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Light-front Hamiltonian formulation of QCD with only one flavor of quarks is used in its simplest
approximate version to calculate masses and boost-invariant wave functions of c �c or b �b mesons. The
quark-antiquark Hamiltonian is obtained in the lowest (second) order of a weak-coupling expansion
scheme for Hamiltonians of effective particles in quantum field theory. The derivation involves a heuristic
ansatz for a gluon mass-gap that is meant to account for non-Abelian color dynamics of virtual effective
particles in the Fock components with one or more effective gluons and can be improved order by order in
the expansion. Fortunately, the resulting quark-antiquark Hamiltonian does not depend on any details of
the ansatz within a large class of possibilities. It is shown that in the Hamiltonian approach in its simplest
version the strong coupling constant � and quark mass m (for suitable values of the renormalization group
parameter � that is used in the calculation), can be adjusted so that (a) masses of 12 lightest well-
established b �b mesons are reproduced with accuracy better than 0.5% for all of them, which means
50 MeV in a few worst cases and on the order of 10 MeV in other cases, or (b) masses of 11 lightest c �c
mesons are reproduced with accuracy better than 3% for all of them, which means better than 100 MeV in
a few worst cases and on the order of 10 MeV in the other cases, while the parameters � andm are near the
values expected in the cases (a) and (b) by analogy with other approaches. A fourth-order study in the
same Hamiltonian scheme will be required to explicitly include renormalization group running of the
parameters � and m from the scale set by masses of bosons W and Z down to the values of � that are
suitable in the bound-state calculations. In principle, one can use the Hamiltonian approach to describe the
structure, decay, production, and scattering of heavy quarkonia in all kinds of motion, including velocities
arbitrarily close to the speed of light. This work is devoted exclusively to a pilot study of masses of the
quarkonia in the simplest version of the approach.
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I. INTRODUCTION

In the Hamiltonian approach to QCD that is employed
here, the calculation of masses of heavy quarkonia does not
involve the well-known notions of scattering states for
quarks and gluons, Feynman diagrams, path integral,
Euclidicity postulate, lattice gauge theory, or nontrivial
vacuum expectation values. Instead, a renormalization
group procedure for effective particles in quantum field
theory (RGPEP, see below) is applied to quarks and gluons
in canonical light-front (LF) QCD and leads to an effective
boost-invariant Hamiltonian whose eigenvalue problem is
expected to provide a first approximation to the true dy-
namics of the theory. The eigenvalues of the Hamiltonian
are equal to the masses of the quarkonia (actually, squares
of the masses) instead of their energies in a specific frame
of reference. The approximate dynamical picture studied
here can be valid only for a set of states near the low end of
the mass spectrum.

The LF formalism is developed in a Fock space.
Creation and annihilation operators for effective quarks
and gluons are calculable in a perturbative expansion using
RGPEP (a brief review of the method is provided in the
next section) and the basis states in the Fock space are
formed by acting with the calculable creation operators on
the state of vacuum. The effective Hamiltonian eigenvalue
problem exists in the momentum representation and would
not be local if one attempted to write it in a position space.

Nevertheless, the simplest approximate momentum-space
dynamics respects not only the boost symmetry but also the
rotational symmetry. Therefore, one can describe the struc-
ture of lowest-mass eigenstates corresponding to well-
known b �b and c �c mesons using the spectroscopic scheme
that is quite analogous to the one adopted in nonrelativistic
quantum mechanics with potential forces that respect rota-
tional symmetry in a meson center-of-mass frame of ref-
erence. Thus, the LF approach has a potential to be helpful
in solving conceptual problems with Poincaré symmetry in
quantum theories [1,2] and the results described here can
be considered an indicator of existence of a reasonable
candidate for a new expansion method for solving theories
as complex as QCD [3]. However, the approach is still in its
infancy. The crude, heuristic study described here is merely
a small step that needs to be taken on the way to find out if
the RGPEP can work for heavy quarkonia in LFQCD as
outlined in [4].

Since the beginning of the theory of c �c system [5–8],
through the development of potential models [9–18], sum
rules [19,20], and studies based on effective Lagrangians
[21–23], the latter method known also to work well in the
Hamiltonian approach to QED [24,25], current understand-
ing of heavy quarkonia, especially in lattice approach [26–
28], is one of the best examples of great progress achieved
in theory of strong interactions [29]. In the wake of the
development, conceptual problems with a relativistic de-
scription of hadrons in the Minkowski space and questions
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concerning the structure of the vacuum state continue to
bother theorists [3,30]. The problem is how to derive a
quantum Hamiltonian for quarks and gluons that precisely
describes hadronic states in agreement with special
relativity.

One can write a formal expression for a Hamiltonian of
quarks and gluons using various forms of dynamics [1]. In
the standard form, one describes the evolution of a system
of particles using the time parameter t, which is measured
along a timelike direction in space-time. But the formal
expression must be regulated and renormalized, and one
has to explain how to define the ground state of the theory
that supports the tower of excitations that represent all
kinds of relativistically moving and interacting hadrons.
None of these tasks has been completed yet with the
desired clarity and precision. In the LF form of dynamics,
one uses a ‘‘time’’ parameter that is conventionally de-
noted by x� � t� z. Since the LF hyperplane x� � 0 is
preserved by boosts along z-axis, and also by two other
boostlike transformations, the LF form of Hamiltonian
dynamics is invariant under the three special boosts. The
three boosts are a prerequisite to the construction of had-
ronic states in all kinds of motion. The boost symmetry
rises hope that the LF Hamiltonian dynamics can help in
finding a universal theoretical description of hadrons in all
frames of reference, including both their center-of-mass
frame (CMF), in which the constituent quark model is
developed [31], and the infinite momentum frame (IMF),
in which the concept of partons is developed [32]. The
exact description of a hadron in motion is also essential in
exclusive (or semiexclusive) processes [33]. Regarding the
vacuum, the ground-state problem in QCD does not appear
in the LF form of dynamics in the way known from the
standard approach [30,34] and the LF Hamiltonian dynam-
ics of quarks and gluons is of great interest to many
researchers [35], as a serious alternative to the standard
form. However, LFQCD challenges theoreticians with ba-
sic questions concerning quantum mechanics of particles
and fields and relativity.

In search for understanding of the quark-gluon dynam-
ics, it is natural to consider quantum chromodynamics of
only heavy quarks coupled to gluons. A quark is consid-
ered heavy when the phenomenological mass parameter
associated with the quark,m, is much larger than �QCD, the
latter being defined in the RGPEP procedure that one can
use to evaluate effective LF Hamiltonians [36]. The re-
striction to only heavy quarks creates a situation in which
the renormalization group parameter, denoted by �, can be
simultaneously much smaller than m and much larger than
�QCD. In such a circumstance, the effective color coupling
constant at scale �, g� can be formally considered small in
comparison to 1 even when � is much smaller than m. The
smallness of the coupling constant implies that the LF
Hamiltonian of QCD expressed in terms of the effective
quark degrees of freedom corresponding to �� m, de-

noted by H�, can be evaluated in RGPEP using perturba-
tion theory. But the price to pay for this simplification is
high because the quenched heavy-flavor version of the
theory must be incomplete; it misses dynamical interplay
among different flavors and entirely ignores effects due to
light quarks. On the other hand, the price is worth paying
because the single heavy-flavor theory quickly renders a
simple dynamical picture that may be helpful in learning
more about LF QCD. Namely, it is sufficient to consider
H� obtained in just second-order perturbation theory and
augment it with an ansatz for the mass-gap for effective
transverse gluons and these two steps already render a
boost-invariant eigenvalue equation in the effective
quark-antiquark Fock sector which has a well-defined
and phenomenologically attractive structure [4]: the
Coulomb potential with Breit-Fermi corrections is supple-
mented with a harmonic oscillator term with a frequency!
that is explicitly related to the values of � and m at the
scales � at which this structure may be valid, which turns
out to be the scale corresponding to the distances between
quarks not much larger than the size of the lowest-mass
mesons. At larger distances, additional gluons may be
created and the potential may become linear, as will be
discussed later.

The resulting dynamical picture for the low-mass states
is not sensitive to the details of the mass-gap ansatz for
effective gluons that was used to finesse the picture.
Therefore, one needs to complete the fourth-order calcu-
lation of H� using RGPEP in order to begin a study of the
true mass gap for gluons that may undergird the finessed
effective picture. A major problem in the fourth-order
calculation is to include light quarks. Even before the
inclusion of light quarks, the first glimpse of the magnitude
of fourth-order effects could be obtained in one-flavor
QCD by comparison of the second-order picture with the
fourth-order one. However, the fourth-order calculation
requires detailed understanding of many complex terms
in the LF Hamiltonian at once even in one-flavor QCD. It
thus becomes desirable to verify if the already known
second-order picture can provide a reasonably accurate
description of data and become a candidate for the first
approximation that can organize the fourth-order studies.

Fortunately, in the limit of m large in comparison to �
that itself is still much larger than �QCD, one can consid-
erably simplify the calculation of quark Hamiltonians us-
ing RGPEP. One can compute a second-order Hamiltonian
that acts only in the effective heavy quark-antiquark sector,
HQ �Q�, and evaluate interactions in HQ �Q� that depend on
the quark spin. The result is that the leading spin-
dependent terms that one obtains from the second-order
RGPEP, in addition to the Coulomb potential and the
harmonic oscillator force, automatically respect rotational
symmetry. This leading simplest version of the
Hamiltonian approach can be used to calculate the spec-
trum of masses of c �c or b �b mesons. Comparison with
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experimental data is surprisingly optimistic. Not only the
masses that one hopes to be reproducible relatively well
turn out to be reproducible very well, but also those masses
that one expects to be reproducible rather poorly turn out to
be reproducible with considerably less accuracy than those
that are reproduced well. Theoretical results seem to match
data in a pattern that agrees with expectations concerning
accuracy of the simplest version of the approach.

Section II briefly describes the derivation of the effective
Hamiltonians studied here. The leading approximation to
the heavy quark eigenvalue problem is explained in
Sec. III. Section IV discusses spin effects and lists eigen-
value equations that describe mesons with spin 0, 1, and 2,
with orbital angular momenta equal 0, 1, 2, or 3. Masses
and wave functions of mesons that are obtained by numeri-
cal solution of these equations are discussed in Sec. V.
Conclusions are summarized in Sec. VI. Key details of the
calculations are relegated to Appendices.

II. BOOST-INVARIANT HAMILTONIANS

This section explains how the boost-invariant Hamilt-
onians for heavy quarkonia that are used in the next sec-
tions to evaluate masses of c �c and b �bmesons are derived in
QCD. One uses the gluon mass-gap ansatz in the inter-
mediate step of evaluatingHQ �Q� from the second-orderH�

[4].

A. Canonical LF QCD

One begins from the standard Lagrangian of color gauge
theory with one flavor of quarks of mass m,

 L � � �i 6D�m� � 1
4F

��aFa��: (1)

The corresponding generator of evolution in x� in the
gauge A� � 0 takes the form

 Hcan � H 2 �HA2 �HA3 �HA4 �H A �H AA 

�H�@AA�2 �H�@AA��  � �H�  �2 ; (2)

where each of the terms is an integral of a corresponding
Hamiltonian density H over the LF hyperplane, Hi �R
dx�d2x?H i. Four terms that explicitly enter in the

derivation of the approximate second-order boost-invariant
effective theory for heavy quarkonia, are

 H  2 �
1

2
� ��
�@?2 �m2

i@�
 ; (3)

 H A2 � �1
2A
?�@?�2A?; (4)

 H  A � g � 6A ; (5)

 H �  �2 �
1

2
g2 � ��ta 

1

�i@��2
� ��ta : (6)

Other terms in the canonical Hamiltonian are also impor-

tant. For example, the three-gluon coupling term plays an
implicit role as a seed of the renormalization group flow of
the coupling constant. This effect becomes explicit first in
third-order calculations [37].

At x� � 0, the fermion field

  �
X
�c

Z
�k���cuk�bk�ce

�ikx � �cvk�d
y
k�ce

ikx�; (7)

and the gluon field

 A� �
X
�c

Z
�k��tc"�k�ak�ce

�ikx � tc"�	k�a
y
k�ce

ikx�; (8)

are quantized by imposing commutation relations

 fbk�c; b
y
k0�0c0 g � fdk�c; d

y
k0�0c0 g

� 16�3k�	�0�	cc0	
3�k� k0�; (9)

 �ak�c; a
y
k0�0c0 � � 16�3k�	�0�	cc0	

3�k� k0�: (10)

The measure of integration over momenta, �k�, is

�k��dk�d2k?=�16�3k�� and the LF three-momentum
	-function is 	3�k� k0� � 	�k� � k0��	�k1 � k01�	�k2 �
k02�. Spins are denoted by� and colors by c. Further details
concerning our notation can be found in the Appendix (see
also Ref. [4]).

B. Regularization

The canonical Hamiltonian is divergent and the RGPEP
begins with regularization of the ultraviolet and small-k�

divergences. The ultraviolet divergences result from inte-
grating over large transverse momenta of quanta in the
intermediate states when one attempts to evaluate powers
of the Hamiltonian. In 3� 1-dimensional theory, the quad-
ratically and logarithmically diverging transverse integrals
result from momentum dependent spin factors for fermions
and vector bosons. The small-k� divergences arise due to
gauge couplings of gluons. Note that in the A� � 0 gauge
only A? and  � � 1

2�
0�� are dynamical variables. In

particular, A� depends on A? and  �. As a consequence,
interaction terms in the Hamiltonian can be written using
the polarization vector "� for gluons whose only two
transverse components are independent degrees of free-
dom. A gluon with momentum k� and k? has "� �
2"?k?=k�. The k� in the denominator in "� is a source
of small-k� singularities in LF QCD. There exist similar
small-k� singularities in the instantaneous interactions
along the z-axis on the LF hyperplane, especially where
1=@�2 appears, which happens similarly to how the inverse
of a three-dimensional Laplacian appears in the familiar
Coulomb potential in the standard approach. The small-k�

singularities also occur in a 1� 1-dimensional theory [38].
In the boost-invariant formulation of LF QCD, one does

not regulate the theory by limiting the momentum compo-
nents k? and k� of every individual quark and gluon
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separately. Instead, only the relative momenta of particles
in the interaction terms are limited. The regularization is
accomplished by insertion of regulating factors r in verti-
ces, see [4]. The overarching rule for construction of the
regulating factors r is that they must respect 7 kinematical
symmetries of the LF scheme. This rule is analogous to the
requirement of rotational symmetry in the standard ap-
proach. There is a factor r � r�r	 for every bare particle
in every vertex. r� limits the range of the relative trans-
verse momentum of an interacting bare particle with re-
spect to other particles participating in the interaction. The
limit is set by the parameter �. If a particle of momentum k
carries a fraction x of the total p� of particles in an
interaction term, k� � xp�, then its relative transverse
momentum with respect to the particles interacting in
this term is defined as �? � k? � xp?, where p? is the
sum of transverse momenta of all particles annihilated
or (alternatively) created in the term. One uses r� �
exp���?2=�2�, and the ultraviolet regularization parame-
ter � is sent to infinity in comparison to all physical
momentum scales, cf. [39–42].

In the case of the small-k� singularities, the regulating
factors r	 limit the ratio x � k�=p� by the positive arbi-
trarily small dimensionless parameter 	. All that is re-
quired of the factors r	 is that they vanish as x	 when
x! 0. This condition is sufficient in globally colorless
states. Linear divergences at small x cancel out and one
only needs to take care of the logarithmic divergences in
integrals of the type

R
dx=x. The small-x divergences in the

gauge boson dynamics occur in both ultraviolet and infra-
red regimes. Massless particles can simultaneously have
small x and small �? and their virtuality in the small-x
region can be large or small depending on the ratio of j�?j
to

���
x
p

. Small x implies large virtuality only for particles
with nonzero mass or fixed �?.

Once the canonical Hamiltonian is regulated, one needs
to introduce counterterms that restore the physics that
existed outside the cutoff range. Thus, the counterterms
remove effects of the regularization. For example, one
inserts mass and vertex counterterms and they remove
dependence on the artificial ultraviolet regularization fac-
tors r�. The resulting regulated Hamiltonian with counter-
terms

 H � �Hcan �HCT�reg; (11)

provides the starting point for further steps. The further
steps are also helpful in establishing the structure of the
required counterterms. Note that the dynamics of color-
singlet states of finite size should not be sensitive to the
small-x regularization. Namely, the singular limit x! 0
concerns gluons with long wavelengths in the direction of
x�. But the strength of the coupling of such gluons to a
finite-size color-neutral pair of quarks should disappear
when the wavelength becomes infinitely larger than the
distance between the quarks.

C. Effective particles

The initial Hamiltonian H of Eq. (11) is expressed in
terms of the creation and annihilation operators defined by
the Fourier components of local fields in Eqs. (7) and (8).
The same H can be expressed in terms of creation and
annihilation operators for effective quarks and gluons that
correspond to a renormalization group scale � in RGPEP.
The procedure is constructed in such a way that the opera-
tors return to the canonical operators when � tends to
infinity, but when � is near the energy scale of the binding
mechanism, on the order of masses of hadrons, the opera-
tors create or annihilate effective particles that are expected
to correspond to the constituent quarks and gluons. The
quantum numbers of the constituents are the same as in the
local theory and one assumes that the corresponding cre-
ation and annihilation operators are related by a unitary
transformation

 q� � U�qcanU
y
�; (12)

where the same letter q is used for both creation and
annihilation operators. The next step is to express H in
terms of q� instead of qcan,

 H��q�� � �Hcan �HCT�reg�qcan�: (13)

The Hamiltonian H remains the same but the coefficients
in the expansion in powers of q� are new. They include
potentials whose structure can be calculated order by order
in perturbation theory using the RGPEP. The key feature is
that H� has the structure [43]

 H� � f�G�; (14)

where f� denotes form factors of width � and G� repre-
sents interaction vertices that can be calculated for any
assumed shape of f�. The shape we use here is best
described using the example of a term in which an effective
quark emits an effective gluon:

 G� �
Z
�123�G��1; 2; 3�a

y
�1b

y
�2b�3; (15)

 f�G� �
Z
�123�f��123�G��1; 2; 3�a

y
�1b

y
2�b�3; (16)

 f��123� � exp���M2
12 �M2

3�
2=�4�: (17)

The invariant masses are defined by the formulas M2
12 �

�k1 � k2�
2, M2

3 � k2
3, using masses in the Lagrangian with

g � 0 to evaluate minus components of the four-momenta;
m for quarks and 0 for gluons.

The operator G� is defined by the coefficients of its
expansion in a series of powers of operators q�. One can
also define G�, which is a series with the same coefficients
but q� replaced by qcan. Then, one can use the constant
operator basis qcan when solving differential equations of
RGPEP for the coefficients, see [36]. G� is split into two
parts: G0 and GI � G � G0. G0 is the part that does not
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depend on the coupling constant g. The RGPEP differen-
tial equation for GI (prime denotes differentiation with
respect to �) is:

 G 0I � �fGI; f��1� f�GI�
0gG0
�; (18)

where the curly bracket with subscript G0 is introduced to
indicate the operator T that solves equation �T ;G0� �
��1� f�GI�

0. The initial condition is that G1 � H, and the
solution is

 G � � H �
Z �

1
ds�fsGIs; f��1� fs�GIs�

0gG0
�: (19)

This solution is evaluated order by order in powers of the
coupling constant g� that appears in the vertices of G�
[37]. The perturbative expansion is legitimate because one
never encounters small energy denominators. This feature
is secured by the structure of the RGPEP equations and the
shape of the form factor f (see the original literature).G� is
obtained from G� by replacing qcan by q�.

Solving Eq. (19) up to terms of order g2 (there is no
difference between the expansions in powers of the bare
coupling constant g and the running coupling constant g�
in second-order terms, but one should think about the
expansion in powers of g�, see below and the next sec-
tions), which includes finding the mass counterterms in the
initial condition at � � 1, one obtains H� that can change
the number of effective particles by 0, 1, or 2. For second-
order evaluation of the effective Hamiltonian in the quark-
antiquark sector,HQ �Q�, one only needs the following terms
[4]

 H� � Tq� � Tg� � f��Yqg� � Vq �q� � Zq �q��: (20)

Tq� and Tg� denote the kinetic energy operators for quarks
and gluons, respectively. Yqg� denotes the term which
causes effective quarks to emit or absorb effective gluons
(the letter Y is chosen in the notation because its shape
resembles an act of one particle splitting into two, or two
particles forming one). f�Vq �q� is an interaction between
quarks due to the exchange of gluons with virtuality greater
than �. f�Zq �q� is the instantaneous interaction between
effective quarks that originates in the instantaneous inter-
action in the canonical LF Hamiltonian. Details of these
terms are listed in Appendix A.

D. Derivation of HQ �Q�

This section explains how one obtains the effective
Hamiltonian HQ �Q� for a heavy quarkonium starting from
the eigenvalue problem for the effective Hamiltonian H�
that reads

 H�jPi � EjPi: (21)

jPi denotes an eigenstate of the operators P�� and P?� with
eigenvalues P� and P? (see [44] for an example of RGPEP
construction of the whole Poincaré algebra). The eigen-

value has the form E � �M2 � P?2�=P� and one obtains
an eigenvalue equation for M2 by multiplying Eq. (21) by
P� and subtracting P?2. jPi is expanded in the effective-
particle basis as

 jPi � jQ�
�Q�i � jQ�

�Q�g�i � . . . (22)

For � much smaller than m this expansion is dominated by
its components with only two heavy quarks because the
vertex form factors f� in H� eliminate the probability of
creating components with invariant masses that differ from
2m by much more than �. One may also expect that gluons
develop a mass-gap in QCD and the components with
many gluons are also suppressed. If one neglects sectors
with effective gluons entirely, the eigenvalue problem is
reduced to

 �Tq� � f��Vq �q� � Zq �q���jQ�
�Q�i � EjQ�

�Q�i: (23)

But Eq. (21) implies that the jQ�
�Q�g�i component satis-

fies equation

 �Tq� � Tg� � Vq �qg� � E�jQ�
�Q�g�i � �Y�jQ�

�Q�i;

(24)

and can contribute to the dynamics in the sector jQ�
�Q�i in

order g2
�, or �� � g2

�=�4��, because Y� is of order g�.
Vq �qg� denotes potentials in the three-body sector, including
non-Abelian potentials that act between the effective gluon
and quarks. Additional interactions with sectors that con-
tain four or more effective particles are not indicated. The
additional interactions and Vq �qg� are expected to cause a
shift in the gluon energy and make the eigenvalue equation
differ from a similar one for positronium. In positronium, a
state with two or more photons could have the same energy
as the state with one photon. In QCD, there exist potential
terms that act between gluons and quarks and among
gluons themselves that have no counterpart in QED. It is
very unlikely that there does not exist some shift in gluon
energy that is absent in the case of photons. One can
employ an ansatz for the effective-gluon mass in the
three-body sector to study possible consequences of such
a shift [4].

The point is that one can study the dynamics ofH� order
by order in g� using a scheme of successive approxima-
tions that include an ansatz for effects that are extremely
small for an infinitesimal g� but need to be included to
come close to a true solution that is obtained only when the
coupling constant takes values comparable with 1. In each
successive order one can replace the ansatz terms intro-
duced in a lower order by a true interaction of that lower
order but with the coupling constant in them extrapolated
to the large physical value [30]. The task of finding the
initial ansatz terms that come close to the actual dynamics
with large relativistic coupling constant may in principle
require a lot of research to complete. Fortunately, the
boost-invariant effective-particle approach has a useful
feature: a lowest-order ansatz that is defined using an
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effective masslike term for constituent gluons allows one to
easily calculate and eliminate the gluon component and the
resulting dynamics of constituent quarks comes out rota-
tionally symmetric and independent of the details of the
gluon mass ansatz one makes provided only that the ansatz
satisfies some general conditions [4]. In this first approxi-
mation, all interactions in the sector jQ�

�Q�g�i are re-
placed by �2, which is a function of the relative motion
of the three constituents. �2 must vanish when the gluon
x! 0. Since the mass ansatz for �2 is supposed to model
the dominant effect of all the interactions within the three-
body sector and with sectors of larger numbers of constitu-
ent particles when the coupling constant takes a realisti-
cally large value, the first term in the ansatz can be
considered to be on the order of 1 in comparison to the
terms that depend on the infinitesimal coupling constant
used in the formal expansion in RGPEP. The whole eigen-
value problem for H� with the ansatz is now reduced to
only two coupled equations (� is omitted),

 �Tq � ~Tg�jQ �Qgi � YjQ �Qi � EjQ �Qgi; (25)

 YjQ �Qgi � �Tq � f�Vq �q � Zq �q��jQ �Qi � EjQ �Qi: (26)

The operator ~Tg is marked with the tilde in order to
indicate that the effective-gluon mass �2

� in Eq. (A3) is
replaced by the ansatz mass �2 in the three-body sector.

The Hamiltonian HQ �Q that acts only in the jQ �Qi sector
can now be evaluated as a power series in g using an
operator usually denoted by R [45]. In the simplest version,
R expresses the three-body component through the two-
body one, jQ �Qgi � RjQ �Qi. Note that the sector jQ �Qgi is
separated from the sector jQ �Qi by a gap in invariant mass.
The second-order result is the Hamiltonian whose matrix
elements are [4]

 h13jHQ �Qj24i � h13j�Tq � f�Vq �q � Zq �q��j24i

� h13jfYqg

�
1=2

E24 � Tq � ~Tg

�
1=2

E13 � Tq � ~Tg

�
fYqgj24i;

where jiji with i equal to 1 or 2 and j equal to 3 or 4 are
eigenstates of the operator Tq in the jQ �Qi sector of the
Fock space, and Eij are the corresponding eigenvalues. The
labeling of states is illustrated in Appendix A (see Fig. 7).
The basis states are defined as

 jiji � by�id
y
�jj0i; (27)

where by� and dy� are creation operators for effective quarks
and antiquarks corresponding to the RGPEP width parame-
ter �. The corresponding eigenvalue is Eij � �M

2
ij �

P?2�=P�, where M2
ij � �ki � kj�

2 and the minus compo-

nents of the four-momenta are evaluated as for free parti-
cles of mass m.

In summary, the procedure used here [4] replaces the
eigenvalue problem for H� by an eigenvalue problem with
an ansatz (dots denote operators that couple states with
more effective particles than three)

 �H�� �


 
 



 H3 Y

 Yy H2

264
375! T3 ��

2 Y
Yy T2 � V2

� �
; (28)

and then the operation R is used to derive the effective
quark Hamiltonian (in a simplified symbolic notation)

 HQ �Q� � T2� � V2� � Y
y
�

1

T3 ��
2 Y�: (29)

The procedure should not be confused with a conventional
Tamm-Dancoff approach to quantum field theory. The
quantum particle degrees of freedom that are obtained
from RGPEP are not the bare quanta of local canonical
theory, see [46], and the effective particles obey rules of the
LF dynamics with a vacuum that is simple to work with.
Moreover, the effective particles interact through terms
like Y� that contain vertex form factors whose width has
interpretation of the size of the effective particles in strong
interactions (the particles cannot emit or absorb any quanta
with greater invariant mass changes than �). At the same
time, � also plays the role of the RGPEP parameter in the
differential equations that control the evolution of opera-
tors from the canonical ones at � � 1 to the effective ones
that can be used in a relativistic computation of bound
states when � is lowered to the scale of the hadronic
masses. The relativistic nature of the procedure is reflected
by the possibility to construct all generators of the Poincaré
group at the scale � at which one wishes to solve the
eigenvalue problem for H� itself [44].

Although the eigenvalue problem for heavy quarkonia in
QCD with explicit inclusion of the sector with 3 effective
particles has not been studied in detail yet, it is important to
state here that the ansatz scheme dictates in this case the
replacement

 


 
 
 



 H4 Y1 Y2


 Yy1 H3 Y

 Yy2 Yy H2

26664
37775!

T4 ��2 Y1 Y2

Yy1 H3 Y
Yy2 Yy H2

264
375 (30)

and subsequent application of R to the desired order. These
steps appear to resemble the LF Tamm-Dancoff scheme
with sector-dependent counterterms proposed by Perry,
Harindranath, and Wilson [47]. The conceptual difference
is that in the Perry-Harindranath-Wilson scheme the elimi-
nation of sectors occurs within a Hamiltonian eigenvalue
problem with large cutoffs and the ultraviolet renormaliza-
tion issue is a part of the problem, leading to Wilson’s
triangle of renormalization with a vast space of relativistic
quantum operators. In the scheme used here [4], the ultra-
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violet renormalization group procedure is completed long
before one tackles the eigenvalue problem and introduces
an ansatz at the scale � near the magnitude of invariant
masses that characterize observables. The principles of
extracting a small and computer-soluble eigenvalue prob-
lem from an eigenvalue problem of infinite size, such that
the results obtained from a small problem can represent
solutions to the infinite problem, will be further explained
below.

Finally, it should be stressed that the mass ansatz has the
structure [4]

 �2
ansatz � �1� �

2
�=�

2
s��

2; (31)

where �s denotes the large, relativistic coupling constant
that the effective coupling �� is supposed to reach as a
result of extrapolation from the infinitesimal values used in
the perturbative solution of the equations of RGPEP for
H�. This structure ensures that in the lowest-order approxi-
mate expressions obtained through expansion in powers of
��, only the first term counts,

 �2
ansatz � �2: (32)

This term is order 1. But when one increases the order of
included terms and extrapolates to �� � �s, the ansatz is
removed and one has a chance to recover a true solution of
the initial theory with increasing accuracy. Comparisons of
results obtained from expansions in successive orders, and
use of better extrapolation techniques than through a plain
power series, will hopefully indicate if the procedure can
converge on a well-defined dynamical picture. For that
purpose, one should compare the initial approximate theo-
ries with the experiment and find out if the coupling con-
stants required for explaining data can be small enough to
pursue the chain of calculations based on the weak-
coupling expansion. Results of this study suggest that at
least for heavy quarkonia the required coupling constant in
LF QCD is considerably smaller than 1, see below.

E. Eigenvalue equation for HQ �Q�

The eigenvalue equation for HQ �Q� has the form

 HQ �Q�jQ�
�Q�i �

M2 � P?2

P�
jQ�

�Q�i: (33)

The eigenstates are written as (see Appendices A and B for
details of the notation, subscript � is omitted)

 jM;P�; P?i �
Z
�ij� ~	P�

�ui�ijvj
�4m2 jiji: (34)

The eigenstate wave function can be written in the form
that exhibits its covariance under 7 kinematical LF
Poincaré transformations,

 �ij �
X
sisj

�sisj�
~kij�uki;si �vkj;sj ; (35)

 �sisj�
~kij� � �u ~kij;si�CMFij� ~kij�v� ~kij;sj ; (36)

where �CMFij� ~kij� denotes the wave function that depends
on the relative three-momentum of quarks in their CMF,
assuming their masses are just m. The indices si and sj
denote projections of spin on z-axis. Spinors uki;si and vkj;sj
are obtained using LF boost matrix (�� � �0��=2)

 B�k;m� �
1����������
k�m
p �k��� ����m� k?�?�� (37)

acting on the spinors at rest, u0;s and v0;s, in the reference
frame in which the bound-state calculation is carried out
and where the four-momentum of the bound state has
components P�, P?, and P� � �M2 � p?2�=P�, M being
the eigenvalue that one wants to calculate. Spinors u ~kij;si
and v

� ~kij;sj
are obtained by ‘‘boosting’’ spinors at rest in

the CMF of the constituent fermions along their relative
three-momentum. An additional spatial rotation is applied
to spinors in the CMF before the latter boost is applied, in
order to build a spin basis in which one obtains explicit
rotational symmetry of spin-dependent interactions in the
leading approximation. The additional rotation is the same
as the well-known Melosh transformation [48,49]. Details
of our notation for momentum variables, spinors, and boost
matrices, are explained in Appendices B and C.

Equation (33) implies the eigenvalue equation for the
wave function,
 

0 �
�
�?2

13 �m
2
�

x1x3
�
m2
Y1

x1
�
m2
Y3

x3
�M2

�
�s1s3

� ~k13�

�
4
3g

2

16�3

Z dx2d2�?24

x2x4

X
s2s4

v��13; 24��s2s4
� ~k24�; (38)

in which the masslike terms m2
Y1 and m2

Y3 result from the
self-interaction of effective quarks through emission and
reabsorption of effective gluons, and v��13; 24� results
from the exchange of the effective gluon between the two
quarks. The ultraviolet-finite part of the mass counterterm
in the effective quark massm2

� is so adjusted (using a single
quark eigenvalue problem) that at � � �0 one obtains [4]
 �
�?2

13 �m
2

x1x3
�
	m2

1

x1
�
	m2

3

x3
�M2

�
�s1s3

� ~k13�

�
4
3g

2

16�3

Z dx2d
2�?24

x2x4

X
s2s4

v0�13; 24��s2s4
� ~k24� � 0; (39)

where

 v0�13; 24� � �Ag��j
�
12

�j�43 � B
j�12

�j�43

P�2 ; (40)

and 	m2
1, 	m2

3, A, B, and other symbols, are explained in
detail in Appendix B.

BOOST-INVARIANT HAMILTONIAN APPROACH TO HEAVY . . . PHYSICAL REVIEW D 74, 105015 (2006)

105015-7



III. LEADING APPROXIMATION

The RGPEP result of Eq. (39) is further analyzed as a
typical window Hamiltonian eigenvalue problem of the
kind studied in detail in the case of a generic matrix model
with asymptotic freedom and a bound state [50–52]. The
model is soluble exactly and provides a relatively well-
understood pattern to follow in the case of QCD with one
heavy flavor. Earlier LF studies, based on coupling coher-
ence [53–57], did not have such a pattern to follow and did
not use a boost-invariant concept of effective particles.
They were carried out in a frame of reference nearly at
rest with respect to the CMF of the quarkonium, and
employed a logarithmically confining potential that was
obtained in the quark-antiquark sector neglecting all other
sectors. Those studies pioneered an attack on the bound-
state problem in LF QCD along the path discussed by Perry
[54,55], including elements of the method outlined in
Wilson et al. [30], such as the absolute cutoffs on momen-
tum variables (especially k�) in the Fourier analysis of
field variables in position space, or similarity RG proce-
dure for Hamiltonians. One of the key issues of the LF
approach is how to obtain rotational symmetry and the
initial studies had to struggle with the issue, in addition
to the issue of construction of counterterms that restore
boost symmetry violated by cutoffs on absolute momen-
tum variables. The RGPEP procedure used here leads in its
simplest version to a boost-invariant and rotationally sym-
metric spectrum of meson masses.

A. Coupling constant in the window

Construction of a window eigenvalue problem begins
with a selection of a set of states of effective particles with
kinetic energies (actually, free invariant masses) in a cer-
tain range that is also called a window, for brevity. The size
of this range should be larger than the width �0 which
appears in the form factors f in H�0

.
The next step is to evaluate matrix elements ofH�0

in the
selected window of basis states. These matrix elements
form a matrix W of the window Hamiltonian whose non-
perturbative diagonalization is to produce the bound state
of interest. To facilitate efficient diagonalization in a con-
tinuum theory, one can use a set of orthonormal wave
packets (such as the wave functions that solve a two-
body bound-state eigenvalue problem with a harmonic
oscillator potential) as a basis in which the matrix elements
of the window are evaluated.

Typically, if the energy range (the word ‘‘energy’’ should
be replaced by the words ‘‘invariant mass’’ almost every-
where in this paper, but the reader is expected to be more
familiar with the word energy than invariant mass in ref-
erence to the quantum dynamical concepts that count here
and we use the word energy in order to avoid confusion due
to the lack of familiarity with the LF form of quantum
Hamiltonian dynamics) in the window Hamiltonian matrix

W is sufficiently larger than �0, the middle eigenvalues of
the window are independent of the window boundaries and
they match the eigenvalues of the full H�0

. The latter
eigenvalues are equal to the exact eigenvalues of the initial
Hamiltonian H if the RGPEP procedure is carried out
exactly. The additional virtue of lessons from Ref. [52],
beyond showing that an asymptotically free model can be
solved using a window, is that one can also evaluate the
matrix elements of W in perturbation theory, as if the
coupling constant was extremely small. One sets the cou-
pling constant to a realistically large value when one solves
the nonperturbative eigenvalue problem for W.

The point is that a few low orders in RGPEP calculation
of W may lead to a good approximation (reaching better
accuracy than 10% for the bound-state eigenvalues already
when W is calculated in second order) if one properly
chooses �0 in order to work with a small number of basis
states (small means small enough so that they can be
handled using computers) and if one adjusts the coupling
constant in the window to the chosen �0. �0 should be near
the scale of invariant masses that dominate in the binding
mechanism. The coupling constant is defined through the
value of a specific matrix element in the window. It is
adjusted by comparison of the spectrum of W with data
(in [52], the role of data is played by the known exact
spectrum). The main result of the matrix model (studied so
far up to sixth order, or five loop integrals) is that when the
coupling constant in the window W is adjusted so that one
middle eigenvalue of W matches the corresponding exact
solution then also other middle eigenvalues of W approxi-
mate the corresponding exact solutions.

In a theory as complex as QCD, the RGPEP calculations
of window Hamiltonians beyond second order will require
a lot of work. Completion of the fourth-order calculation is
important for determination of the accuracy one can
achieve using window Hamiltonians in QCD. Apart from
the plain perturbative expansion, one may eventually take
advantage of the idea of coupling coherence [53], reformu-
lated for the use in RGPEP. However, when additional
flavors of quarks are included and their masses are lowered
toward small values known in the standard model, one may
have to deal with an infrared limit cycle [58] (and univer-
sality that may apply in that case [59], instead of the
asymptotic freedom structure known in the ultraviolet).
But in the case of heavy quarks, i.e., when the quark
mass is formally very large in comparison to �QCD, the
value of the coupling constant required in the window may
be small and no complications possible for light quarks are
expected to occur.

B. Heavy quark limit

In a formal analysis of QCD with one heavy flavor, the
quark mass m can be much larger than �0 and the latter
much larger than �QCD. In these circumstances, the per-
turbative coupling constant corresponding to �0 is small
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and the relative motion of quarks in the sector jQ �Qi is
limited by the form factors f of width �0. This means that
the dominant relative momenta of quarks in mesons are
small in comparison to m. (One should observe that the
process of extrapolation of the window to a large value of
the coupling constant corresponds to the increase in the
value of �QCD; at a phenomenologically useful value of
�0 � ��0

, one may have to work with �0 that is no longer
very small in comparison to m). Formally, in the limit of
large m, the dominant dynamical effects in the window
eigenvalue Eq. (39) with �0 � m can be analyzed using a
nonrelativistic approximation for the relative motion of
quarks. The arbitrary motion of the meson as a whole
can be exactly separated from the relative motion of the
constituent quarks because the RGPEP is invariant under
the LF boosts. Therefore, approaching the IMF, one will
control the differences between absolute values of mo-
menta of the quantum constituents that extend to much
larger values than the mass of the entire meson. The
differences correspond to some fixed range of Feynman x
around 1=2. But every fixed value of x different from 1=2
implies that the corresponding quark momenta in the IMF
differ by amounts infinitely larger than any fixed mass
parameter.

The nonrelativistic approximation is formally validated
by the condition that �0 � m, and that the interaction
terms are growing not faster than a polynomial of kinetic
energy (invariant mass) and cannot overcome the exponen-
tial falloff of the form factors f for changes of invariant
masses that are larger than �0. Thus, in order to use the
nonrelativistic expansion, one has to keep in place the
exponential form factors f that provide the conver-
gence—these form factors determine the size of the win-
dow in momentum space and one cannot expand them in a
series. What can be expanded are the arguments of the
exponential functions, the perturbative factors that appear
in RGPEP in addition to the form factors, spin-dependent
factors in interaction vertices, and the relativistic measure
of integration over relative momenta of quarks. The accu-
racy of results of diagonalization of the window W�0

will
depend on the choice for the form factor function f and,
especially, on the optimization factors that are critical for
the convergence of the perturbative evaluation of H�0

in
fourth order [51,52]. The optimization factors were con-
sidered in the case of heavy quarkonia elsewhere [60]. The
study described here was carried out using f of the generic
type exemplified in Eq. (17). Every form factor considered
here is the same exponential function of the square of a
difference of squares of invariant masses of the effective
particles in interaction.

When Eq. (39) is written in the nonrelativistic approxi-
mation for the RGPEP, spin, and integration measure fac-
tors, the limit of small coupling exhibits scaling property
similar to the Schrödinger equation for positronium. The
scaling in RGPEP is described at the beginning of

Appendix B. The scaling implies that the quark eigenvalue
problem is dominated by the relative momenta on the order
of strong Bohr momentum,

 kB �
4

3
�0
m
2
; (41)

which is the quark analog of �me=2 in positronium in
QED. This scale emerges from the window eigenvalue
condition independently of the value of �0 as long as �0

is sufficiently large in comparison to kB. In other words, the
eigenvalues M2 depend mainly on the value of ��0

and not
on the value of �0 itself when �0 is much larger than kB.
The questions of how large �0 must be in comparison to kB
in order to obtain results that are sensitive to �0 practically
only through the value of �0, or to what extent this lack of
direct sensitivity to �0 itself is obtained for realistic values
of �0 and �0, are not answered here. A study of such issues
has been done before in a model based on Yukawa theory
[46,61].

In a formal analysis of the nonrelativistic expansion for
infinitesimal coupling constant �0, one can assume

 �0 � �m
m
2
; (42)

 �m �
�
4

3
�0

�
0:5��

�p: (43)

Thus, �0 is much smaller thanm=2 when �p is on the order
of 1. The two parameters �p and � are useful in separating
different terms in the complex, spin-dependent interactions
that otherwise do not occur clearly ordered in size. The
particular choice of the power 0:5� � follows from how
the form factors f limit momentum transfers in vertices.
The most interesting case is � close to 0 (see below). At the
same time, kB is much smaller than �0 as long as 0< �<
0:5. In the formal analysis, kB is considered much larger
than �QCD when one evaluates the window W�0

using
RGPEP. But when one extrapolates the coupling constant
in the window to realistic values, a realistically large value
of �QCD is introduced, instead of an infinitesimally small
one. The ansatz for the gluon mass-gap corresponds to the
scale of the realistic �QCD.

Note that the formally introduced relationship between
�0 and �0 does not mean that one replaces the true RGPEP
dependence of�0 on �0 by an artificial one. All that is done
is to introduce a parametrization of an unknown infinitesi-
mal value of �0 at a single value of �0; the parameters �m,
�p, and �, remain free to change while kB stays always
much smaller than �0. After the scaling picture is described
using this parametrization and identifying terms that scale
with different powers of �0, one can look for the values of
m and �m for which the scaling picture extrapolated to
large values of the coupling constant is useful phenomeno-
logically. At that point one identifies the realistic values of
�0 and �0. All one obtains this way is an approximate
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picture for heavy quarkonium dynamics that can serve as a
starting point for a systematic calculation of corrections
using RGPEP.

C. Scaling of different factors

The scaling expansion of RGPEP factors A and B that
occur in the potential v0�13; 24� in Eq. (39), in terms of
powers of �0 (we shall omit the subscript 0 below when-
ever it is irrelevant to the context) is given in Eqs. (B43)
and (B44). The first terms in the scaling expansion that
provide the leading approximation are

 A ’ �f
1

q2 � ff
1

q2

�2

q2 ��2 ; (44)

 B ’ 4m2ff
1

q2
z

�2

q2 ��2 : (45)

The symbol q denotes the three-momentum transferred
between quarks. The self-interaction terms 	m2 contain
the same function B in their integrands.

The RGPEP factors ff behave as

 ff ’ exp
�
�2

�
mq2

qz�2

�
2
�
: (46)

Using definitions of Eqs. (B25) and (B26) for momenta and
(42) and (43) for �0, one obtains

 ff ’ exp
�
�

8p2

��43��
��p�

4cos2


�
; (47)

where qz was replaced by q cos
 and 
 is the angle
between ~q and z-axis. For small �, the form factors are
not zero only for small p, and, in fact, only for vanishingly
small p when the angle 
 between ~p and z-axis approaches
�=2. Unless there exists a large contribution in the region
of small p, especially near 
� �=2, from other factors in
the potential, the factor ff is equivalent to zero when � is
near 0 in the scaling analysis. But B can be large for 
!
�=2 due to q2

z in the denominator. This singular behavior
originates in the instantaneous LF potential due to gauge
coupling between colored particles. One has to find the
result that survives in the limit of small � in the presence of
the singularity. The factor regulating the singularity at
qz � 0 is provided by the ansatz function �2. When one
combines the terms with ff in the self-interactions 	m2

and in A and B in the gluon exchange potential, the net
result is a spherically symmetric and spin-independent
harmonic oscillator potential whose spring constant is no
longer sensitive to the mass ansatz �2 under quite general
assumptions [4]. The oscillator frequency is

 ! �

��������
4

3

�
�

s
�
�
�
m

�
2
�
�

1152

�
1=4
; (48)

and the corresponding spring constant, k � m!2=2, leads

in the dimensionless Schrödinger equation in variables ~pij,
defined in Eq. (B25), to the oscillator term that scales like
�6� and becomes independent of � when �! 0, see
Eqs. (50) to (53) below. The oscillator potential is inde-
pendent of the quark spins.

According to Eq. (40), all spin effects in the leading
approximation originate from the current factors that mul-
tiply the term �f=q2 in A in Eq. (44). The leading spin
effects can be identified using the same scaling analysis. In
the scaling analysis for infinitesimal �, spin-dependent
terms are �2 times smaller than the spin-independent
terms. Therefore, one can also try to include corrections
order �2 that do not depend on spin. However, the spin-
independent correction terms order �4 that emerge from
the scaling expansion based on only second-order RGPEP
violate rotational symmetry and are expected to cancel out
or get corrected when the window is calculated in fourth-
order RGPEP. Since the spin factors have quite a different
origin (quark current factors that are specific to QCD) than
the generic RGPEP factors (the same in all field theories)
and momentum-space integration measure (universal in
relativistic particle physics), the structure of interaction
kernels that one encounters in the scaling equation (in
addition to the spin-independent harmonic oscillator
term) can be written as (the factor �2 in front is not
included)

 V � f
�
4�

p2 � �
2R
�
�1� �2S��1� �2M�; (49)

where R refers to the RGPEP factors, S to spin, and M to
measure.

We drop the term R because it depends on the z-axis and
can only be corrected in the fourth-order calculation for
RGPEP factors. In the second-order RGPEP factors ana-
lyzed here, the correction R is given by the term c in
Eq. (B43) and when one averages this term over the
direction of the z-axis, it vanishes. Nevertheless, one
should remember that a genuine fourth-order calculation
of H� may produce corrections of the type R that will
change the radial dependence of the potential from the
Coulomb shape to a different one.

In order to identify the leading spin effects, we combine
the spin and measure corrections to the factor 1� �2�S�
M� and write it shortly as 1� BF, where BF stands for
Breit-Fermi terms. The point is that one can observe can-
cellation between S andM factors and the remaining terms
produce rotationally symmetric spin-dependent terms after
one introduces the additional turn in spin basis that is
described in Appendix C.

D. Structure of the eigenvalue problem

Finally, using dimensionless variables ~p13 and ~p24

(Appendix A explains the labeling of the momentum var-
iables, see Fig. 7.) defined in Eqs. (B25) and (B26), one
arrives at the following eigenvalue equation for the spin-
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dependent 2 2 matrix wave function , defined in
Eqs. (D4) and (D5):

 0 � � ~p2
13 � kp�p13

� x�� ~p13� � 2
Z d3p24

�2��3
V� ~p24�;

(50)

 V � f
4�

p2 �1� BF�; (51)

 f � exp
�
�

��
4

3
�
�

1�2� p2
13 � p

2
24

�2
p

�
2
�
; (52)

 kp �
1��������������

1152�
p

�6
p

16

�
4

3
�
�

6�
: (53)

In the limit �! 0 in the above result, the eigenvalues x
tend to�1=n2 with natural n (the Coulomb spectrum). One
obtains meson masses by evaluating the eigenvalues x for
realistic values of � and using the formula

 M � 2m

��������������������������
1� x

�
2

3
�
�

2
s

: (54)

The fact that a mass-gap ansatz for gluons leads to an
oscillatorlike interaction term, which respects rotational
symmetry already in the second-order analysis, in which
�2 � 1, does not seem accidental. The result is almost
independent of all details of the ansatz because q2 is
limited by the form factors ff in the function B of
Eq. (45) to so small values that the ratio �2=�q2 ��2� is
practically 1 for any reasonable ansatz. In addition, it
seems not excluded that the same result comes out also
as a part of the genuine fourth-order calculation. In the
fourth-order calculation, the part of the ansatz for�2 that is
order 1 may cancel out in the window W with large �.
Looking at Eqs. (28)–(30), one can see that the ansatz term
order 1 in the three-body sector is eliminated in fourth-
order RGPEP calculation when one includes the three-
body sector in the nonperturbative window dynamics. If
instead one uses the perturbative operation R to further
reduce the window to the two-body quark-antiquark sector
only, the cancellation of the ansatz begins in sixth-order
calculation. For large couplings, there can exist cancella-
tions that cannot be easily foreseen. But even if the ansatz
is not introduced at all, some shift of the three-body
invariant mass, say�2

1, will emerge from QCD interactions
of formal order � in the three-body sector and this is how
the actual gap may show up for the first time. When one
proceeds to the scaling analysis of functions analogous to A
and B in Eqs. (44) and (45), the new shift will be of order �
if it is proportional to m2, of order �3=2 if it is proportional
to m�, and of order �2 if it is proportional to �2. But the
momentum transfer squared, q2, is of order �2 and it may
continue to be formally much smaller than or comparable
to �2

1 in the scaling limit of small �. The form factor f

limits j ~qj to values on the order of �jtj=2��2
p�4�=3�2�kB,

where t � cos
 and 
 is the angle between the momentum
of the effective gluon and the z-axis. The terms that lead to
the harmonic force originate from the singular behavior of
q�2
z � 1=t2 when t! 0. But one can still neglect q2 �
t2�2�4� in comparison to �2

1 � �
nt1�	� with n � 1 and

3=2, and even for n � 2 the result of integration may be
close to the one obtainable when q2 is neglected in com-
parison to �2

1, cf. [4]. Also, if the effective mass ansatz is
just a first term in the expansion of the gluon gap in powers
of the gluon momentum squared, which corresponds to the
case with �2 � q2t	 in the limit of small t [4], the scaling
applies in the same way and leads to the same oscillator
result [4]. So, if some mass-gap shows up in order � in the
three-body sector, as one expects it to happen in QCD, the
results of Eqs. (44) and (45) may still be valid.

IV. SPIN EFFECTS

Spin effects are caused by the Breit-Fermi terms, BF in
Eq. (51), that originate from the product of currents j�12

�j43�

in v0 in Eq. (40). In the leading approximation, v0 is
displayed in Eq. (D1). The spinors uki;si and vkj;sj in the
currents originate from the canonical LF Hamiltonian of
QCD and they are related by boosts Lij described in
Appendix C to the spinors u ~kij;si and v

� ~kij;sj
that are intro-

duced in the definition of the CMF wave function
�CMFij� ~kij� in Eq. (36).

It is shown in Appendix D that the BF terms in Eq. (51)
are
 

BF �
�2

9
�3�p2

24 � p
2
13�a� ~p ~� ~b ~� ~p ~�

� 3 ~p13 ~� ~p24 ~� ~b ~��3 ~b ~� ~p24 ~� ~p13 ~��; (55)

where  denotes the 2 2 matrix wave function  � a�
~b ~� and ~p is the difference between ~p13 and ~p24. An
alternative form of the same result,
 

BF �
�2

3
�p2

24 � p
2
13�a�

�2

9
��4 ~p13 ~p24 � p

2
13 � p

2
24�
~b ~�

� ~b�8 ~p24 � 2 ~p13� ~p13 ~�� ~b�4 ~p13 � 2 ~p24� ~p24 ~��;

(56)

shows that the singlet wave function a and the triplet wave
function ~b are not coupled and describe different
eigenstates.

The resulting eigenvalue equations for different mesons
are listed in subsections below. These equations are boost
invariant and describe the relative motion of two heavy
quarks no matter how fast the whole quarkonium is mov-
ing, which is also reflected in Eq. (54) that differs from a
nonrelativistic expression for energy of a slowly moving
object, E � M� EB � P2=�2M�, where the binding en-
ergy EB is given by some Schrödinger equation. In order to
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obtain a state of a moving quarkonium, one has to insert the
wave function  into Eq. (34), using Eqs. (35), (36), (D4),
and (D5), all of which are relativistic. Note that the eigen-
value equations in the subsections below lead to nonlocal
interactions at short distances if one introduces position
variables canonically coupled with the relative three-
momenta of quarks defined here in a boost-invariant way.
The reason for nonlocality is that the interactions contain
the form factors f that depend on the differences of invari-
ant masses before and after an interaction. One should
remember that although the equations in the next subsec-
tion look deceptively simple and similar to nonrelativistic
models, they describe wave functions that from the mod-
els’ point of view formally correspond to different frames
of reference for different values of the modulus of the
relative three-momentum of quarks, see the appendices.

Note also that the interaction terms in the equations
listed below include potentials that in the absence of the
form factors f would produce three-dimensional Dirac
	-functions in the position space representation. The
	-functions would lead to ultraviolet divergences. But
the form factors f smear the 	-functions and render finite
results. Nevertheless, the terms with the smeared
	-functions are not weak when � is extrapolated to values
on the order of 1 and they contribute to significant spin
effects for states that involve significant s-wave
components.

A. Mesons �c and �b

In this case, ~b � 0 and the eigenvalue equation for
� ~pij� � aij=pij takes the form

 0 � � ~p2
13 � kp�p13

� x�
a13

2p13
�
Z d3p24

�2��3
V
a24

p24
; (57)

where

 V � f
4�

p2

�
1�

�2

3
�p2

24 � p
2
13�

�
: (58)

The orbital angular momentum is zero and the integration
over angles (see Appendix E) produces a one-dimensional
integral equation

 0 � hsosca13 �
2

�

Z 1
0
dp24fp13p24W a24; (59)

with

 W �

�
1�

�2

3
�p2

24 � p
2
13�

�
J0; (60)

where the function J0 is given in Appendix E.

 hsosc � p2
13 � kp@

2
13 � x (61)

is introduced as a generic notation for the s-wave harmonic
oscillator terms in the mass eigenvalue equations for all
mesons.

B. Mesons J=� and �

In this case a � 0 and the eigenvalue equation describes
a function � ~pij� � ~bij ~�, where

 bk13 �

�
	kl

S13

p13
�

1���
2
p

�
	kl � 3

pk13p
l
13

p2
13

�
D13

p13

�
sl; (62)

and ~s is a polarization vector of a massive meson of spin 1.
The s-wave wave function S and d-wave wave function D
satisfy two coupled equations
 

0 �
hsosc; 0

0; hsosc � kp
6
p2

13

2
4

3
5 S13

D13

" #

�
2

�

Z 1
0
dp24fp13p24

W ss; W sd

W ds; W dd

" #
S24

D24

" #
; (63)

where

 W ss � J0 �
�2

3
��p2

13 � p
2
24�J0 � 16=9�; (64)

 W sd �
�2

3
�p2

13�J2 � J0� � 4=3�

���
2
p

3
; (65)

 W ds �
�2

3
�p2

24�J2 � J0� � 4=3�

���
2
p

3
; (66)

 

W dd � J2 � �J2 � J0�=2

�
�2

3
f�p2

13 � p
2
24��J0 � �J2 � J0�=6� � 20=9g;

(67)

and the functions J0 and J2 are given in Appendix E.

C. Mesons �c0
and �b0

Here a � 0 and the eigenvalue equation for � ~pij� �
bij ~pij ~�=p2

ij takes the form

 0 �
�
hsosc � kp

2

p2
13

�
b13 �

2

�

Z 1
0
dp24fp13p24Wb24;

(68)

where (see Appendix E)

 W � J1 �
�2

9
�p13p248J0 � �p2

13 � p
2
24�J1�: (69)

D. Mesons �c1
or �b1

Here again a � 0 and the radial eigenvalue equation for
� ~pij� � bij ~s ~pij ~�=p

2
ij takes the form

 0 �
�
hsosc � kp

2

p2
13

�
b13 �

2

�

Z 1
0
dp24fp13p24Wb24;

(70)
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where

 W � J1 �
�2

9
�2p13p24�J0 � J2� � �p

2
13 � p

2
24�J1�:

(71)

E. Mesons �c2
or �b2

In this case also a � 0 and the eigenvalue equation is for
 

13 � Sn
pi13

p13
sijn �j

P13

p13

� Sn

���
2

7

s
pi13

p13

�
sijn �

5

2
	ij

pk13

p13
skln
pl13

p13

�
�j
F13

p13
; (72)

where sijn with n � 1; 2; . . . ; 5 are symmetric traceless 3
3 matrices, Sn is the corresponding polarization five-vector
for a massive meson with spin 2 (the sum over n from 1 to 5
is indicated only by the repeated subscript n). The p-wave
wave function P13 and the f-wave wave function F13

satisfy two coupled equations
 

0 �
hsosc � kp

2
p2

13
; 0

0; hsosc � kp
12
p2

13

2
64

3
75 P13

F13

" #

�
2

�

Z 1
0
dp24fp13p24

W pp; W pf

W fp; W ff

2
4

3
5 P24

F24

" #
;

(73)

where
 

W pp � J1 � �2p13p24
14
45�3J2 � J0� � �2�p2

24 � p
2
13�

1
45J1;

(74)

 W pf � ��
2p13p24

2
��
6
p

45 �3J2 � J0� � �
2
��
6
p

45�p
2
242J1

� p2
13�5J3 � 3J1��; (75)

 W fp � ��2p24p13
2
��
6
p

45 �3J2 � J0� � �2
��
6
p

45�p
2
132J1

� p2
24�5J3 � 3J1��; (76)

 W ff � �5J3 � 3J1�=2� �2p13p24
16
45�3J2 � J0�

� �2�p2
13 � p

2
24�

1
90�5J3 � 3J1�; (77)

and the functions J0, J1, J2, and J3, are given in
Appendix E.

F. Singlets with J � 2, or 1D2

In this case ~bij � 0 and

 13 � Sn
a13

p13

pi13s
ij
n p

j
13

p2
13

: (78)

The eigenvalue equation for the function a reads

 0 �
�
hsosc � kp

6

p2
13

�
a13 �

2

�

Z 1
0
dp24fp13p24W a24;

(79)

where

 W �

�
1�

�2

3
�p2

24 � p
2
13�

��
3

2
J2 �

1

2
J0

�
: (80)

G. Triplets with J � 2, or 3D2

In this case a � 0 and

 13 � Sn
b13

p13

pi13s
ij
n � ~p13  ~��j

p2
13

: (81)

The eigenvalue equation takes the form

 0 �
�
hsosc � kp

6

p2
13

�
b13 �

2

�

Z
dp24fp13p24W b24;

(82)

with

 W �

�
1�

�2

9
�p2

13 � p
2
24�

��
3

2
J2 �

1

2
J0

�

�
4�2

9
p13p24J3: (83)

V. MASSES AND WAVE FUNCTIONS

This section describes examples that illustrate to what
extent the simplest version of the RGPEP approach can
reproduce masses of the known b �b and c �cmesons and how
the corresponding wave functions may depend on the
relative momentum of the quarks.

A. Coupling constant and quark mass

One potentially valid way to determine the coupling
constant �� and quark mass m� in H� at � � �0 is to
evolve their values as functions of � using RGPEP from the
region of large �, say � � �1, where their values may be
adjusted to observables that are minimally sensitive to the
nonperturbative mechanism of binding of quarks and glu-
ons. For such observables, the adjustment could be made
using a perturbative expansion for the S-matrix for quarks
and gluons usingH�1

in the femtouniverse [62]. Although a
precisely defined calculation including bound states as
asymptotic states does not exist yet in the RGPEP approach
to QCD, some patterns expected to occur in such a calcu-
lation have already been studied. For example, the RGPEP
evolution that starts at �1 must be extended down to �0

comparable to the meson mass and to reach that far one has
to deal with issues of convergence that require optimiza-
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tion of details of the method [52]. It is also known [37] that
the differential equations of RGPEP that describe the
evolution of the operator H� (not the S-matrix) produce
in third-order perturbation theory in QCD the coupling
constant that evolves with � according to the formula

 �0 �
�MZ

1� ��MZ
=�6����11NC � 2nf� ln��0=MZ�

; (84)

which matches the well-known formula for the running
coupling constant in the original Lagrangian calculus for
the QCD action [63,64]. Here,�MZ

is the coupling constant
in H�1

with �1 � MZ, MZ � 92:1 GeV is the mass of the
Z-boson, NC � 3 is the number of colors and nf is the
number of flavors (the theory analyzed here has nf � 1).
Thus, as soon as one estimates the value of the coupling
constant � at one value of � in the boost-invariant
Hamiltonian approach, such as �1 � MZ, the size of � at
other values of � is in principle known in the entire region,
in which the perturbative RGPEP calculus for the
Hamiltonians can be accurate.

For example, if one assumes that �MZ
� 0:12 [31],

Eq. (84) produces �0 � 0:326 at �0 � 3:7 GeV (for nf �
6, one would obtain �0 � 0:21). However, if one uses the
same formula in a strict expansion in powers of �MZ

to
third-order only, one obtains a result that is about 30%
smaller than 0.326. The reason is that Eq. (84) predicts an
increasingly rapid growth of the coupling constant when �
decreases. But the perturbative formula is replaced by a
nonperturbative one for � near the bound-state mass, and
this can be studied in detail using models [50,51]. By
analogy with the models, one may expect a finite but rapid
transition of � from the increasing to a decreasing function
of � in the region where the binding mechanism dominates
dynamics, smoothing the discontinuity present in the per-
turbative formula (84) for � when its denominator passes
through zero. Therefore, a low-order expansion in powers
of �MZ

is not useful. But it is useful to expand the operator
H�0

in powers of �0. The operator coefficients of this
expansion can be found assuming that �0 is infinitesimally
small [52]. The same coefficients can be used for evaluat-
ing H�0

when �0 is small and �0 is comparable with 1.
Finding a precise formula for �0 in terms of ��1

for
realistic values of the coupling constants may require
sophisticated high-order RGPEP calculations. If the pre-
cise value of �0 cannot be easily calculated in a low-order
perturbation theory, one can seek values of �0 that may
correspond to the available bound-state data and then in-
corporate the resulting picture in a new perturbation theory
around the first approximation found that way. At the
present stage of development, one can only verify if the
simplest version of the boost-invariant Hamiltonian ap-
proach can reproduce known masses of heavy quarkonia
when the coupling constant �0 is allowed to take values on
the order of 1.

Less is known about the quark massm as a function of �,
and what values of m�0

one should expect in H�0
.

Technically, the mass parameter is specified as the pertur-
bative eigenvalue of H�0

for one-quark states [4].
Therefore, one can expect that the mass should be close
to the pole mass [31], which is about 10% larger than the
quark mass in the minimal subtraction scheme for bottom
quarks. One may expect for b �b mesons that m � m�0

�

4:5 GeV to 5 GeV.
Thus, although in principle the boost-invariant

Hamiltonian approach appears able to cover the whole
range of energy scales accessible experimentally in the
case of heavy quarkonia, one needs to carry out higher
order calculations than carried out here in order to correlate
high-energy perturbative results in the femtouniverse with
the description of binding of quarks and gluons at the scale
of b or c quark masses in one and the same scheme. In the
simplest version of the Hamiltonian approach, one can
only find out if there exist choices for the parameters �
and m at �0 on the order of the quark masses that can
produce spectra of masses of the quarkonia with reasonable
accuracy. Since one expects �� 1=3, ‘‘reasonable’’ means
here that the masses should be reproducible with accuracy
on the order of 1=3 or perhaps 1=10 of the largest splittings
between states with neighboring quantum numbers. The
latter are on the order of 500 MeV and this means that
matching data with accuracy on the order of 50 MeV would
be quite good in the simplest version if the required � and
m for such matching are close to the values established
from other considerations.

In principle, masses of only two mesons are sufficient to
fix the values of � and m as functions of � near �0. The
question is which two masses one should use. That the
choice is not obvious and that there is a need for a good
choice is a consequence of the fact that in approximate
calculations all masses are calculated with theoretical er-
rors that are not known and if one uses two masses that are
obtained with a large theoretical error then results for all
other masses will be obtained with large errors. Experience
with exactly solvable models dictates that the most accu-
rate procedure should be to choose the masses in the
middle of the spectrum of the window Hamiltonian
[46,52]. Let us consider the example of b �b mesons. The
most rational choice is to use masses of two p-wave
mesons �1�1P� and �1�2P�. Their masses lie in the middle
of the window spectrum. The high-energy boundary of the
window corresponds to short-distance dynamics, i.e., the
most tightly bound states, having the smallest masses. The
low-energy boundary corresponds to long-distance dynam-
ics, i.e., the states with largest masses. The mesons �1�1P�
and �1�2P� are not very sensitive to the short-distance
dynamics and thus also not very sensitive to the unknown
term �2R in the potential of Eq. (49), because quarks in
these mesons are pushed out from the region of small
relative distances by the centrifugal barrier with l � 1.

STANISŁAW D GŁAZEK AND JAROSŁAW MŁYNIK PHYSICAL REVIEW D 74, 105015 (2006)

105015-14



One expects that RGPEP of fourth-order will produce
terms �2R that correspond in position space to functions
like 	3� ~r� or 1=r3. Such functions are known to occur in
effective potentials in standard dynamics in atomic calcu-
lations in QED when one includes effects due to the
exchange of two photons, vertex corrections, and self-
interactions order �2 [25]. Thus, selecting mesons �1�1P�
and �1�2P� that have l � 1, one has a chance to avoid
theoretical errors due to the current lack of knowledge of
the terms �2R in LF QCD. At the same time, the masses of
mesons �1�1P� and �1�2P� are most probably less sensitive
to the quark-antiquark long-distance dynamics than the
masses of states with l � 2 or 3. At long interquark dis-
tances, the harmonic oscillator potential is expected to lose
accuracy because the simplest approximation does not take
into account effective gluons that may be created when
quarks move far away from each other. For example, one
effective gluon could actively participate in the nonpertur-
bative dynamics of states with masses that exceed the
middle eigenvalues of the window Hamiltonian by more
than 1 GeV, which is an estimate of the magnitude of mass
of an effective gluon at the scale �0. The estimate indicates
that one should probably fit parameters � and m in the
simplest approximation to meson masses that do not ex-
ceed the middle masses by more than about 1 GeV, and the
mesons �1�1P� and �1�2P� lie in this range.

An example of results one obtains by fitting masses of
b �b mesons �1�1P� and �1�2P� for �0 � 3697:67 MeV is
given in Table I. The coupling constant and mass required
for obtaining the two masses at this �0 are � � 0:32595
and m � 4856:92 MeV, in a good qualitative agreement
with expectations (see Eq. (84) and the discussion that
follows it). The large number of digits in these numbers
is a numerical effect due to the precision of experimental
data and does not reflect the accuracy of the Hamiltonian
approach to QCD in its simplest version with only a jQ �Qi
sector, which is presumably much worse. The value of �0

chosen in this example lies in the middle of a small range
of size of about 200 MeV in which one can vary �0 and
numerically reproduce the same known values of the two
meson masses with accuracy better than 1 ppm by varying
the parameters � and m as functions of �0. Table I shows
that a whole set of masses in the middle of the window
spectrum is also close to data when the two selected masses
are. The masses near the edges of the window, most
sensitive to the theoretical errors of the simplest version,
deviate from data by more than the masses in the middle of
the window spectrum do, but the magnitude of these devi-
ations is not absurdly large.

Results in Table I were obtained in a sequence of steps
that need to be explained. The key difficulty is that the
masses can be determined only numerically, and the inte-
grals that determine matrix elements of the window
Hamiltonians depend simultaneously and in a nontrivial
way on �, m, and �. The complication is caused mainly by

the form factors f, which eliminate the possibility of
analytic integrations using the oscillator basis functions.
The numerical evaluation of the matrix elements of win-
dow Hamiltonians takes time. The time required for evalu-
ation of one matrix element on a good laptop is on the order
of a second, and one needs on the order of a thousand
matrix elements to obtain accuracy of four digits for
masses of mesons that result from diagonalization of the
window matrix. One would have to carry out very long
computations to find suitable � andm for any given choice
of �0 if one were computing matrix elements always anew
for every change in the parameters. Instead, one can evalu-
ate eigenvalues x in Eqs. (59)–(82) using parameters that
lie on discrete points of a grid in the parameter space. The
parameter kp is more convenient than � itself. Then one
can interpolate between the grid points in order to find
approximate eigenvalues for a continuum of parameters �
and m for a whole range of values of �0 in the region
covered by the grid. Such interpolation produces quickly
results of precision better than 10�3. The interpolating
functions allow one to identify the values of � and m
that reproduce the same masses of �1�1P� and �1�2P� for
different values of �0 very efficiently even though the
eigenvalues are less precise than to 1 MeV. Results of the
interpolation are given in Table I in the second column,

TABLE I. Qualitative illustration of results of the simplest
approximate approach to heavy quarkonia in the case of masses
of b �b mesons (in MeV). The second column is obtained using
the quark mass m � 4856:92 MeV and coupling constant � �
0:325 95 for � � 3697:67 MeV when one demands that the
masses of mesons �1�1P� and �1�2P� are reproduced using an
auxiliary interpolation procedure described in the text, which is
employed only to increase speed of numerical estimates in this
illustration and is accurate to a few MeV. The corresponding
oscillator parameters are ! � 182:16 MeV and kp � 0:157 722.
The third column quotes experimental data with accuracy to
1 MeV and the fourth column displays the difference. The fifth
column shows precise numerical results obtained from the same
dynamical equations for the same values of m, �, and �,
but without errors introduced by the auxiliary interpolation
procedure.

Meson Interpolation Experiment [31] Difference Precise

�10 865 10 725 10 865 �140 10 729.7
�10 580 10 464 10 580 �116 10 466.9
�3S 10 382 10 355 27 10 385.2
�22P 10 276 10 269 7 10 278.5
�1�2P� 10 256 10 256 0 10 258.0
�02P 10 226 10 232 �6 10 228.1
�2S 10 012 10 023 �11 10 013.8
�21P 9912 9912 �1 9913.3
�11P 9893 9893 0 9894.2
�01P 9865 9859 5 9865.5
�1S 9551 9460 91 9551.8
�b1S 9510 9300 210 9510.8
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marked ‘‘interpolation.’’ Precisely evaluated masses for the
parameters selected using the interpolation are given in the
fifth column in Table I. The quoted values were found
stable against (a) the increase of the number of basis states
above about 40 (about 20 if only one orbital angular
momentum wave function is present), (b) the changes in
the oscillator basis functions of Appendix G due to varia-
tion in the oscillator frequency within about 1 order of
magnitude, and (c) the changes in the algorithm for evalu-
ation of matrix elements of the window Hamiltonians (two
different integration routines produced the same results).
Subsequent discussion concerns results that satisfied the
same convergence tests.

The example given in Table I shows that even in its
simplest version the Hamiltonian approach can lead to
phenomenologically reasonable results for the masses of
b �b mesons. But the example does not provide information
about how large the range of parameters is for which the
simplest version of the Hamiltonian approach can match
the masses of known heavy quarkonia. This issue is taken
up using examples in the remaining parts of this section.

B. Masses of b �b mesons

In order to obtain qualitative information about the
distance between the simplest version of LF QCD and
data for masses of b �b mesons, one can consider two differ-
ent fits of � and m.

One fit is focused on the middle of the mass spectrum of
known mesons. Instead of fixing two selected meson
masses and checking how others are reproduced as it was
done in the previous subsection, one finds a minimum of
deviation of the computed masses from data as a function
of � andm assuming different �0 and this is done for seven
masses in the middle of the experimentally known spec-
trum. Results of this fit are denoted in Table II as ‘‘Fit to
middle.’’ They are shown graphically in Fig. 1. Variation of
the obtained spectrum with �0 when one keeps any two of
the seven masses fixed, or rather the degree of absence of
such variation, is not further studied in this or the next
subsection.

The other fit is focused on checking how many of the
experimentally known meson masses can be explained in
the simplest version of LF QCD, and how accurately. The
second fit includes masses of all 12 well-established me-
sons [31] with decay widths significantly smaller than
100 MeV. A decay width comparable with 100 MeV is
considered an indicator of relevance of processes that the
simplest approximate version of LF QCD cannot describe.
The second fit is denoted in Table II as ‘‘Fit to all.’’ The
results are shown graphically in Fig. 2.

A separate comment is required concerning the D states
(d-waves) in Table II. One such state is known experimen-
tally [31], most probably having total J � 2. This state is
included in the table in order to illustrate what happens in
the simplest version of LF QCD concerning d-wave me-

TABLE II. Masses of b �b mesons (in MeV). The third column
results from the fit of the coupling constant � and quark mass m
at the indicated optimal value of � to seven middle masses of
known b �b mesons, i.e., masses of �0�1P�, �1�1P�, �2�1P�,
��2S�, �0�2P�, �1�2P�, �2�2P�, and this fit implies the oscillator
parameters ! � 184:62 MeV and kp � 0:266 67. The fourth
column results from the fit to masses of all 12 mesons ��1S�,
��1S�, �0�1P�, �1�1P�, �2�1P�, ��2S�, �0�2P�, �1�2P�, �2�2P�,
�3D1 (estimated as similar to D2), ��3S�, �10 580�S4�, and the
corresponding oscillator parameters are ! � 147:11 MeV and
kp � 0:016 667. Question marks regarding D states are ex-
plained in the text.

Experiment [31] Fit to middle Fit to all

� [MeV] 
 
 
 3779.8 3252.3
m [MeV] 
 
 
 4835.9 4979.7
� 
 
 
 0.288 39 0.507 38
�10 580 10 580� 3:5 10 734 10 629
�3D1 
 
 
 10 461 10 446
�3S 10 355:2� 0:5 10 389 10 329
�22P 10 268:5� 0:72 10 273 10 272
�12P 10 255:5� 0:72 10 256 10 241
�02P 10 232:5� 0:9 10 231 10 194
�1D2 10 161:1?� 2:2 
 
 
 10 172
�3D2 10 161:1?� 2:2 
 
 
 10 169
�1D1 
 
 
 10 115 10 154
�2S 10 023:3� 0:31 10018 9991
�21P 9912:21� 0:57 9907 9943
�11P 9892:78� 0:57 9892 9908
�01P 9859:44� 0:73 9869 9849
�1S 9460:3� 0:26 9574 9448
�b1S 9300:6� 10 9542 9359
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FIG. 1. Illustration of masses in the third column in Table II.
The left thick bars in each of the three columns indicate data and
right thick bars the results of computation. The theory mass
10 461 MeV corresponds to a state dominated by the d-wave,
apparently not easy to identify experimentally [31].
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sons. All D states, whether one considers singlets or trip-
lets, or J � 1, are expected in other approaches to have
similar masses [65,66]. The same happens in LF QCD. In
Table II, the state �1D1 is known only in theory, and
masses of both states �1D2 and �3D1 are near the one
experimentally known mass of 10 161 MeV for the
D-meson that presumably has J � 2. The excited triplet
state �3D1 is not known experimentally but comes out of
the calculation as dominated by its d-wave component. In
Fig. 1 for b �b mesons, the known mass of 10 161 MeV is
shown in comparison with the theoretical mass of the �
state dominated by d-wave, and, in Fig. 2, it is shown in
comparison with all three theoretical results for D states
with J � 2 and J � 1.

The range of coupling constants�0 and quark massesm0

for which the Hamiltonians HQ �Q�0
can match the data for

b �b mesons, as illustrated in Tables I and II, and in Figs. 1
and 2, is summarized using these examples in Table III
(subscript 0 is omitted). Note that the fit to all 12 meson
masses points to the much larger coupling constant and
quark mass at considerably smaller �0 than in the two
similar cases with fits to seven or only two middle mesons.
This feature most probably emerges because the term �2R
in the radial factor 1� �2R in Eq. (49) is set to 0 in the
simplest version of the approach. Splittings between
s-wave mesons, including the �b and � family, are sensi-
tive to the short-distance dynamics that depends on the
term �2R. Calculation of the term �2R requires a full
fourth-order RGPEP analysis. In the absence of �2R, one
can nearly reproduce masses of the s-wave states at the

price of increasing � and m. However, it is clear that the
fourth-order calculation of the term �2R must be carried
out in order to narrow the range of possible values of �
and m.

C. Masses of c �c mesons

Masses of c �c mesons can be studied in the simplest
version of the Hamiltonian approach analogously to the
case of b �b mesons discussed in the previous subsection.
Table IV shows results of two fits: to three middle masses
in the known spectrum, and to all 11 masses of well-
established mesons with small decay widths. Masses of
two theoretical D states with J � 2 can in principle be
compared with the one experimentally known mass of
3836 MeV for a meson whose J � 2 needs confirmation
[31]. Figure 3 illustrates the results for c �cmesons obtained
from the fit to the three middle masses in the window (the
third column in Table IV), the D-mesons with J � 2 are
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FIG. 2. Illustration of masses in the fourth column in Table II.
The left thick bars in each of the three columns indicate data and
right thick bars results of computation. The theory D-state mass
changes by only 15 MeV, to 10 446 MeV, when one changes ‘‘fit
to middle’’ to ‘‘fit to all.’’

TABLE III. Parameters in H�0
for b �b mesons.

Parameter �1 7 middle all 12

� [MeV] 3697.67 3779.8 3252.3
m [MeV] 4856.92 4835.9 4979.7
� 0.325 95 0.288 39 0.507 38

TABLE IV. Masses of c �c mesons (in MeV). The third column
results from the fit of the coupling constant � and quark mass m
at the indicated optimal value of � to only 3 middle masses of c �c
mesons, i.e., masses of �0�1P�, �1�1P�, �2�1P�, and this fit
implies the oscillator parameters ! � 284:93 MeV and kp �
3:0642. The fourth column results from the fit to masses of all 11
mesons ��1S�, J= �1S�, �0�1P�, �1�1P�, �2�1P�, ��1S�,  �2S�,
 3770,  4040,  4159,  4415, and the corresponding oscillator
parameters are ! � 278:72 MeV and kp � 1:3396. Question
marks regarding D states are explained in the text.

Meson Experiment [31] Fit to middle Fit to all

� [MeV] 
 
 
 1990.0 1934.2
m [MeV] 
 
 
 1553.3 1577.4
� 
 
 
 0.343 35 0.414 43
 4415 4415� 6 4505 4462
 4159 4159� 20 4178 4152
 4040 4040� 10 4122 4083
1D2 3836?� 13 
 
 
 3801
3D2 3836?� 13 
 
 
 3793
 3770 3770� 2:4 3773 3756
 2S 3686:093� 0:034 3698 3662
�c2S 3638� 5 3619 3557
�21P 3556:26� 0:11 3560 3551
�11P 3510:59� 0:1 3507 3481
�01P 3415:16� 0:35 3412 3340
J= 1S 3096:916� 0:011 3199 3156
�c1S 2980:4� 1:2 3111 3024
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not illustrated. In Fig. 4, illustrating results from the fit to
the masses of all 11 c �c mesons (the fourth column in
Table IV), all three states with d-waves; the triplet J � 1
state corresponding to  3770, the triplet state, and the
singlet state with J � 2, are indicated.

Table V shows examples of parameters that fit masses of
c �c mesons, in comparison to the examples of parameters
from Table III that fit masses of b �b mesons. It is plausible
that the anomalously large result of �� 0:5 for bottom

quarks merely indicates that a fit to all masses can push
parameters toward explanation of the large s-wave split-
tings at the expense of theoretical consistency of the ap-
proach. It is expected that � in b �b mesons should be
smaller than in c �c mesons, in correspondence with the
increase of �0. Calculation of the term �2R in fourth-order
RGPEP should clarify the situation considerably.

At this point, one can observe that the Hamiltonians
HQ �Q�0

obtained for heavy quarkonia in the simplest ver-
sion of LF QCD seem to explain the tendency of potential
models to prefer larger values of the coupling constant and
quark masses than indicated by results based on perturba-
tive QCD [31]. Namely, when one forces a single non-
relativistic Hamiltonian with a Coulomb potential at short
distances and some confining potential at large distances to
fit data for masses of many mesons, instead of only the
middle ones in the window where a simple potential model
can be justified, the strong-interaction relativistic effects at
short distances are not well described. Similarly, at large
distances between quarks, a simple potential model cannot
reproduce effects due to interactions that involve gluons
‘‘in the air.’’ The parameters of potential models have to
increase artificially in order to keep reproducing the small-
est and largest masses of known mesons. One should
mention that quark models based on the Bethe-Salpeter
equation with a kernel that resembles a harmonic oscillator
potential at intermediate distances have been introduced a
long time ago [67] and extensive studies of the hadronic
spectrum have been made using models that successfully
incorporate such kernels [68]. A thorough discussion of
potential models in a related two-body Dirac formalism is
also available [69]. Since the Bethe-Salpeter equation or
two-body equations are ultimately related in QCD to an
entire set of the Dyson-Schwinger equations [70], one
should observe that the whole set corresponds in the
Hamiltonian approach to the eigenvalue problem in which
all effective-particle Fock sectors are explicitly included.

A characteristic feature in Table V is that the quark mass
varies slowly with changes of �0 while the coupling con-
stant varies relatively quickly. The width parameter �
occurs in third power in the oscillator frequency ! in
Eq. (48). Therefore, there is a possibility to keep a whole
set of meson masses approximately constant when �0 is
changed a little by a considerably larger percentage of
change in �, while an a priori possible compensating
change of the quark mass cannot be large because the

 

E
 [ M

eV
]

ηc J/Ψ χc

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

2980

3638

3097

3686
3770

4040

4159

4415

3836

3415
3511
3556

3024

3557

3156

3662
3756

4083
4152

4462

3793
3801

3340

3481

3551

FIG. 4. Illustration of masses in the fourth column in Table IV.
The left thick bars in each of the three columns indicate data and
right thick bars results of computation.

TABLE V. Examples of parameters in H�0
that fit masses of c �c

mesons, compared with the examples of parameters that fit
masses of b �b mesons.

Parameter b �b middle b �b all c �c middle c �c all

�0 [MeV] 3779.8 3252.3 1990.0 1934.2
m [MeV] 4835.9 4979.7 1553.3 1577.4
� 0.288 39 0.507 38 0.343 35 0.414 43
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FIG. 3. Illustration of masses in the third column in Table IV.
The left thick bars in each of the three columns indicate data and
right thick bars the results of computation.
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overall scale of masses is dictated by Eq. (54). The eigen-
values x are negative for the smallest-mass mesons and
positive for the other mesons. Thus, variation of the quark
mass is limited by the requirement of preserving the rela-
tivistic structure of the spectrum in Eq. (54).

Finally, one should stress that the adjustment of � andm
at � � �0, which includes a choice of �0, does not provide
a check on the renormalization group variation of the
parameters � and m with � beyond the qualitative state-
ment of agreement with expectations regarding the
magnitudes of the parameters. In order to study the renor-
malization group structure, one would have to consider a
plausible choice of � andm at certain �0, evolve the values
of� andm in RGPEP forH� to other values of �, and solve
the eigenvalue problems for different values of �. One
would need to include the fourth-order RGPEP to begin
with and also perform nonperturbative computations of the
spectra of window Hamiltonians with more than one Fock
sector built from effective particles.

D. Wave functions

An important aspect of the LF Hamiltonian dynamics is
that it provides wave functions of bound states. The dis-
cussion that follows is limited to an illustration on ex-
amples of how the Hamiltonian approach works using
wave functions of mesons J= and the ground state of
�. Masses of these mesons are not described particularly
well in the approximate approach. But their wave functions
are sufficient to display the main features. The states
corresponding to J= and � contain s-wave and d-wave
wave functions that are invariant under boosts. Section II E
explains how these states are constructed using the wave
functions.

The J= and � wave functions have the structure in-
dicated in Eq. (62). The s-wave wave function is denoted
by S, and the d-wave wave function by D. Both are
functions of the relative momentum ~k of the two effective
quarks only through its length, k � j ~kj. This is a conse-
quence of the wave functions S and D depending on the
invariant mass squared of the two quarks, M2 � 4�m2 �

k2�. The relative momentum ~k shares many properties with
the momentum-space variable typically introduced in non-
relativistic potential models, but one has to remember that
the variable ~k appears in QCD according to the rules of LF
dynamics.

The wave functions S and D are shown in Figs. 5 and 6
in four versions, two for the ground state of � and two for
J= . Two versions per meson are obtained using the two
choices of parameters � and m that are given in Tables II
and IV. Numerical values of the wave functions can be read
from the tables given in Appendix G.

It is visible that the d-wave component is much larger in
size in the charm case than in the bottom case, although the
s-wave components are similar in both cases at small

relative momenta. This result can be attributed to much
more relativistic relative motion of quarks in J= than in
�. Relativistic motion leads to the enhancement of spin-
dependent interactions that mix the d-wave component
with the s-wave component.

A comment is in order regarding decay widths of the
mesons. In the leading approximation, the leptonic decay
amplitudes are proportional to the s-wave wave functions
at the origin in position space (integrals of the wave
functions in momentum space). There is little doubt that
the leptonic decay widths in the Hamiltonian approach to
QCD will be qualitatively similar to the widths obtainable
in potential models. On the other hand, inclusion of the
term �2R in the effective potential and corresponding self-
interactions in HQ �Q�, in a calculation similar to the sim-
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FIG. 5. Four examples of s-wave wave functions in b �b and c �c
mesons. Two curves labeled b �b correspond to the ground state of
� and the two curves labeled c �c correspond to J= . The curves
are presented in two versions that correspond to the two sets of
parameters � and m shown in Tables II and IV. One set was
adjusted to masses in the middle of the known spectrum, and the
other one to masses of all known mesons with small widths. The
label ‘‘m’’ refers to ‘‘middle’’ and the label ‘‘a’’ to ‘‘all.’’
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FIG. 6. Four examples of d-wave wave functions in the ground
state of � and in J= . The curves are labeled in the same way as
in Fig. 5.
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plest version discussed here, and further evaluation of the
gluonic components in the effective-particle Fock-space
basis in the eigenvalue problem for H�, may provide
quantitative insight into effects not accessible in potential
models. These effects may influence the leptonic decay
rates and need to be evaluated in order to precisely com-
pare the theory with data including the decay rates. The
point is that such studies appear feasible using the boost-
invariant Hamiltonian approach to QCD.

VI. CONCLUSION

The simplest approximate computation of masses of
heavy quarkonia in QCD with one flavor of quarks, still
using the gluon mass-gap ansatz to finesse a simple picture
in the jQ�

�Q�i sector, suggests that the boost-invariant
Hamiltonian approach offers a feasible path to extended
studies of quark and gluon dynamics in the light-front Fock
space. One can use creation and annihilation operators for
effective particles in order to explicitly construct the states
of heavy quarkonia. The approach produces an approxi-
mate constituent picture that is relativistic and usable for
the description of fast-moving mesons. Masses of the
mesons are reproduced in the simplest version reasonably
well for reasonable values of the coupling constant � and
quark mass m using a small set of basis states in the
effective eigenvalue problem. In the simplest version, the
short-distance high-energy effects and large-distance gluon
dynamics are not fully described. Therefore, it is not
surprising that the simplest approach can be used to repro-
duce only a small set of meson masses that lie in the middle
of the spectra of small effective Hamiltonians called ‘‘win-
dows,’’ see Sec. III. But there is also no immediate reason
found to question that the LF Hamiltonian approach to
QCD may provide an interesting alternative to other
approaches.

The Hamiltonian calculus produces the boost-invariant
wave functions that describe heavy quarkonia in terms of
their virtual effective-particle components in the LF Fock
space. In principle, these wave functions not only provide a
relativistic quantum image of a single hadron, but they also
can be used in description of decays, production, and
scattering of the quarkonia using QCD. Although the cases
discussed here concern only b �b and c �c systems, the ex-
tension to the case of unequal masses, such as b �c or c �b
mesons, requires only that instead of the relative momen-
tum variable ~k used here (see Appendix B) one uses the
momentum variable defined in an analogous way by the
relations

 k? � �?; (85)

 

�����������������
m2

1 �
~k2

q
�

�����������������
m2

2 �
~k2

q
�

������������������������������������������������
m2

1 � �
?2

x1
�
m2

2 � �
?2

x2

s
:

(86)

Associated momentum-space techniques to handle two-
and three-particle systems with different masses in the
context of studies of the bound-state structure or decay
are sufficiently advanced in the LF approach to handle
states that contain quarks and gluons [71]. It is also known
that the gluon mass ansatz technique works reasonably
well in the case of gluonium [72]. Thus, it seems plausible
that the case of different quark masses may be treated with
explicit inclusion of the quark-antiquark-gluon sector.
Knowing the corresponding wave functions, one can at-
tempt to describe a host of new exclusive or semiexclusive
processes that involve heavy quarkonia in arbitrary motion.

The formalism of LF dynamics in quantum field theory
involves a choice of an axis in space, especially in gauge
theories such as QCD, where one has to make a choice of
gauge depending on that axis. Therefore, the rotational
symmetry of the theory is not explicit in the LF
Hamiltonian formalism. Most of the expressions one en-
counters depend on the distinguished axis. It is reassuring
that the LF Hamiltonian approach to heavy quarkonia
produces in its simplest version developed here explicit
expressions for bound-state spectra in which masses are
exactly arranged in multiplets corresponding to the total
angular momentum (meson spin) J � 0, J � 1, and J � 2,
and the wave functions of the corresponding states are
classifiable as waves s, p, d, and f. Nevertheless, the
complete expressions for the wave functions contain addi-
tional relativistic factors that are entirely outside the scope
of nonrelativistic potential models, see Eqs. (34)–(36), and
Appendix C.

The most attractive feature of the boost-invariant
Hamiltonian approach to heavy quarkonia, the one that
makes it an interesting candidate for a new expansion
method in solving QCD [3], is that the renormalization
group procedure for effective particles can be systemati-
cally studied order by order in expansion in powers of the
effective coupling constant �� with � on the order of quark
masses. Such expansion may provide a reasonably con-
verging sequence of approximations if �� is much smaller
than 1. This study shows that �� 1=3 is a reasonable
candidate to reproduce the masses of b �b and c �c mesons
in systematic calculations. Genuine fourth-order RGPEP
studies will further clarify if this hope is realistic.

On the other hand, careful readers have certainly ob-
served that the LF Hamiltonian dynamics with a harmonic
oscillator potential leads to the eigenvalues M2 that are
proportional to the angular momentum in the relative
motion of quarks, like in the Regge trajectories. This is a
phenomenologically desired feature, although one cannot
trust the oscillator picture over large distances. But when
one considers highly excited states, their masses increasing
as dictated by the quadratic potential, the probability of
emission of effective gluons will be also increasing. A
string of gluons may be formed, with new potentials be-
tween heavy effective gluons that require further investi-
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gation. The Hamiltonian approach could thus lead to a
quantum theory of the gluon string and provide another
reason for the same Regge-like behavior of the spectrum,
with a different slope than implied by the two-quark ap-
proximation and with validity extending to much larger
distances than the size of a typical hadron. In fact, for a
firm chain of quantum gluons to form a string, each pair of
the neighboring gluons must be held together stronger than
by a linear potential, and a quadratic potential satisfies this
condition. The pilot calculation described here suggests
that the oscillator frequencies are on the order of 1 inverse
fermi, and the oscillator potential term grows as the relative
distance squared in fermis with a coefficient given by the
quark mass. This means that the oscillator potential is
strong for the interquark distances larger than about a fermi
and the quantum theory of the gluon strings with a similar
potential between gluons may turn out to be useful in
phenomenology. Thus, the structure emerging in this pilot
study of the boost-invariant Hamiltonian approach to QCD
has a reasonable chance to grow toward a realistic physical
picture supported by a mathematically well-defined theory.
This is more than another reason to undertake the fourth-
order studies of the approach.
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APPENDIX A: TERMS IN H�

This appendix lists details of terms in Eq. (20) for H�.
The kinetic energy term for the effective quarks reads

 Tq� �
X
�c

Z
�k�

k?2 �m2
�

k�
�by�k�cb�k�c � d

y
�k�cd�k�c�;

(A1)

and for certain � � �0 one can set

 m2
�0
� m2 �

4

3
g2
Z
�x��~r2

	�x�f
2
�0
�m2;M2�


j�	j���g�� �

n�n�
p�2

M2�m2

x �

M2 �m2 ; (A2)

with M2 � �?2=x� ��?2 �m2�=�1� x�. The integra-
tion measure �x�� stands for dxd2�?=�16�3x�1� x��.
That the effective mass does not depend on the particle
motion is a unique property of the RGPEP in LF dynamics.
~r	�x� denotes the small-x regularization factors
r	�x�r	�1� x�, where r	�x� � x	
�x�. The gluon kinetic
energy term reads,

 Tg� �
X
�c

Z
�k�

k?2 ��2
�

k�
ay�k�ca�k�c; (A3)

but an explicit expression for �2
� [36,37] is not needed in

this work.
The emission and absorption term, Y� � f�Yqg�, is

 Y� � g
X
123

Z
�123�r	�x1=3�r	�x2=3�f��M2

12; m
2�

 �j23b
y
�2a

y
�1b�3 � �j23d

y
�2a

y
�1d�3 � H:c:�; (A4)

where j23 � ~	t123g��j
�
23"

�	
1 , �j23 � ~	t132g�� �j�32"

�	
1 , ~	 de-

notes the 	-function of three-momentum conservation
times 16�3, ta with a � 1; . . . ; 8 denote 3 3 matrices
of generators of color SU�3� gauge transformations for
quarks, " is the gluon polarization four-vector, j�23 �
�u2��u3, and �j�32 � �v3��v2.

The potential term, V� � f�Vq �q�, is

 V� � �g
2
X
1234

Z
�1234�~	ta12t

a
43V��13; 24�by1d

y
3d4b2;

(A5)

where (see Ref. [4])

 V��13; 24� �
d���k5�

k�5
j�12

�j�43f��M
2
13;M

2
24�

 �
�z�~r	�x5=1�~r	�x5=4�F 2��1; 253; 4�

� 
��z�~r	�x5=3�~r	�x5=2�F 2��3; 154; 2��;

(A6)

and, for example,

 

F 2��1; 253; 4�
P�

�
x1�M

2
52 �m

2� � x4�M
2
53 �m

2�

�M2
52 �m

2�2 � �M2
53 �m

2�2

�
exp

�
�
�M2

52 �m
2�2 � �M2

53 �m
2�2

�4

�
� 1

�
: (A7)

Mij � �ki � kj�
2 is the invariant mass of particles i and j. Momenta are labeled according to Fig. 7. P� denotes the sum of

plus momenta of annihilated quarks. The sum over gluon polarizations,

 d���k5� � �g�� �
n�k�5 � k

�
5 n

�

k�5
; (A8)

involves momentum k�;?5 � "�z��k�;?1 � k�;?2 � with "�z� � 
�z� � 
��z�, and z � �k�1 � k
�
2 �=�k

�
1 � k

�
3 �, x5 � jzj, and

k�5 � k?2
5 =k�5 . The instantaneous interaction between effective quarks, Z� � f�Zq �q�, is

BOOST-INVARIANT HAMILTONIAN APPROACH TO HEAVY . . . PHYSICAL REVIEW D 74, 105015 (2006)

105015-21



 Z� � �g2
X
1234

Z
�1234�~	ta12t

a
43Z��13; 24�by�1d

y
�3d�4b�2;

(A9)

where

 Z��13; 24� �
1

k�2
5

j�12
�j�34f��M

2
13;M

2
24�

 �
�z�~r	�x5=1�~r	�x5=4�

� 
��z�~r	�x5=3�~r	�x5=2��: (A10)

APPENDIX B: RGPEP SCALING WITH �

This appendix includes contributions that originate in
the g��-parts of the sums over gluon polarizations, which
were not explicitly described in Ref. [4].

The analysis of scaling with �0 for RGPEP factors in the
window eigenvalue equation forH�0

with a mass ansatz�2

is based on the similarity between the structure of the
eigenvalue Eq. (39) and the Schrödinger equation with
Coulomb potential in QED (the same kind of the leading
picture is also found in Yukawa theory [46]). The sub-
scripts �0 and 0 are often omitted to simplify notation.

When the relative momentum of electron and positron in
positronium is written as

 

~k � �� ~p; (B1)

where � is the reduced mass of the fermions, the
Schrödinger equation for positronium, neglecting spin ef-
fects,

 

k2

2�
 � ~k� �

Z d3k0

�2��3
4��

� ~k� ~k0�2
 � ~k0� � E � ~k�; (B2)

takes the form

 p2� ~p� � 2
Z d3p0

�2��3
4�

� ~p� ~p0�2
� ~p0� � x� ~p�: (B3)

The eigenvalue is E � x 1
2��

2, and the ground state has
the eigenvalue E � E0 with x � x0 � �1 and wave func-
tion

 0� ~p� �
Np

�p2 � 1�2
: (B4)

Higher states have x � �1=n2 with natural n greater than
1.

In the QCD Schrödinger equation with HQ �Q�, the self-
interaction terms and the potential kernel contain similar
expressions. The self-interaction terms are easy to analyze
if one knows how to analyze the structure of v� in the
eigenvalue Eq. (39). At certain � � �0, with �0 parame-
trized according to Eq. (42), one has v�0

�13; 24� �
v0�13; 24� and

 v0 � �Ag��j
�
12

�j�43 � B
j�12

�j�43

P�2 ; (B5)

 A �
1

jzj

�
f0�13; 24�

V
P�
�

1

2
w0�13; 24�

�
; (B6)

 B �
1

z2

d
jzj

�
f0�13; 24�

V
P�
�

1

2
w0�13; 24�

�

�
1

z2 f0�13; 24�Z; (B7)

where

 V � 
�z�~r	�x5=1�~r	�x5=4�F 2��1; 253; 4�

� 
��z�~r	�x5=3�~r	�x5=2�F 2��3; 154; 2�; (B8)

 Z � 
�z�~r	�x5=1�~r	�x5=4� � 
��z�~r	�x5=3�~r	�x5=2�; (B9)

 

w0

jzj
�


�z�~r	�x5=1�~r	�x5=4�f52f53

jzj�m2 �M2
52�=x1 ��

2�2; 5; 3�

�

��z�~r	�x5=3�~r	�x5=2�f54f51

jzj�m2 �M2
54�=x3 ��

2�1; 5; 4�

�

�z�~r	�x5=1�~r	�x5=4�f52f53

jzj�m2 �M2
53�=x4 ��2�2; 5; 3�

�

��z�~r	�x5=3�~r	�x5=2�f54f51

jzj�m2 �M2
51�=x2 ��

2�1; 5; 4�
; (B10)

 

d
jzj
� 
�z�

�
M2

52 �m
2

2x1
�

M2
53 �m

2

2x4

�

� 
��z�
�
M2

51 �m
2

2x2
�

M2
54 �m

2

2x3

�
; (B11)

and fij denotes f�0
�m2; �ki � kj�

2�.
In order to describe the structure of v0 for relative quark

momenta comparable with the strong Bohr momentum,
introduced in Eq. (41), it is convenient to write expressions
for F �1; 253; 4�=k�5 and F �3; 154; 2�=k�5 that contribute to
V using identities

 M 2
253 �

M2
52 �m

2

x1
�M2

13 �
M2

53 �m
2

x4
�M2

24;

(B12)

 

FIG. 7. Momentum labels in potential terms.
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 M 2
154 �

M2
54 �m

2

x3
�M2

13 �
M2

51 �m
2

x2
�M2

24:

(B13)

One starts with expressions, see Eq. (A7),
 

F 2�1; 253; 4�
k�5

�
1

jzj

x1�M
2
52 �m

2� � x4�M
2
53 �m

2�

�M2
52 �m

2�2 � �M2
53 �m

2�2

 �ff� 1�; (B14)

 

F 2�3; 154; 2�
k�5

�
1

jzj
x2�M

2
51 �m

2� � x3�M
2
54 �m

2�

�M2
51 �m

2�2 � �M2
54 �m

2�2

 �ff� 1�; (B15)

where

 M 2
51 �m

2 �D1; (B16)

 M 2
52 �m

2 �
x1

x2
D1; (B17)

 M 2
53 �m

2 �D3; (B18)

 M 2
54 �m

2 �
x3

x4
D3; (B19)

and

 D 1 �
x1

jzj

��
q? �

z
x1
k?13

�
2
�m2 z

2

x2
1

�
; (B20)

 D 3 �
x3

jzj

��
q? �

z
x3
k?13

�
2
�m2 z

2

x2
3

�
: (B21)

The definitions include

 z � x1 � x2; (B22)

and it is helpful to use three-dimensional CMF relative
momentum variables ~k13 and ~k24, and ~q � ~k13 � ~k24. So,
for ij � 13 and 24,

 xi �
1

2
�

k3
ij

2
������������������
m2 � ~k2

ij

q ; (B23)

and

 z �
k3

13

M13
�

k3
24

M24
: (B24)

The first step is to establish that the potential does not
generate any small-x singularities in its fully relativistic
form [4]. The next step is to analyze scaling with �. The
key to scaling with � for given quark mass m is the
substitution

 

~k ij � kB ~pij; (B25)

where kB is the strong Bohr momentum of Eq. (41). The
dimensionless variables ~pij, with ij � 13 or 24, are typi-
cally on the order of 1 in both the purely Coulombic case of
QED and in the QCD case that includes the harmonic
oscillator potential studied here. A dimensionless momen-
tum transfer ~p is defined by

 ~q � kB ~p; (B26)

so that ~p � ~p13 � ~p24. Factors ff limit j ~pj to values of
order �4�=3�2��2

p, and the additional damping due to � > 0
provides a possibility to formally separate the dominant
terms in the limit �! 0 because the Coulomb eigenvalue
problem is dominated by the dimensionless momenta pij
on the order of 1. The outermost factor f0 in the potential
terms limits changes of momenta pij from above by ���0:5

and this f0 becomes irrelevant for very small �, leaving the
Coulomb interaction and the harmonic oscillator term that
provide the leading approximation.

Observe that

 

F 2�1; 253; 4�
k�5 �ff� 1�

�
�M2

253 � C253�jzj�1

M4
253 � 2M2

253C253 �D253

; (B27)

 

F 2�3; 154; 2�
k�5 �ff� 1�

�
�M2

154 � C154�jzj
�1

M4
154 � 2M2

154C154 �D154

; (B28)

where

 C253 �
x2

1M
2
13 � x

2
4M

2
24

x2
1 � x

2
4

; (B29)

 D253 �
x2

1M
4
13 � x

2
4M

4
24

x2
1 � x

2
4

; (B30)

 C154 �
x2

3M
2
13 � x

2
2M

2
24

x2
3 � x

2
2

; (B31)

 D154 �
x2

3M
4
13 � x

2
2M

4
24

x2
3 � x

2
2

: (B32)

Using Eq. (B25), and introducing two three-vectors,

 

~� �
~k13 � ~k24

m
� O���; (B33)

 ~� � ~q=q; (B34)

one obtains

 M 2
253 � C253 �M2

154 � C154 �
O��5�

jzj
(B35)

 �
q2

jzj
�1� �z�z ~� ~�� �

O��5�

jzj
; (B36)
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 D253 � C2
253 � D154 � C2

154 �
O��7�

z2 (B37)

 �
q4

z2 �
2
z�~� ~��2 �

O��7�

z2 : (B38)

Thus,

 

F 2�1; 253; 4�
k�5 �ff� 1�

�
F 2�3; 154; 2�
k�5 �ff� 1�

�O��� (B39)

 �
1

q2 �
�z�z ~� ~���2

z�~� ~��2

q2 �O���: (B40)

The effective-gluon exchange term w0 in Eq. (B10), is

 

w0

jzj
� �

2
�z�~r	�x5=1�~r	�x5=4�f52f53

q2 ��2�2; 5; 3� �O��3�4��

�
2
��z�~r	�x5=3�~r	�x5=2�f54f51

q2 ��2�1; 5; 4� �O��3�4��
; (B41)

and the intermediate gluon spin sum contributes

 d � q2 �O��6�: (B42)

In summary, the factors A and B, defined in Eqs. (B6)
and (B7), scale as

 A ’ �f0
1

q2

�
1�

ff
f0

�
f0 �

q2

q2 ��2

�
� c

�
; (B43)

 B ’ �f0
4m2

q2
z

�
�
ff
f0

�
f0 �

q2

q2 ��2

�
� c

�
; (B44)

 c � ~ez ~� ~� ~�� ~ez ~�� ~ez ~� ~� ~�� �O��
3�; (B45)

and c� �2 because j ~�j � O���. These scaling results are
valid even if the mass ansatz �2 is of the order of � instead
of 1.

Scaling analysis of the self-interaction terms begins with
the RGPEP expression for renormalized effective quark
mass terms in the eigenvalue Eq. (39),
 

	m2
i

xi
�

4g2

3xi

Z
�y��f2�m2;M2�

2

1� y



�
m2y2 � �1� �1� y�2�

�
�?

y

�
2
�



�
1

M2 �m2 �
1

M2
i �m

2

�
; (B46)

where

 M 2
i �m

2 �M2 �m2 �
�2

y
; (B47)

 M 2 �m2 �
�?2 � y2m2

y�1� y�
; (B48)

and �2 is the mass ansatz for the effective gluon accom-
panying the quarks i0 and j. One can introduce the variable

 q? � �?; qz � ym; (B49)

and observe that when �0 � �0:5��m, the magnitude of q is
limited by the RGPEP form factor f2 to the range between
0 and �1�2�m. Corrections of order y cancel out or multi-
ply terms of order q2. If �2 is of order 1, deviations from
y � 0 introduce corrections of order �4�6� and can be
formally neglected when one keeps only terms of order
�2 and �4. Note that the terms of order �3 cancel out
completely, and even for �2 of order � the first correction
due to y � 1 is of order �4�6�. Then, since the integrand is
symmetric in t � cos
, where qz � qt, and since x1x2

differs from 1=4 in order �2, the leading contribution
from the self-interactions is

 

	m2
1

x1

�
	m2

3

x3
� 8m

4

3

g2

16�3

Z
d3qff

�
1

q2
z
�

1

q2

�
�2

�2 � q2 :

(B50)

APPENDIX C: SPINORS

The 4 4 matrix wave function �ij in Eq. (35), is
written using spinors uk;s and vk;s that are obtained by
applying matrix B�k;m� from Eq. (37) to spinors at rest,
u0;s and v0;s, which are defined as

 u0;s �
�������
2m
p �s

0

� �
; (C1)

 v0;s � 2s
�������
2m
p 0

� �s

� �
: (C2)

�s denotes standard two-component spinors, with upper
component equal 1=2� s and lower 1=2� s, and �s means
�s. Instead of s � �1=2, � � 2s with values �1 is often
used below. The above spinors correspond to fermions at
rest in the frame of reference in which one carries out the
calculation for the bound state with momentum compo-
nents P� and P?. The discussion below is simplified to the
case P? � 0 since the transverse motion of the bound state
does not introduce any change in the final formulas.

The wave function �� ~kij; si; sj� in Eq. (36) is defined

using the matrix �CMFij� ~kij� and spinors u ~kij;si and v
� ~kij;sj

that describe the fermions in the CMF of the quarks i and j.
These are obtained by standard matrices for boosts along
~kij instead of the LF boosts. Namely,

 u ~k;� � L� ~k�
�������
2m
p ~�~k�

0

� �
; (C3)

 v~k;� � L� ~k��
�������
2m
p 0

~�~k ��

" #
; (C4)
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 L� ~k� �
1��������������������������

2m�Ek �m�
p �6k� �m��: (C5)

The two-component spinors at rest are turned away from
the z-axis using a 2 2 matrix �� ~k�:

 ~� ~k� � �� ~k���; (C6)

 �� ~k� �

������
k�

m

s ��������������������������
2m�Ek �m�

p
�k� �m�2 � k?2

�k� �m� �?k?�3�:

(C7)

The matrix � introduces the spinor basis in which the wave
function �CMFij� ~kij� satisfies a rotationally symmetric ei-
genvalue equation in the leading approximation. The ma-
trix � has been used before by Melosh [48] as a candidate
for the description of how the constituent quarks are related
to current quarks, and by Brisudova and Perry [49] in LF
eigenvalue problems. Here, the constituent quarks are dy-
namically related to current quarks using RGPEP and �
plays only the kinematical role of choosing a basis for
spinors. The matrix � is needed because there is a change
of frame of reference involved in expressing LF spinors in
the frame of reference in which the whole quarkonium
has momentum P� and P? � 0 in terms of the spinors
in the CMF of the pair of quarks. For example, uk1;s1

�

L13u ~k13;s1
, where

 L ij � ��
����������
P�

Mij

s
���

����������
Mij

P�

s
: (C8)

When one uses the slightly rotated basis for the two-
component spinors in the CMF of fermions, as indicated
in Eqs. (C3) and (C4), and than calculates the spinors in the
frame of reference where the bound-state eigenvalue P� is
calculated, one obtains spinors that are used in Eq. (34).
E.g.,

 ui � LijB�kij; m��
�1� ~kij�L

�1� ~kij�u ~k13;s1
: (C9)

The matrix � is defined to render

 B�k13; m���1� ~k13�L�1� ~k13� � 1; (C10)

and u1 � L13u ~k13;s1
. Similarly, u2 � L24u ~k24;s2

, v3 �

L13v� ~k13;s3
, and v4 � L24v� ~k24;s4

.

APPENDIX D: BREIT-FERMI TERMS

In the leading approximation for small �, the potential
kernel given in Eq. (40) is
 

v0 � f
1

q2 g��j
�
12

�j�43 � ff
�2

q2 ��2



�
4m2j�12

�j�43

P�2q2
z
�
g��j

�
12

�j�43

q2

�
: (D1)

The Breit-Fermi terms in this article originate from the first
term. Note that the first term contains only one form factor
and this form factor limits the change of the square of the
dimensionless momentum pij in the scaling analysis by a
number of the order of �2��1, which is much larger than 1
when 0< �< 1

2 , see Appendix B. In contrast, the second
term contains two form factors and in the scaling analysis
these form factors limit the dimensionless momentum
transfer p � j ~pj between quarks by a small number on
the order of �jpzj=p��2

p�4�=3�2�, see Sec. III D and
Appendix B. This difference between the form factors
implies that in the first term the dominant momentum scale
is of order 1, originating from the Coulomb potential, while
in the second term the allowed momentum exchange p is in
principle infinitesimal as long as � > 0. Thus, the second
term would be negligible in the scaling analysis if it did not
contain the diverging factor q�2

z . This divergence is regu-
lated by the falloff of the ansatz �2 as a function of qz
when qz tends to zero, as required by the condition that the
ansatz does not produce a small-x divergence [4].

In the leading approximation, the current factors are
diagonal in spin: j�12

�j43� equals 4m2, and j�12
�j�43 always

equals 4P�2 times
������������������
x1x2x3x4
p

. The square root reduces to
1=4 since all the xs differ from 1=2 only by terms of order
� or smaller. In this case, the second term in Eq. (D1) is the
same as the integrand in Eq. (B50) for self-interactions.
The self-interaction and the second term in Eq. (D1) pro-
duce together the harmonic oscillator potential in Eq. (50)
with the dimensionless spring constant given in Eq. (53)
[4].

Beyond the leading order, one has to analyze the factor
j�12

�j43�. It can be rewritten in a matrix notation of Eq. (51).
The BF terms in the potential kernel V act on the 2 2
matrix wave function  which is defined as follows. Using
results from Appendix C, the sum over quark spins in
Eq. (39) can be written as
 X
s2s4

j�12
�j43��s2s4

� ~k24� � �u ~k13;s1
�0Ly13�

0��L24K24�0

Ly24�
0��L13v� ~k13;s3

; (D2)

 Kij � �6kij �m��CMFij� ~kij���6kij �m�; (D3)

where k � �k0; ~k�, �k � �k0;� ~k�, and k0 �
�����������������
m2 � ~k2

p
. This

4 4 matrix notation can be replaced by a 2 2 matrix
notation using

 �sisj�
~kij� � �u ~kij;si�CMFij� ~kij�v� ~kij;sj

�
�����������������������
1� ~k2

ij=m
24

q
�j ~�yi � ~pij�~� �j; (D4)

where

 � ~pij� � a� ~b 
 ~� (D5)

is the wave function that appears in Eq. (50): a and ~b are
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together four functions of the dimensionless relative mo-
mentum ~pij. The fourth root in front of  is introduced
because the measure factor,

 

Z dx2d2�?24

x2x4
�
Z 2d3k24�������������������

m2 � k2
24

q ; (D6)

needs to be symmetrized with respect to relative momenta
~k24 and ~k13. The resulting potential contains a product of������������������������

1� ~k2
13=m24

q
and

������������������������
1� ~k2

24=m24
q

in the denominator, and
the integration measure becomes d3k24 like in a nonrela-
tivistic Schrödinger equation. Thus, the leading contribu-
tion of the measure to BF terms throughM in Eqs. (49) and
(51) is

 M � � 1
16�

4
3��

2� ~p2
13 � ~p2

24�: (D7)

The spin contribution 1� �2S in Eq. (49) is obtained
from the sum over quark spins

 

X
s2s4

j�12
�j43�

4m2

�s2s4
� ~k24�������������������������

1� ~k2
24=m24

q ; (D8)

using the two-component spinors in Eq. (C6) and the wave
function in Eq. (D5). One multiplies the whole eigenvalue
equation by ~�1 from the left and by �3 ~��3 from the right
and sums up over spins 1 and 3. Then, the kinetic energy
multiplies only the matrix � ~p13�, and the potential term
contains the matrix

 

S�l � ~p24�Sr�
4m2�Ek13

�m��Ek24
�m�

; (D9)

where, using �� � �0�� and the notation from Ref. [73],

 S�l �
�E13�m; ~k13 ~��L13�

�L24
E24 �m
~k24 ~�

� �
; (D10)

 S�r � �� ~k24 ~�;E24�m�L24�
�L13

� ~k13 ~�
E13 �m

" #
: (D11)

When one neglects terms that vanish faster than �2 in the
scaling analysis, the matrices L13 and L24 are equivalent
to 1 and the resulting matrix in the potential takes a fully
rotationally symmetric form,

 

�E13�m; ~k13 ~�����E24�m
~k24 ~�
���

~k24 ~�;E24�m����
� ~k13 ~�
E13�m

�

4m2�Ek13
�m��Ek24

�m�
: (D12)

The result is � �4�=3�2S=16, where

 S � �p2
13 � p

2
24�� ~p13 ~� ~p24 ~�� ~p24 ~� ~p13 ~�

� �i ~p24 ~� ~p24 ~��i � �i ~p24 ~��i ~p13 ~�

� ~p13 ~��
i ~p24 ~��

i � ~p13 ~��
i�i ~p13 ~�: (D13)

The first term in S is canceled by M from Eq. (D7), and

after summing over i � 1, 2, 3, one obtains Eq. (55).
Useful identities for Pauli matrices include

 �i ~b ~��i � � ~b ~�; (D14)

 �i ~a ~� ~b ~��i � ~a ~� ~b ~��2 ~b ~� ~a ~�; (D15)

 

�i ~a ~� ~b ~� ~c ~��i � � ~a ~� ~b ~� ~c ~��2 ~b ~� ~c ~� ~a ~�

� 2 ~a ~� ~c ~� ~b ~� : (D16)

APPENDIX E: ANGULAR INTEGRALS

The generic form of the integrals over angles in Eq. (50)
is

 Iij...l �
Z
d�q

qiqj . . . ql

� ~p� ~q�2
: (E1)

Using

 Jn �
Z 1

�1
dz

zn

p2 � q2 � 2pqz
; (E2)

 � �
p2 � q2

2pq
; (E3)

one has

 Jn � �Jn�1 �
��1�n � 1

2pqn
; (E4)

and

 I � 2�J0; (E5)

 Ii � 2�qJ1e
i
p; (E6)

 Iij � �q2��J0 � J2�s
ij
p � 2J2e

i
pe

j
p�; (E7)

 Iijk � �q3�J1 � J3��e
i
ps
jk
p � e

j
psikp � e

k
ps
ij
p �

� �q32J3e
i
pe

j
pekp; (E8)

where

 J0 �
1

pq
ln
p� q
jp� qj

; (E9)

 J1 � �J0 �
1

pq
; (E10)

 J2 � �2J0 �
1

pq
�; (E11)

 J3 � �3J0 �
1

pq

�
�2 �

1

3

�
; (E12)

and
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 eip � pi=p; (E13)

 sijp � 	ij � eipe
j
p: (E14)

APPENDIX F: BASIS FUNCTIONS

The kinetic energy and harmonic oscillator interaction
term are of the same form in the eigenvalue equations for
all mesons,

 2Hosc � ~p2 � kp�p; (F1)

with the spring tension kp given in Eq. (53). The
Hamiltonian that provides the basis for solving the eigen-
value equations is

 2Hb � p2 � kb�p: (F2)

The eigenfunctions of 2Hb,

 nlm� ~p� � nl�p�Ylm��p�; (F3)

 Ylm��p� �

��������������������������������
2l� 1

4�
�l�m�!
�l�m�!

s
Pml �cos
�eim; (F4)

contain the radial wave functions nl�p� that satisfy

 

�
p2 �

kb
p2 @pp

2@p �
l�l� 1�kb

p2 � xb

�
nl�p� � 0: (F5)

In terms of the scaled variable q � p=k1=4
b and the

eigenvalue xb � y
�����
kb
p

, the substitution �p� � ��q�=q
produces

 � �00 �
l�l� 1�

q2 ��q� � q2� � y��q�: (F6)

Eigensolutions normalized to
R
dqq2j �q�j2 � 1 are (L

denotes generalized Laguerre polynomials and P�n; k�
Pochhammer symbols)

 y � 4n� 2l� 3; (F7)

 �nl�q� � ��1�n
��������������������������������

2n!

��n� l� 3=2�

s
e�q

2=2ql�1Ll�1=2
n �q2�;

(F8)

 L�n�x� �
���� n� 1�

��n� 1�

Xn
k�0

P��n; k�xk

���� k� 1�k!
; (F9)

 P��n; k� � �k�1
m�0��n�m�: (F10)

The oscillator eigenvalues and corresponding radial basis
functions in momentum space, normalized to 1, are

 xb � �4n� 2l� 3�
�����
kb

p
; (F11)

 nl�p� � �nl�p=k
1=4
b �

1

k1=8
b p

: (F12)

APPENDIX G: DETAILS OF THE WAVE
FUNCTIONS

This appendix provides numerical data concerning the
wave functions S�k�=k andD�k�=k that are shown in Figs. 5
and 6. Tables VI and VII contain first 15 coefficients sn and
dn in the expansion of functions S�k� and D�k� in the basis
introduced in Appendix F, with kb � kp. The first 15
coefficients are sufficient to see how fast the expansion

TABLE VI. Coefficients sn and dn in Eq. (G1) in the case of
the ground state of � in two cases corresponding to the columns
third and fourth in Table II.

n Fit to middle sn Fit to middle dn Fit to all sn Fit to all dn

1 0.913 59 0.004 97 0.730 34 0.005 32
2 0.336 78 0.004 62 0.480 78 0.006 27
3 0.175 77 0.004 03 0.331 08 0.006 32
4 0.106 75 0.003 44 0.237 35 0.005 95
5 0.070 10 0.002 89 0.174 49 0.005 39
6 0.048 07 0.002 39 0.130 13 0.004 73
7 0.033 78 0.001 95 0.097 73 0.004 05
8 0.024 05 0.001 56 0.073 56 0.003 40
9 0.017 23 0.001 23 0.055 33 0.002 80
10 0.012 37 0.000 96 0.041 50 0.002 26
11 0.008 87 0.000 74 0.031 01 0.001 80
12 0.006 35 0.000 56 0.023 08 0.001 41
13 0.004 53 0.000 42 0.017 10 0.001 10
14 0.003 22 0.000 31 0.012 62 0.000 84
15 0.002 28 0.000 23 0.009 28 0.000 64

TABLE VII. Coefficients sn and dn in Eq. (G1) in the case of
J= in two cases corresponding to the columns third and fourth
in Table IV.

n Fit to middle sn Fit to middle dn Fit to all sn Fit to all dn

1 0.947 93 0.015 93 0.918 58 0.018 79
2 0.275 58 0.013 02 0.332 42 0.016 31
3 0.130 07 0.009 93 0.170 69 0.012 85
4 0.072 12 0.007 23 0.099 10 0.009 57
5 0.042 41 0.005 04 0.060 14 0.006 80
6 0.025 40 0.003 38 0.036 95 0.004 63
7 0.015 24 0.002 18 0.022 68 0.003 05
8 0.009 10 0.001 37 0.013 86 0.001 96
9 0.005 41 0.000 85 0.008 43 0.001 24
10 0.003 21 0.000 52 0.005 11 0.000 78
11 0.001 90 0.000 32 0.003 10 0.000 49
12 0.001 13 0.000 19 0.001 88 0.000 30
13 0.000 67 0.000 12 0.001 14 0.000 19
14 0.000 40 0.000 07 0.000 69 0.000 12
15 0.000 24 0.000 04 0.000 42 0.000 07
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of eigenstates in the used basis converges. The actual
calculation of these coefficients involved 30 s-wave and
30 d-wave basis states. The precision with which the
coefficients are produced in Tables VI and VII is limited
to the digits that were stable when the number of basis
states used in the calculation was increased above about 20

per wave. kB is the Bohr momentum;

 

S�k�
D�k�

� �
�
X1
n�1

sn�0n�1�k=kB�
dn�2n�1�k=kB�

� �
: (G1)

The wave functions are normalized to
R
dk�S2 �D2� � 1.
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