage (I). Then,

A�2�
N may be written in the form

 A �2�
N �

1���
	
p F �2�N � G�2�N �O�	

1=2�:

The same argument as above in (I) leads
A�2�

N !
	!0

G�2�N to be UV finite.
(III) Higher orders: With the aid of the Bogoliubov-

Parasiuk-Hepp-Zimmerman (BPHZ) prescription
[11], one can proceed to higher orders and verify
that A�M�

N is free from energy divergence and UV
finite.

D. Remarks

As mentioned at the beginning of this section, for reg-
ularizing the UV divergences, we are using the dimen-
sional regularization, based on continuation from four to
an arbitrary number d�� �d� 1� � 1� of spacetime dimen-
sions. It should be emphasized that, for d dimensional
spacetime, all the formulas in this section hold as they
do. Moreover, the form of the Zinn-Justin equation is not
changed from that in 4-dimensional spacetime.

A few remarks are in order on concrete computations. In
d-dimensional spacetime, pj is a (d� 1) vector and �ij is
an unit matrix in (d� 1)-dimensional space. It is worth
mentioning in passing that, as to the trace of gamma
matrices, for the purpose of regularization, one can use
Tr
�
� � f�d�g�� with f�d� an arbitrary smooth function
satisfying f�4� � 4 (see, e.g., [12]).

Finally, we remark that, in the course of perturbative
computation, if infrared and/or mass singularities arise, we
introduce small mass for gluons. It is well known that, in
any reaction rate, the cancellation occur between them
[13].
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