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We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino
flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are
the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently
couple flavor development on these trajectories through forward scattering-induced quantum coupling.
Employing the atmospheric-scale neutrino mass-squared difference (j�m2j ’ 3� 10�3 eV2) and values
of �13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad
ranges of energy and luminosity in roughly the ‘‘bi-polar’’ collective mode. We find that this large-scale
flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential,
sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and
Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process
nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino
flavor mixing, even with the small measured neutrino mass-squared differences.
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I. INTRODUCTION

In this paper we employ large-scale computational tech-
niques to tackle the vexing problem of neutrino flavor
transformation in the core collapse supernova environ-
ment. Neutrinos and the weak interaction play pivotal
roles in the core collapse/explosion phenomenon. The
Chandrasekhar mass core of iron-peak material left at the
end of the hydrostatic evolution of a massive star goes
dynamically unstable and collapses in �1 s to a proto-
neutron star configuration at nuclear density. The amount
of gravitational energy promptly converted into trapped
seas of neutrinos is �1% (� 1052 erg) of the core mass.
Within a few seconds after bounce �10% (� 1053 erg) of
the core mass (the gravitational binding energy) will be
emitted as neutrinos.

Nearly all of this gravitational energy is converted into
seas of �e, ��e, ��, ���, �� and ��� neutrinos in rough energy
equipartition. Though these neutrinos diffuse with short
mean free paths in the proto-neutron star, they decouple
near the stellar surface where the matter density falls
off steeply, the so-called neutrino sphere. Neutrinos propa-
gate nearly coherently above this point, though neutrino-

matter interactions, especially the charged current capture
reactions �e � n! p� e� and ��e � p! n� e�, can
deposit energy and set the local neutron-to-proton ratio,
n=p.

For this reason, and because the fluxes and energy
spectra may be different for �e, ��e and �� ����� ���, the
flavor content of the neutrino field above the proto-neutron
star and its evolution in time and space can be important
[1–3]. This can be true both for the supernova shock
reheating epoch (where the time post core-bounce is tPB &

0:5 s) and in the later hot bubble, neutrino-driven wind
epoch (tPB * 3 s). In this paper we concentrate on the
latter epoch.

Following the development of neutrino and antineutrino
flavors in the coherent regime above the proto-neutron star
surface is challenging. The potential governing the effec-
tive neutrino mass differences in this environment will
have contributions from charged current neutrino-electron
forward scattering and neutral-current neutrino-neutrino
forward scattering. The former contribution [4] is diagonal
in the flavor basis, while the latter neutrino-neutrino po-
tential has both flavor-diagonal [5] and flavor off-diagonal
[6,7] components. The neutrino-neutrino forward scatter-
ing potential renders the neutrino flavor evolution problem
nonlinear in the sense that the potential which governs
neutrino flavor transformation is itself dependent on the
flavor evolution histories of the neutrinos.
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Furthermore, neutrinos propagating on intersecting
world lines can have their flavor evolution subsequently
quantum mechanically coupled by forward scattering (see
Fig. 8 in Ref. [3] and the text beneath it). We sometimes
will refer to this coupling as ‘‘entanglement’’. By this
terminology we do not mean quantum entanglement of
momentum states, a phenomenon which has been argued
to be unimportant in the supernova environment [8]. In any
case, neutrino trajectories coming off the proto-neutron
star surface at different angles in general will have different
flavor evolution histories which must be self-consistently
calculated.

Another issue revolves around the efficacy of a mean
field Schrödinger-like or Boltzmann kinetic equation ap-
proach to the evolution of neutrino flavors [3,8–10]. In this
paper we will assume that higher order correlations in
neutrino-neutrino scattering are unimportant in the coher-
ent regime above the proto-neutron star.

Previous attempts to model neutrino flavor evolution in
the coherent regime [1–3,5,11–13] have made the approxi-
mation that all neutrinos evolve in flavor space the way a
radially-propagating neutrino does. This we will term
the ‘‘single-angle’’ approximation. Since the neutrino-
neutrino forward scattering potential is intersection angle
dependent, this is not always a good approximation, espe-
cially for regions close to the proto-neutron star.

However, these previous studies done with the single-
angle approximation have found that it is possible to
have large-scale collective behavior in neutrino flavor evo-
lution, where all, or some significant subset of, neutrinos
experience similar time/space flavor evolution histories.
They also have shown that neutrino flavor transformation
can differ significantly from the Mikheyev-Smirnov-
Wolfenstein (MSW) [4,14,15] paradigm. Recent work
[16] has shown that the expected neutrino fluxes in both
the shock reheating and hot bubble epochs could provide
the ‘‘necessary’’ conditions for large-scale simultaneous
collective neutrino and antineutrino flavor transformation
over broad ranges of neutrino energy. Whether these ex-
pected neutrino fluxes are actually ‘‘sufficient’’ to obtain
these collective modes has remained an open question, to
be answered with an appropriately sophisticated numerical
simulation. Likewise, the range of possible collective neu-
trino behavior [17], be it the ‘‘synchronized’’ mode [18] or
the ‘‘bi-polar’’ mode [17], may depend sensitively on the
neutrino flux conditions and on the geometry.

It should be noted that many previous numerical studies
employing the single-angle approximation have also used
unphysically large values of neutrino mass-squared differ-
ence. This is because with straight MSW, and without
taking account of the neutrino-neutrino scattering-induced
flavor off-diagonal potential, it requires j�m2j * 1 eV2 to
have significant neutrino flavor transformation deep
enough in the supernova envelope to affect shock reheating
or the r-process [1–3,19,20].

However, recent observations/experiments (see, e.g.,
Ref. [21] for a review) have revealed much about the
fundamental flavor mixing parameters of the three known
‘‘active’’ neutrinos. (In this paper, we will ignore the
effects of speculative additional ‘‘sterile’’ neutrino states.)
We know the two mass-squared differences, the atmos-
pheric scale, �m2

atm ’ 3� 10�3 eV2, and the solar scale,
�m2

� ’ 8� 10�5 eV2. We as yet do not know the neutrino
mass hierarchy related to the atmospheric mixing and we
do not know the absolute neutrino mass eigenvalues. Of the
four mixing parameters in the unitary transformation be-
tween the flavor (weak interaction) eigenstates and the
mass (energy) eigenstates, we know two of the three vac-
uum mixing angles, �12 and �23, and we have a firm upper
limit on �13, sin22�13 & 0:1. We do not know the
CP-violating phase.

In this paper we study 2� 2 neutrino and antineutrino
flavor transformation at the �m2

atm scale, explicitly follow-
ing the coupled flavor evolution on neutrino trajectories
ranging from radially-directed to those tangential to the
neutron star surface. (In other words, we perform ‘‘multi-
angle’’ calculations with many trajectory/angle zones.)
Our goal is to study the nonlinear behavior of the neutrino
field in the coherent regime and to find out if large-scale
(collective mode) neutrino/antineutrino transformation can
occur in the late-time supernova environment. We special-
ize to late time for two reasons: (i) this epoch is when there
may be significant differences in flux or energy spectrum
between �e, ��e, and the mu and tau flavor neutrinos; and
(ii) this epoch may have a simpler, more compact, matter
density profile near the neutron star surface. We follow
Refs. [22,23] and argue that 2� 2 mixing is adequate
because the �� and �� neutrinos are nearly maximally-
mixed in vacuum (�23 ’ �=4) and these species experience
nearly identical interactions everywhere in the late-time
supernova environment.

In Sec. II we summarize the physical and geometric
assumptions in our numerical simulations in what we call
the ‘‘neutrino bulb model’’. In this section we also present
the basic physics of neutrino flavor transformation in the
practical formalism used in our numerical simulations. We
also review the spin analogy for neutrino flavors, and
estimate the (MSW) resonance locations in the hot bubble
using both the standard MSW and synchronization mecha-
nisms. In Sec. III we explain some details of our numerical
codes and discuss the particular numerical difficulties and
potential pitfalls in multiangle simulations. We also
present the main results of our multiangle simulations.
The simulations show large-scale flavor transformation
different from what would be predicted if the conventional
MSW or synchronization mechanisms apply. In Sec. IV we
identify the flavor transformation in our results as being of
the bi-polar type [17], and we analyze this behavior with
the help of single-angle simulations. In Sec. V we give our
conclusions.
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II. BACKGROUND PHYSICS

A. Neutrino bulb model

At tPB * 3 s, the inner core of the progenitor star has
settled down into a proto-neutron star with a radius of
about 10 km. In the following �10 s, the nascent neutron
star radiates away its gravitational binding energy as out-
lined above. During this time, neutrinos could deposit
energy into the matter above the neutron star and create a
high-entropy ‘‘hot bubble’’ between the proto-neutron star
surface and the shock. Inside the hot bubble, a quasistatic
and near adiabatic mass outflow, the so-called ‘‘neutrino-
driven wind’’, may be established at this epoch as a result
of neutrino/antineutrino heating [24,25]. To simplify the
numerical calculations of the flavor transformations of
neutrinos and antineutrinos inside the hot bubble, we ap-
proximate the physical and geometric conditions of the
post-shock supernova by a ‘‘neutrino bulb model’’. This
model is characterized by the following assumptions:

(1) The neutron star emits neutrinos uniformly and iso-
tropically from the surface of a sphere (neutrino
sphere) of radius R�; [Note that the neutrino flux
emitted at angle #0 with respect to the normal
direction at the neutrino sphere comes with a geo-
metric factor cos#0. See Eq. (5).]

(2) At any point outside the neutrino sphere, the physi-
cal conditions, such as baryon density nb, tempera-
ture T, etc., depend only on the distance r from this
point to the center of the neutron star;

(3) Neutrinos are emitted from the neutron star surface
in pure flavor eigenstates and with Fermi-Dirac type
energy spectra.

The neutrino bulb model, as illustrated in Fig. 1, has
multifold symmetries. It is clearly spherically symmetric.
This means that one only need study the physical condi-
tions at a series of points along one radial direction, which
we choose to be the z-axis. It is also obvious that the
neutrino flux seen at any given point on the z-axis has a
cylindrical symmetry. As a result, different neutrino beams
possessing the same polar angle with respect to the z-axis
and with the same initial physical properties (flavor, en-
ergy, etc.) should be completely equivalent. In other words,
they will have identical flavor evolution histories. One may
choose this polar angle to be #, the angle between the
direction of the beam and the z-axis. Alternatively, a beam
could be specified by the polar angle � giving the emission
position of the beam on the neutrino sphere (see Fig. 1). A
third option, which we have found to be most useful in our
numerical calculations, is to label the beam by emission
angle #0. This is defined to be the angle with respect to the
normal direction at the point of emission on the neutrino
sphere (see Fig. 1). This emission angle #0 is an intrinsic
geometric property of the beam, and does not vary along
the neutrino trajectory. Moreover, because of assumptions
1 and 2 in the neutrino bulb model, all the neutrino beams
with the same emission angle #0 and the same initial

physical properties must be equivalent. In simulating the
flavor transformations of neutrinos in the neutrino bulb
model, it is only necessary to follow a group of neutrinos
which are uniquely indexed by their initial flavors, energies
and emission angles.

At any given radius r, all the geometric properties of a
neutrino beam may be calculated using r and #0. For
example, # and � are related to #0 through the following
identity:

 

sin#
R�

�
sin�

l� l0
�

sin#0

r
; (1)

where

 l � r cos#; (2)

and

 l0 � R� cos#0: (3)

Length l� l0 in Eq. (1) is also the total propagation
distance along the neutrino beam. At a point at radius r,
the neutrino beams are restricted to be within a cone of
half-angle

 #max � arcsin
�
R�
r

�
(4)

(see Fig. 1).
One can integrate flux over all neutrino beams (angles)

and calculate the neutrino number density n� at radius r. In
this paper we use the symbol � in the general sense,
denoting either a neutrino or an antineutrino. We use ��
( ���) to denote a neutrino (antineutrino) in flavor state �,
and �� ( ���) to denote a neutrino (antineutrino) created at
the neutrino sphere initially in flavor state �. As an ex-
ample, we shall calculate the differential number density
dn���q	 at radius r: this will have contributions from all ��

 Neutron

Star
P

Rν

Θ z
ϑ

ν

ϑ0

FIG. 1. The geometric picture of the neutrino bulb model. An
arbitrary neutrino beam (solid line) is shown emanating from a
point on the neutrino sphere with polar angle �. This beam
intersects the z-axis at point P with angle #. Because neutrinos
are emitted from the neutrino sphere of radius R�, point P sees
only neutrinos traveling within the cone delimited by the dotted
lines. One of the most important geometric characteristics of a
neutrino beam is its emission angle #0, defined with respect to
the normal direction at the point of emission on the neutrino
sphere (#0 � �� #). All other geometric properties of a neu-
trino beam may be calculated using radius r and #0.
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with energy q which propagate in directions within the
range between q̂ and q̂� dq̂. Here a hatted vector n̂
denotes the direction of vector n, and is defined as n̂ �
n=jnj. The differential number density dn ����q	 of ��� can

be calculated in a similar way. One finds that
 

dn���q	 �
j���q	 cos#0R

2
�d�cos�	d�

�l� l0	2
(5a)

� j���q	d�cos#	d�; (5b)

where the velocity of a neutrino is taken to be the speed of
light (c � 1), and j���q	 is the number flux of �� with

energy q emitted in any direction at the neutrino sphere. In
Eq. (5a), R2

�d�cos�	d� is the differential area on the
neutrino sphere which emits neutrinos in the directions
within the range between q̂ and q̂� dq̂, and the factor �l�
l0	
�2 accounts for the geometric dilution of the neutrino

density. In Eq. (5b), # and � are the polar and azimuthal
angles of q and, in deriving the equation, we have used
Eq. (1) and the identities

 d� � d�; (6)

 cos#0R�d� � �l� l0	d#: (7)

As an added check on Eq. (5), note that the total number
of �� with energy q passing through the sphere of radius r
per unit time is
 

4�r2
Z

cos#dn���q	 � 8�2r2j���q	
Z 1

cos#max

cos#d�cos#	

(8a)

� 4�2R2
�j���q	: (8b)

This is indeed equal to the number of �� with energy q
emitted per unit time from the neutrino sphere,

 4�R2
�

Z 1

0
2�j���q	 cos#0d�cos#0	 � 4�2R2

�j���q	: (9)

We note that this flux can also be expressed as

 4�R2
�

Z 1

0
2�j���q	 cos#0d�cos#0	 �

L��
hE��i

f���q	; (10)

where L�� , hE��i and f���q	 are the energy luminosity,

average energy and normalized energy distribution func-
tion of ��, respectively. Therefore one has

 j���q	 �
L��

4�2R2
�hE��i

f���q	: (11)

We take f��q	 to be of the Fermi-Dirac form with two
parameters �T�; 	�	,

 f��q	 �
1

F2�	�	
1

T3
�

q2

exp�q=T� � 	�	 � 1
; (12)

where 	� is the degeneracy parameter, T� is the neutrino
temperature, and

 Fk�		 �
Z 1

0

xkdx
exp�x� 		 � 1

: (13)

For numerical calculations, we will take hE�ei � 11 MeV,

hE ��ei � 16 MeV, hE��i � hE ���i � hE��i � hE ���i �

25 MeV, and 	�e � 	 ��e � 	�� � 	 ��� � 	�� � 	 ��� �

3. With these choices, we have T�e ’ 2:76 MeV, T ��e ’

4:01 MeV, and T�� � T ��� � T�� � T ��� ’ 6:26 MeV.

In principle, one could use the profiles of baryon density
nb, temperature T and electron fraction Ye (net number of
electrons per baryon) obtained from numerical simulations
of core collapse supernovae. Here we will use a simple
analytical density profile, and approximate the envelope
above the neutron star as a quasistatic configuration with a
constant entropy per baryon S (see, e.g., Ref. [16]). Taking
the enthalpy per baryon, TS, as roughly the gravitational
binding energy of a baryon, one has the following tem-
perature profile

 T ’
MNSmN

m2
Pl

S�1r�1; (14)

where MNS is the mass of the neutron star, mN is the mass
of a nucleon, and mPl ’ 1:221� 1022 MeV is the Planck
mass. We assume that the entropy per baryon S in the hot
bubble is dominated by relativistic degrees of freedom,

 S ’
2�2

45
gs
T3

nb
; (15)

where we have taken the Boltzmann constant kB and the
reduced Planck constant @ both to equal 1, and gs is the
statistical weight in relativistic particles. Combining
Eqs. (14) and (15), one obtains the baryon density profile as

 

nb ’
2�2

45
gs

�
MNSmN

m2
Pl

�
3
S�4r�3 (16a)

’ �4:2� 1030 cm�3	gs

�
MNS

1:4M�

�
3
�
100

S

�
4
�
10 km

r

�
3

(16b)

However, we note that, in reality, the baryon density nb

near the neutrino sphere is much higher than that estimated
from Eq. (16). In fact, near the neutrino sphere the density
profile is better represented by

 n0b ’ nb0 exp
�
�
r� R�
hNS

�
; (17)

where nb0 is the baryon density at the neutrino sphere, and
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hNS ’ R
2
�

�
m2

Pl

MNSmN

�
Tmatt�R�	 (18a)

’ �0:052 km	
�
R�

10 km

�
2
�
1:4M�
MNS

��
Tmatt�R�	
1 MeV

�
(18b)

is the scale height with Tmatt�R�	 being the matter tempera-
ture at the neutrino sphere. This exponential fall-off in
density is expected on general physical grounds and is
found in, e.g., the Mayle and Wilson supernova simulations
[2]. As discussed in Refs. [25,26], a steady state between
neutrino heating and cooling results in near isothermal
conditions in the vicinity of the neutron star surface.

This, coupled with the expected very low electron fraction
Ye near the neutron star surface, implies that the baryon
density must have this exponential dependence on radius,
at least for a radius interval �hNS.

It turns out that addition of this exponential density
profile near the neutrino sphere facilitates the multiangle
simulations of neutrino flavor transformation. In Fig. 2 we
plot the net electron number density

 ne � Yenb (19)

obtained from the exponential profile in Eq. (17). For
comparison, we also plot ne�r	 obtained from the constant
entropy profile [Eq. (16)] with entropy per baryon S � 140
and 250. In both Fig. 2 and in the rest of the paper, we take
MNS � 1:4M�, R� � 11 km, Ye � 0:4, gs � 11=2, nb0 �
1:63� 1036 cm�3 and hNS � 0:18 km. Note that once we
have specified nb0 and hNS our model for the physical
environment in the hot bubble is completely determined
by the choice of entropy per baryon S. In units of
Boltzmann constant per baryon, we expect S� 100 in
the hot bubble [25].

B. Neutrino flavor transformation in supernovae

Our objective is to study the flavor evolution of the
neutrino field when �e and ��e mix with neutrinos and
antineutrinos of another active flavor (say �� and ���). We
write the wave function of the flavor doublet of a neutrino
(or antineutrino) as

  � �
a
b

� �
; (20)

where a and b are the amplitudes for a neutrino to be in the
�e ( ��e) and �� ( ���) flavor states, respectively. The flavor
evolution of �� is determined by the Schrödinger equation

(see, e.g., Ref. [3])

 i
d

dt
 �� � H �� �

1

2
�� cos2�� A� B � sin2�� Be�

� sin2�� B
e� � cos2�� A� B

� �
 ��; (21)

where � is the vacuum mixing angle, �, A and B�e�	 are the
potentials induced by neutrino mass difference, matter, and
background neutrinos, respectively. One obtains the appro-
priate Hamiltonian for antineutrinos by making the trans-
formation

 A! �A; B! �B; Be� ! �B


e�: (22)

The vacuum potential is defined as

 � �
�m2

2E�
; (23)

where �m2 is the neutrino mass-squared difference, and E�
is the energy of the neutrino. (Note that we also use q as the
energy or the magnitude of the momentum of a neutrino in

this section, which is the same as E�.) We define the mass-
squared difference in terms of the appropriate neutrino
mass eigenvalues m1 and m3 to be �m2 � m2

3 �m
2
1. In

what follows we employ the normal (�m2 � �m2
atm) and

inverted (�m2 � ��m2
atm) mass hierarchies. The matter

potential is

 A �
���
2
p
GFne �

���
2
p
GFYenb; (24)

where GF is the Fermi coupling constant. We define a
reduced density matrix %� (in the flavor basis) from  � as

 %� �
1

2
jaj2 � jbj2 2ab


2a
b �jaj2 � jbj2

� �
: (25)

 

10 100
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-2
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FIG. 2 (color online). Plot of (effective) net lepton number
density nl�r	. The dashed and dot-dashed lines are for the net
electron density ne � Yenb using the baryon density profile in
Eq. (16) with S � 140 and 250, respectively. The dotted line is
for the net electron density assuming the baryon density profile
in Eq. (17) only. The solid line is for the effective net �e density
along the radial trajectory [Eq. (40)].
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Note that this definition applies for neutrinos and antineutrinos. This is, however, different from the convention adopted in
Ref. [7]. Using Eq. (25), the neutrino-neutrino forward scattering part of the Hamiltonian in Eq. (21) can be written as
 

H�� �
1

2

B Be�
B
e� �B

 !
(26a)

�
���
2
p
GF

X
�

�Z
�1� q̂ � q̂0	%���q

0	dn���q
0	dq0 �

Z
�1� q̂ � q̂0	%
����q

0	dn ����q
0	dq0

�
; (26b)

where q and q0 are the momentum of the neutrino of interest and that of the background neutrino, respectively, and the
flavor index is � � e or �. As mentioned above, neutrinos of the same initial flavor, energy and emission angle have
identical flavor evolution. Consequently one must have

 %��q	 � %��q; #	: (27)

We note that
 Z

q̂ � q̂0F�# 0	dq̂0 �
Z
�sin# sin#0�sin� sin�0 � cos� cos�0	 � cos# cos#0F�#0	d�cos#0	d�0 (28a)

� 2�
Z

cos# cos#0F�#0	d�cos#0	; (28b)

where F�#	 is an arbitrary function of #, and we have used the cylindrical symmetry around the z-axis in deriving
Eq. (28b). Using Eqs. (5), (11), and (28), one can rewrite Eq. (26b) as

 H�� �

���
2
p
GF

2�R2
�

X
�

Z
�1� cos# cos#0	

�
%���q

0; # 0	f���q
0	
L��
hE��i

� %
����q
0; #0	f ����q

0	
L ���

hE ���i

�
d�cos# 0	dq0: (26b0)

As noted in the introduction, previous simulations have
used the single-angle approximation, wherein one assumes
that the flavor evolution history of a neutrino is trajectory
independent,

 %��q	 � %��q	; (270)

and neutrinos on any trajectory transform in the same way
as neutrinos propagating in the radial direction. Using the
single-angle approximation, Eq. (26b0) can be further sim-
plified to
 

H�� �

���
2
p
GF

2�R2
�
D�r=R�	

X
�

Z �
%���q

0	f���q
0	
L��
hE��i

� %
����q
0	f ����q

0	
L ���

hE ���i

�
dq0; (26b00)

where the geometric factor D�r=R�	 is defined as

 D�r=R�	 �
1

2

�
1�

����������������������
1�

�
R�
r

�
2

s �
2
: (29)

Although our simulations are carried out by solving
Eq. (21) numerically, the spin analogue of the wave func-
tion formalism (see, e.g., Ref. [17]) provides an intuitive
way of understanding the results of our simulations. The
wave function of a neutrino  � in Eq. (20) can be mapped
into a Neutrino Flavor Iso-Spin (NFIS) vector & using the
Pauli matrices �:

 

&�� �  y��
�

2
 �� �

1

2

2 Re�a
b	

2 Im�a
b	

jaj2 � jbj2

0BB@
1CCA; (30a)

& ��� � �
y ���	
y �

2
�
y ���	 � �

1

2

2 Re�ab
	

2 Im�ab
	

jaj2 � jbj2

0
BB@

1
CCA: (30b)

Note that the extra 
y in Eq. (30b) transforms �2 of SU(2),
the fundamental representation of antiparticles, into 2, the
fundamental representation of particles. As a result, & ���

transforms in the same way as &�� under rotations. We also

note the NFIS’s &� defined in Eq. (30) have constant
magnitude 1=2. For a neutrino ��, &��z � �1=2 (� 1=2)

for the pure �e (��) state, where &��z is the third component

of the NFIS. For an antineutrino ���, & ���z � �1=2 (� 1=2)

for the pure ��� ( ��e) state.
The NFIS &��q; #	 for either a neutrino or an antineu-

trino obeys the equation of motion
 

d

dt
&��q; #	 � &��q; #	 �

�
Heff�q	 �

1

2�R2
�

X
�0

Z
��#;#0	

� &�0 �q0; #0	f�0 �q0	
L�0

hE�0 i
d�cos# 0	dq0

�
; (31)

where q and # are the magnitude and polar angle of the
momentum of the neutrino, Heff is an effective field, and
��#;# 0	 is the coupling coefficient between &��q; #	 and
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the background neutrino &�0 �q0; #0	 with

 ��#;# 0	 � �2
���
2
p
GF�1� cos# cos# 0	: (32)

The summation index �0 in Eq. (31) runs over �e, ��, ��e,
and ���. According to Eq. (31), the motion of a NFIS in
flavor space is analogous to that of a magnetic spin which
simultaneously precesses around a ‘‘magnetic field’’ Heff

and the other ‘‘spins’’. The ‘‘magnetic field’’ Heff is com-
posed of two components in our case,

 H eff�q	 � �V�q	HV ��eHe: (33)

In Eq. (33) HV stems from neutrino mass difference and
can be written as

 H V � �êf
x sin2�� êf

z cos2�; (34)

where êf
x�y;z	 are the orthogonal unit vectors in flavor space

corresponding to 
x�y;z	. Here we define

 �V�q	 � �
�m2

2q
; (35)

where the plus sign is for neutrinos and the minus sign is
for antineutrinos. With these definitions, neutrinos possess
positive (negative) ‘‘magnetic moments’’ �V and antineu-
trinos possess negative (positive) ones if �m2 > 0 (�m2 <
0). Because neutrinos can have different energies, �V

varies from �1 to �1. The second term in Eq. (33) is
induced by matter (neutrino-electron forward scattering),
and we can write

 H e � �êf
znbYe (36)

and

 �e �
���
2
p
GF: (37)

Before we show the results of our simulations, we shall
estimate the ‘‘MSW resonance radius’’ rMSW for a neutrino
with a typical energy. The MSW resonance condition
would be

 � cos2� � A�rMSW	 (38)

if we ignore the neutrino-neutrino flavor-diagonal potential
B. We will take j�m2j � 3� 10�3 eV2, the atmospheric

value, and we will take the effective 2� 2 vacuum mixing
angle to be � � 0:1. Note that this value is well below the
experimental limit on �13. For these parameters, the MSW
resonance radius of a neutrino in the case of normal mass
hierarchy (�m2 > 0) or an antineutrino in the case of
inverted mass hierarchy (�m2 < 0) with energy E� �
10 MeV is rMSW ’ 127 and 59 km for S � 140 and 250,
respectively. We shall also estimate the radius for signifi-
cant neutrino flavor transformation if neutrinos and anti-
neutrinos are in the ‘‘synchronization’’ mode [18]. When
neutrinos are in the synchronization mode, all the NFIS’s
behave as one ‘‘magnetic spin’’ with

 �
�m2

2Esync
� h�Vi �

P
�

L�
hE�i

R
�V�q	&�zf��q	dqP

�

L�
hE�i

R
&�zf��q	dq

; (39)

where we have assumed all the NFIS’s are aligned or
antialigned with êf

z. Because Esync is positive, the sign of
the first term (left hand side) of Eq. (39) should be chosen
to be the same as that of the product �m2h�Vi. If h�Vi> 0
and �m2 > 0, all the neutrinos and antineutrinos go
through the same conversion process as a neutrino of
energy Esync at rMSW�Esync	. Similarly, if h�Vi> 0 and
�m2 < 0, all the neutrinos and antineutrinos go through
the same conversion process as an antineutrino of energy
Esync at rMSW�Esync	. Neutrino flavor transformation is sup-
pressed for other synchronization scenarios. For the pa-
rameters we have chosen, we find that h�Vi> 0 if
�m2 > 0, and h�Vi< 0 if �m2 < 0. The characteristic
energy of the synchronization mode is Esync ’ 2:47 MeV
for both cases. Therefore, in the synchronized mode neu-
trinos and antineutrinos should transform simultaneously
at rMSW�Esync	 ’ 80 and 37 km for S � 140 and 250,
respectively, if �m2 > 0. These neutrinos/antineutrinos
would experience very little flavor conversion if �m2 < 0.

A special case of synchronized behavior is the
Background Dominant Solution (BDS) [16] where the
NFIS’s rotate in the plane spanned by êf

x and êf
y in flavor

space. One of the necessary conditions for the BDS with
large-scale simultaneous neutrino and antineutrino flavor
transformation is that the flavor off-diagonal neutrino
background potential Be� dominates. To see this condition
more clearly, we define the effective net �e number density
along the radial trajectory as

 

neff
�e �

Z
�1� ẑ � q̂0	dn�e�q

0	dq0 �
Z
�1� ẑ � q̂0	dn ��e�q

0	dq0 (40a)

�
D�r=R�	

2�R2
�

� L�e
hE�ei

�
L ��e

hE ��ei

�
(40b)

� �1:66� 1032 cm�3	

�
1�

����������������������
1�

�
R�
r

�
2

s �
2
�

10 km

R�

�
2
�L�e=�1051 erg=s	

hE�ei=�10 MeV	
�
L ��e=�1051 erg=s	

hE ��ei=�10 MeV	

�
: (40c)
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Note that jBe�j �
���
2
p
GFjn

eff
�e j and B � 0 if the BDS ob-

tains. (Obviously, if no flavor transformation has occurred,
Be� � 0 and B �

���
2
p
GFneff

�e .) We plot neff
�e �r	 together with

ne�r	 used in our simulations in Fig. 2. The neutrino
background potential will dominate the matter potential
on the radial trajectory if neff

�e > ne, which corresponds to a
radius as low as r� 13 km for the parameters we have
chosen.

For numerical simplicity, we have fixed Ye � 0:4 in our
simulations. Of course, the value of Ye actually varies with
the radius and is affected by �e and ��e fluxes through the
weak interactions [1,2]

 

�e � n� p� e�; (41a)

��e � p� n� e�: (41b)

The rates of these processes can also be affected by weak
magnetism corrections [27,28]. In the numerical simula-
tions presented below we have not included neutrino/anti-
neutrino flavor transformation feedback through these
processes on Ye. This is an important aspect of the physics
of the supernova environment which we leave to a subse-
quent paper.

Models for r-process nucleosynthesis can be sensitive to
the value of Ye in the region where T * 0:1 MeV [2,3]. For
our chosen density profile, T � 0:1 MeV occurs at r�
139 and 78 km for entropy per baryon S � 140 and 250,
respectively. These values of radius are well outside our
simple estimates for where conventional MSW, synchro-
nization, or BDS-like flavor conversion could occur. The
numerical results to be discussed in the next section will

give us a much better idea of where large-scale neutrino
flavor transformation actually occurs.

III. MULTIANGLE NUMERICAL SIMULATIONS

In Sec. III A we discuss our numerical calculations, and
point out two potential pitfalls in any multiangle simula-
tion. In Sec. III B we show the main results from our
multiangle simulations. For the simulation results
presented in this section we have taken j�m2j �
3� 10�3 eV2, � � 0:1, L�e � L ��e � L�� � L ��� �

1051 erg=s and S � 140 unless otherwise stated.

A. Numerical scheme

We have developed two independent sets of numerical
codes using different computer languages. We have used
them to provide cross checks to obtain consistent results.
Both codes employ a large multidimensional array of
neutrino wave functions  ���E�; cos#0	 and  ����E�;

cos#0	 and evolve them simultaneously following the
scheme outlined in Sec. II. Each code employs an adaptive
step size control mechanism, but the two codes have differ-
ent ways of estimating errors and adjusting step sizes. The
energy bins are chosen to have equal sizes for convenience
in comparing neutrino energy spectra at different radii. The
angle bins are determined in such a way that each bin has
the same size in cos# at radius Rbin. In most cases we have
taken Rbin � R�, the neutrino sphere radius. Note that the
angle bins have different sizes in cos# if r � Rbin.

At the basic level, both codes obtain  ��l� �l	 from
 ��l	 by using the following equation as a first step:

 

 ��l� �l	 ’ exp��iH�l	 ��l	 (42a)

�
1

�

� cos���l	 � ih11 sin���l	 �ih12 sin���l	

�ih
12 sin���l	 � cos���l	 � ih11 sin���l	

 !
 ��l	; (42b)

where h11 and h12 are the diagonal and off-diagonal ele-
ments of the Hamiltonian H, and

 � �
�������������������������
h2

11 � jh12j
2

q
: (43)

[Although not written out explicitly, the Hamiltonian H
and its elements in the above equations have dependence
on both the Affine parameter l and trajectory angle #, as
can be inferred from Eqs. (21) through (26b0).] We note
that Eq. (42) preserves the unitarity of  � automatically.
We also note that Eq. (42) becomes exact if H is indepen-
dent of spatial coordinate. Therefore, the step sizes em-
ployed in our numerical codes are not restricted by the size
of H but are restricted by the rate of change of H.

In the course of our work we have discovered two pit-
falls which apply to any multiangle scheme. Failure to
avoid these pitfalls may lead to quantitatively or qualita-
tively inaccurate results (see Fig. 3).

The first potential problem has to do with the exponen-
tial term n0b in the profile for the baryon density [see
Eq. (17)]. The baryon density is very high near the neutrino
sphere when n0b is included. This sometimes forces numeri-
cal schemes to employ initially very small step sizes. The
numerical codes using the single-angle approximation can
generally drop n0b without loss of accuracy at large radius.
These codes will of course run faster without n0b. However,
in multiangle simulations, ignoring n0b makes the back-
ground neutrino potential B much bigger than the matter
potential A even at the neutrino sphere. As a result, the
evolution histories of neutrino flavors on all trajectories are
strongly coupled starting from the beginning. This strong
correlation among all trajectories also forces small step
sizes. In addition, without n0b there is a tendency for
neutrinos to undergo flavor transformation very close to
the neutrino sphere. This behavior is suppressed if there is
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a large and dominant matter potential A. Including n0b
makes the matter potential A�R�	 much bigger and this
helps keep neutrinos in their initial flavor states, at least for
the significant range of neutrino/antineutrino energies and
for our chosen value of j�m2j ’ �m2

atm. We also note that

neutrinos on different trajectories propagate through differ-
ent distances. A big matter potential breaks the correlation
between neutrinos on different trajectories and lets them
evolve independently for awhile.

These considerations can be cast in simpler, more physi-
cal terms. In the relatively narrow region near the neutrino
sphere where n0b dominates it has the effect of changing, or
‘‘resetting’’, the neutrino wavefunctions relative to what
they would have been had we employed the unphysical
low-density profile all the way to the neutrino sphere. In the
latter unphysical case, neutrinos are in flavor eigen states at
the neutrino sphere, and the NFIS’s are perfectly aligned
with each other yet slightly deviated from the total effec-
tive field Heff . The effects of this unphysical setup does not
go away quickly with increasing radius because the cou-
pling among the NFIS’s (arising from neutrino-neutrino
forward scatterings) is so strong. If the exponential baryon
density profile n0b is added, the overwhelming matter field
He at the neutrino sphere not only makes the NFIS’s more
aligned with Heff , but also breaks the coupling of the
NFIS’s propagating along different trajectories. In the short
distance where the matter field He dominates, the NFIS’s
on different trajectories have traveled different distances
and so have developed different phases. At the radius
where n0b becomes negligible, the NFIS’s are effectively
‘‘reset’’ to a more physical condition than one would obtain
without n0b.

The other pitfall is that one may use an insufficient
number of angle bins. Assuming that there has been very
little neutrino flavor conversion close to the neutrino
sphere where r� R�, we can write

 

B�r; #	 ’

���
2
p
GF

2�R2
�

� L�e
hE�ei

�
L ��e

hE ��ei

��
1�

����������������������
1�

�
R�
r

�
2

s
�

1

2
cos#

�
R�
r

�
2
�
; (44a)

Be��r; #	 ’ 0: (44b)

For a small step size �l, one has
 

 ���l� �l	 ’ exp��iH�l	 ���l	 (45a)

’
e�i�A�B	�l �i � sin2�

A�B sin��A� B	�l

�i � sin2�
A�B sin��A� B	�l ei�A�B	�l

 !
 ���l	; (45b)

where we have used the fact that A� B� � at r� R�. It
is the off-diagonal elements of the transformation matrix in
Eq. (45b) that govern the exchange of the two flavor
components of a neutrino wave function. These off-
diagonal terms, we note, are oscillatory functions of the
B potential and the step size �l, both of which have angular
dependence [see Eqs. (2) and (44a)]. Physically, this oscil-
latory feature with respect to angles is suppressed by strong
correlation among neutrinos on different trajectories.
Numerical codes without enough angular resolution, how-
ever, could allow a spurious ‘‘cross-talk’’ between angle

zones which artificially strengthens flavor oscillations.
This unphysical feedback could produce substantial neu-
trino flavor conversion even at low radius in some numeri-
cal schemes.

In Fig. 3 we plot average survival probability hP�e�e�r	i

along the radial trajectory with the normal mass hierarchy
using different numerical schemes (error tolerance, num-
ber of angle bins, etc.). HereP�e�e�r	 is the probability for a

�e to be a �e at radius r, and the average is done over the

initial energy distribution for �e. (As mentioned above, we

 

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
P

ν e
ν e

r (km)

FIG. 3 (color online). Average �e survival probability
hP�e�e �r	i along the radial trajectory ( cos#0 � 1) with the

normal mass hierarchy in different numerical schemes. Here
the average is done over the initial energy spectra of �e. The
dot-dashed line uses 160 angle bins and error tolerance 10�5 in
each step without the initial baryon density profile n0b. The
dashed and solid lines both include n0b and employ error toler-
ance 10�10, but use 256 and 512 angle bins, respectively.
Calculations with 768, 1024 and 1407 angle bins in different
binning schemes produce curves which fall on the solid line.
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use �� and ��� to denote the neutrinos and antineutrinos
that are emitted in flavor state � at the neutrino sphere.)
One sees that spurious neutrino flavor transformation (dot-
dashed line) could occur at low radius with a combination
of insufficient number of angle bins, a loose error control,
and neglect of n0b. If we employ L� � 1051 erg=s and
choose a stringent error tolerance (� 10�10) at each step,
we find that it takes * 500 angle bins in order to achieve
convergence and run-to-run consistency. Because the B
potential increases with neutrino luminosity, we expect
that even more angle bins would be required to obtain
convergence at larger neutrino luminosity.

Our numerical simulations generally employ * 500
angle bins and * 500 energy bins for each neutrino spe-
cies. Typically, our codes execute * 105 steps during each
production run. It is clear that multiangle simulations are
only feasible using large-scale parallel computation.

B. Simulation results

In Fig. 4(a), we plot hP�e�e�r	i with the normal neutrino

mass hierarchy (�m2 > 0) on both the radial ( cos#0 � 1)
and tangential ( cos#0 � 0) trajectories. For comparison,
we also plot hP�e�e�r	i for the L� � 0 (A potential only)

case, which is obtained from the single-angle simulation by
setting L� � 0. The L� � 0 case corresponds to the limit
where neutrinos go through MSW resonances indepen-
dently of each other. In the full synchronization limit, all
neutrinos and antineutrinos undergo flavor transformation
in the same way as does a �e with energy Esync in the
standard MSW mechanism. Using only the matter poten-
tial, we have calculated P�e�e for a �e with energy Esync

propagating along the radial trajectory. The result is shown
in Fig. 4(a). The results of our simulations are clearly
different from those in the L� � 0 and full synchronization
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FIG. 4 (color online). Plots of average survival probability hP�e�e i (left panels) and hP ��e ��e i (right panels) with the normal (upper
panels) and inverted (lower panels) neutrino mass hierarchies, respectively. The solid and dotted lines give average survival
probabilities along trajectories with cos#0 � 1 and cos#0 � 0, respectively, as computed in the multiangle simulations. The dot-
dashed lines and the dashed lines characterize the limits where neutrinos and antineutrino undergo flavor transformation individually
(L� � 0 and A potential only) and simultaneously (full synchronization), respectively. The dashed line is not distinguishable from the
dot-dashed line in panel (c).
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limits. In particular, our simulation has hP�e�e�r	i crossing

the 1=2 line later than in the synchronization case, but
earlier than in the L� � 0 case. We also note that
hP�e�e�r	i oscillates and even bounces back after an initial

decrease.
In Fig. 4(b) we plot hP ��e ��e�r	i in the normal neutrino

mass hierarchy scenario. The conventional MSW conver-
sion of ��e is suppressed if �m2 > 0, which is illustrated
dramatically by the L� � 0 case. In the case of full syn-
chronization, ��e will be converted into ��� in exactly the
same way as �e is converted into ��. The results of our
simulations are again like neither of these limits. Unlike
the L� � 0 case, the actual values of hP ��e ��e�r	i may sub-

stantially decrease at some values of radius, and unlike the
full synchronization case, hP ��e ��e�r	i oscillates and bounces

back to nearly unity at large radius.
The results of the inverted neutrino mass hierarchy

(�m2 < 0) are more surprising. These are plotted in
panels (c) and (d) of Fig. 4. The full synchronization limit
predicts no flavor conversion for both �e and ��e, and the
L� � 0 limit predicts that only antineutrinos will be con-
verted. Our simulation finds substantial conversion of
both �e and ��e. Furthermore, this phenomenon occurs
at a radius even smaller than that expected in the full
synchronization limit with �m2 > 0. Again, we note
that in the inverted mass hierarchy scenario both
hP�e�e�r	i and hP ��e ��e�r	i oscillate after flavor transforma-

tion starts.
In Fig. 5 we plot P�e�e�r	 for �e with a few characteristic

energies on both the radial and tangential trajectories. We
have employed the normal mass hierarchy in this calcula-
tion. One sees that the P�e�e�r	 curves have similar trends

with radius over most of the �e energy range considered.
This is especially true for the values of radius where

neutrino flavor transformation has just become significant
and for the tangential trajectory.

The results presented in Fig. 5 lead us to conclude that
the flavor transformation histories of neutrinos on different
trajectories can be very different. To illustrate this point
more clearly, we plot in Fig. 6(a) P�e�e�cos#0	 at r ’

92:85 km for �e with specified energies, and employing
the normal mass hierarchy. Indeed the values of
P�e�e�cos#0	 vary with angle, especially around cos#0 �

1. Moreover, the trend of P�e�e�cos#0	with angle is similar

for �e with different energies over most of the energy range
considered. This again demonstrates the collective feature
of the neutrino flavor transformation in the hot bubble.

In Fig. 6(b) we plot the corresponding antineutrino
survival probability P ��e ��e�cos#0	. This also shows angular

dependence and collective flavor transformation. In
Fig. 6(c) and 6(d), we plot P�e�e�cos#0	 and P ��e ��e�cos#0	

with the same parameters as in panels (a–b) but at r ’
88:57 km and with the inverted mass hierarchy. It is inter-
esting to see that, in addition to the features pointed out for
panels (a–b), in the inverted mass hierarchy case both
P�e�e�cos#0	 and P ��e ��e�cos#0	 oscillate over most of the

range of cos#0.
In these simulations, significant neutrino flavor trans-

formation ends at r� 230 km (Fig. 4). To see how the
energy spectra of neutrinos and antineutrinos have been
altered by flavor transformation, in Fig. 7(a) we plot both
~f�e�E	 and ~f���E	 at the neutrino sphere, and ~f�e�E	 and
~f���E	 at r � 250 km. Here we have employed the normal
mass hierarchy and we take ~f��E	 to be proportional to
both f��E	 and the flux of � [e.g., ~f�e�E	 /

f�e�E	
P
�

R
P���edn�� and ~f�e�E	 / f�e�E	L�e=hE�ei],

such that
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FIG. 5 (color online). Plots of P�e�e �r	 with the normal mass hierarchy. Panel (a) is for the radial trajectory ( cos#0 � 1), and (b) is
for the tangential trajectory ( cos#0 � 0). The dot-dashed, dotted, dashed and solid lines are for �e of energies 6.95, 8.95, 10.95 and
14.95 MeV, respectively.
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1 �
X
�

Z
�~f���E	 �

~f ����E	dE (46a)

�
X
�

Z
�~f���E	 �

~f ����E	dE: (46b)

Here the scheme for angle-averaging the energy spectra is
simply the angle dependence in the neutrino flux ‘‘seen’’
by a nucleon at radius r. As a result, the angle-averaged
spectra shown are those appropriate for use in the weak
interaction rates. It is interesting to see that most of the low
energy (E� & 9:5 MeV) �e are converted into ��, while a
significant fraction of high energy �e survive. We also plot
the corresponding energy spectra of ��e and ��� in Fig. 7(b).
The energy spectra of antineutrinos are changed very little
in the normal mass hierarchy scenario. The energy spectra
of neutrinos and antineutrinos in the inverted mass hier-
archy scenario are plotted in Fig. 7(c) and 7(d), respec-
tively. In these figures, both �e and ��e swap spectra with ��
and ���, respectively, over a significant energy range.

The numerical results that we have presented cannot be
explained easily by the conventional MSW mechanism or
by synchronization. We will try to develop some insight
into, and understanding of these results in the following
section.

IV. SINGLE-ANGLE SIMULATIONS AND
PHENOMENOLOGICAL ANALYSIS

To understand the numerical results obtained from the
multiangle simulations, we have re-examined the numeri-
cal simulations using the single-angle approximation with
similar setups and initial conditions. We found that almost
all the interesting features seen in the multiangle simula-
tions are also present in the single-angle simulations,
though they can differ in a quantitative sense. The simula-
tions performed using the single-angle approximation do
not have the numerical difficulties that are the hallmark of
the multiangle ones, and they require fewer computational
resources. Most importantly, the single-angle simulations
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FIG. 6 (color online). Plots of P�e�e �cos#0	 (left panels) and P ��e ��e �cos#0	 (right panels) at r ’ 92:85 km for the normal mass
hierarchy (upper panels) and at r ’ 88:57 km for the inverted mass hierarchy (lower panels). The dot-dashed, dotted, dashed and solid
lines are for �e or ��e of energies 6.95, 8.95, 10.95 and 14.95 MeV, respectively.
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produce results qualitatively similar to those in the multi-
angle simulations, and yet do not involve complicated
entanglement of neutrino flavor transformation on different
trajectories. They are therefore easier to understand. In
Sec. IVA we will try to explain some of the results pre-
sented in Sec. III B with the help of these simplified
calculations. In Sec. IV B we will study how the onset of
large-scale collective neutrino flavor transformation is re-
lated to the neutrino luminosity L�. We will comment on
the validity of the single-angle approximation at the end of
this section.

Unless otherwise stated, all the simulations discussed in
this section have the same parameters as those in Sec. III,
i.e., j�m2j � 3� 10�3 eV2, � � 0:1, L� � 1051 erg=s
and S � 140, but are based on the single-angle
approximation.

A. Neutrino flavor transformation in the bi-polar mode

The novel features of neutrino flavor transformation in
the hot bubble region are easier to understand in the

formalism of NFIS (Neutrino Flavor Iso-Spin) [17] than
in the traditional formalism of the wave functions. In
Fig. 8, we plot h&x�r	i, h&y�r	i and h&z�r	i, the three com-
ponents of the average NFIS’s in flavor space, for �e and ��e
in both the scenarios with a normal mass hierarchy and
with an inverted mass hierarchy. (The three components of
the NFIS’s are averaged over the initial neutrino or anti-
neutrino energy spectra.) We note that the probability for a
neutrino or antineutrino initially in the � flavor state to be
in the electron flavor state is related to &z by
 

P���e �
1

2
� &��z; (47a)

P ��� ��e �
1

2
� & ���z: (47b)

Comparing Fig. 8 with Fig. 4, one sees that the results of
single-angle simulations are qualitatively the same as those
obtained in the full multiangle simulations. We also note
that in the region where neutrinos transform, the NFIS’s of
both neutrinos and antineutrinos have large values of &x
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FIG. 7 (color online). Change of energy spectra of neutrinos (left panels) and antineutrinos (right panels) with the normal (upper
panels) and inverted (lower panels) neutrino mass hierarchies. The dotted and dot-dashed lines are the spectra of neutrinos
(antineutrinos) in the electron and tau flavors, respectively, at r � R�, and the solid and dashed lines are the corresponding spectra
at r � 250 km.
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and &y, and roughly precess around the êf
z direction.

Because the densities of neutrinos and antineutrinos are
also large in this region, the Be� potential in Eq. (21)
dominates, and both neutrinos and antineutrinos are in a
state similar to the Background Dominant Solution (BDS)
[16].

The numerical results clearly have shown that neutrinos
and antineutrinos undergo some collective flavor transfor-
mation in the hot bubble with the neutrino mixing parame-
ters we have used. The collective modes of flavor
transformation that neutrinos may have in the hot bubble,
according to Ref. [17], are either the synchronization or the
bi-polar type. Figs. 4 and 8 show that the collective mode
corresponding to the conditions and parameters used here
does not conform to the full synchronization limit.
Therefore, we will focus our discussion on the bi-polar
flavor transformation. Neutrinos and antineutrinos can
have substantial flavor transformation simultaneously
only through the bi-polar mode in the inverted mass hier-

archy scenario. This is seen in our simulations. In general,
the region where neutrinos transform through the bi-polar
mode is characterized by parameters satisfying [17]

 � &  &
hE�i
2�E�

; (48)

where � is a measure of the difference in the energy
distribution functions of �e � ��� and ��e � ��, the parame-
ter

  �
j�m2j=2hE�i

2
���
2
p
GFneff

� �L�; r	
(49)

gives the strength of background neutrino effect through
the effective single species neutrino number density neff

�
[e.g., neff

� �L�; r	 ’ D�r=R�	�L�=hE�i	=2�R2
� for the radial

trajectory], and �E� is the characteristic width of the
neutrino energy distribution.
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FIG. 8 (color online). Plots of h&�e �r	i (left panels) and h& ��e �r	i (right panels) with the normal (upper panels) and inverted (lower
panels) mass hierarchies, respectively. The dashed, dotted and solid lines represent h&x�r	i, h&y�r	i and h&z�r	i, respectively. Note that
hP�e�e i � 1=2� h&�ezi and hP ��e ��e i � 1=2� h& ��ezi. The insets in panels (c) and (d) are blowups of the corresponding plots in the range

62 km � r � 66 km. These are single-angle calculation results.
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Neutrinos are in the synchronization mode if � * .
This corresponds to the high neutrino luminosity limit.
Neutrinos will transform individually through the MSW
mechanism if  * hE�i=2�E�, which is effectively the low
neutrino luminosity limit. Using the single-angle approxi-
mation, one has [17]
 

 �
j�m2j�R2

����
2
p
GFL�

�1�
�������������������������
1� �R�=r	2

q
�2 (50a)

’ 3:6� 10�6

�
j�m2j

3� 10�3 eV2

��
R�

10 km

�
2
�
1051 erg=s

L�

�

� �1�
�������������������������
1� �R�=r	

2
q

�2: (50b)

For simplicity, we assume that hE�ei and hE ��ei characterize

the energies of �e � ��� and ��e � ��, respectively, and [17]

 � ’
�hE�ei � hE ��ei	

2

2�hE�ei
2 � hE ��ei

2	
’ 0:033: (51)

Using Eqs. (48), (50b), and (51), we estimate that neutrino
flavor transformation exits the synchronization mode and
enters the bi-polar mode (Bi-polar Starting) at rBS �
73 km for the parameters we have used. Taking
�E�=hE�i ’ T�=hE�i ’ 1=4, we estimate that collective
neutrino flavor transformation ends (Bi-polar Ending) at
rBE � 202 km. Beyond this point conventional MSW fla-
vor transformation takes over.

Although these values are crude estimates based on
oversimplified assumptions, we find that they roughly
match the region where neutrinos and antineutrinos trans-
form simultaneously in the inverted mass hierarchy sce-
nario. Therefore we conclude that collective neutrino
flavor transformation observed in our full numerical simu-
lations is indeed of the bi-polar type, as predicted in
Ref. [17].

An interesting feature of neutrino flavor transformation
in the bi-polar mode is that the transformation is not
completely suppressed by the large matter potential A in
Eq. (21) if �m2 < 0. From Figs. 4 and 8, one sees that the
flavor transformation with �m2 < 0 may occur at values of
radius even smaller than those predicted in the synchroni-
zation limit with �m2 > 0. Although collective neutrino
flavor transformation in the bi-polar mode has been studied
in the zero and large matter potential limits [17], an ana-
lytical or semianalytical analysis has yet to be performed to
show how neutrinos transform in the bi-polar mode as the
matter potential A decreases and approaches the vacuum
potential �.

In Fig. 9(a) we plot &�ez�E�e	 in the normal mass hier-

archy scenario at 400 km for the cases with L� � 1051 and
5� 1051 erg=s. One immediately sees that there is a rather
sharp transition edge at EC ’ 9:5 and 7.9 MeV for L� �
1051 and 5� 1051 erg=s, respectively. Noting that P�e�e �

1=2� &�ez, one sees that �e with energy below EC are

almost fully converted into ��, while �e with energy above
EC but below another threshold EH mostly survive. The
threshold EH is roughly at�22 and 40 MeV for L� � 1051

and 5� 1051 erg=s, respectively. Because P�����E	 �

P�e�e�E	, there exists a similar transition edge for ��.

This difference in the flavor transformation of the neutrinos
of low and high energies is responsible for the partial swap
of the spectra of �e and �� seen in Fig. 7(a). We also plot
the corresponding values of & ��ez�E ��e	 in Fig. 9(b).

Knowing that P ��e ��e � 1=2� & ��ez, one sees that most of

the ��e survive. This is also true for ���.
We plot &�ez�E�e	 and & ��ez�E ��e	 with the inverted mass

hierarchy in Fig. 9(c) and 9(d), respectively. There also we
see a transition edge with EC ’ 8:5 MeV for �e, which is
similar to that with the normal mass hierarchy, but reversed
in direction. We note that EC is essentially the same for
both L� � 1051 and 5� 1051 erg=s in the case of an
inverted mass hierarchy. This transition edge results in
the partial swap of the spectra of �e and �� shown in
Fig. 7(c). The behavior of ��e is more complicated.
Roughly speaking, ��e with energy below some threshold
EL or between EM and EH are mostly converted into ���,
where EL ’ 3 and 1.8 MeV, EM ’ 16:5 and 8 MeV, and
EH ’ 20 and 40 MeV for L� � 1051 and 5� 1051 erg=s,
respectively.

As mentioned above, we do not have an analytical or
semianalytical analysis of the bi-polar mode flavor trans-
formation in the general cases. Nevertheless, we propose a
tentative explanation of the main features in Fig. 9 as
follows.

The results shown in Fig. 8 suggest that the NFIS’s of
both neutrinos and antineutrinos roughly rotate around êf

z
with a frequency !. In fact, in the limit that A� �, the
NFIS’s in the bi-polar mode rotate around the vacuum field
HV � êv

z � �êf
x sin2�� êf

z cos2� [see Eq. (34)], which is
close to êf

z if �� 1.
To give a rough feel for the behavior of such a system, let

us study a toy scenario where &�E�	 is coupled to both HV

and another field ��t	, which rotates in the plane perpen-
dicular to HV. Thus the equation of motion for &�E�	 can
be written as
 

d

dt
&�E�	 � &�E�	 � ��V�E�	HV

�����t	�êv
x cos!t� êv

y sin!t	; (52)

where �� is a coefficient, and êv
x, êv

y and êv
z are a set of

orthogonal unit vectors with êv
x � êv

y � êv
z . Suppose that at

t � 0, we have j����t � 0	j � j�V�E�	HVj and &�E�	 is
aligned or antialigned with ��t � 0	. We want to find the
configuration of &�E�	 as ��t	 slowly decreases toward
zero. Equation (52) turns out to be very simple in a corotat-
ing frame in which ��t	 is fixed in one direction, say ŵ.
(Ref. [17] points out the utility of the corotating frame.)
The equation of motion of &�E�	 in this corotating frame is
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d

dt
~&�E	 � ~&�E�	 � ~Heff (53a)

� ~&�E�	 � ���V�E�	 �!	HV �����t	ŵ; (53b)

where a vector with a tilde symbol is the same as that
without but viewed in the corotating frame. As ��t	 de-
creases, ~Heff rotates from the direction of ��ŵ to that of
��V�E�	 �!	HV. If this process is slow enough, ~&�E�	
stays aligned or antialigned with ~Heff , depending on the
initial conditions, and will be either aligned or antialigned
with HV when � approaches zero. We define

 $�E�	 � ����V�E�	 �!�&�E�	 ��t�0: (54)

One can check that ~&�E�	, and therefore &�E�	, will be
aligned with HV as t!1 if $> 0, and will be antia-
ligned with HV if$< 0. There can be a sharp transition in
the orientation of & at energy E� � EC, where �V�EC	 �
!. The general features of this toy problem are shown in
Fig. 10.

This analysis applies to collective neutrino flavor trans-
formation in the hot bubble if (1) neutrinos and antineu-
trinos are in the collective mode even in the region where

A� �, and (2) the frequency of rotating NFIS’s varies
significantly more slowly than the neutrino density n�. In
this case, ��t	 corresponds to the rotating total NFIS,
which decays as the neutrino density goes down with
increasing radius. Because �e dominates in number over
other neutrinos and antineutrinos, the factor �&�E�	 ��t�0

in Eq. (54) is essentially the scalar product of the NFIS of
the neutrino in question and that of the total &�e , which is

positive for �e and negative for ��e. For the normal mass
hierarchy (�m2 > 0), one has !> 0 [note this behavior in
Fig. 8(a) and 8(b)]. Noticing that �� < 0 [Eq. (32)], one
finds that $ is always negative for & ��e�E ��e	, which will be

antialigned with HV ’ êf
z in the end, as we have seen in

Fig. 9(b). One has$< 0 for &�e�E�e	 if E�e < EC and$>

0 if E�e > EC, where

 EC �

���������m
2

2!

��������: (55)

We see that &�ez is either approximately �1=2 or �1=2,

depending on whether E�e is less than or greater than EC.
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FIG. 9 (color online). Plots of &�ez�E�e 	 (left panels) and & ��ez�E ��e 	 (right panels) for both the normal (upper panels) and inverted
(lower panels) mass hierarchies at r � 400 km. The dashed and solid lines are for L� � 1051 and 5� 1051 erg=s, respectively. These
are single-angle calculation results.
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This behavior can be seen in Fig. 9(a). For the inverted
mass hierarchy (�m2 < 0), one has !< 0 [see the small
insets in Fig. 8(c) and 8(d)]. One finds that $ is always
positive for & ��e�E ��e	, and will be roughly aligned with êf

z in

the end, as we see in Fig. 9(d). For &�e�E�e	, one has$> 0

if E�e < EC, and $< 0 if E�e > EC. Therefore, the corre-

sponding &�ez�E�e	 transitions from �1=2 to �1=2 as E�e
increases and crosses EC, as we see in Fig. 9(c).

The above reasoning is, however, based on an idealized
case. In reality, some NFIS’s of high energy may never be
locked into a collective bi-polar mode with other NFIS’s
under some conditions. Some NFIS’s of moderate energy
may start to peel away from the bi-polar mode in the region
where the matter potential A is comparable to �. In addi-
tion, some NFIS’s of high energy may go through the
conventional MSW conversion after the collective mode
breaks down. Our guess is that �e and ��e of energy E� >
EH in Fig. 9(a) and 9(d) have A * � when the collective
mode breaks down, and they are at least partially converted
through the MSW mechanism. The ��e with E� < EL in
Fig. 9(d) never enter the bi-polar mode, and are converted
to ��� through the MSW or synchronization mechanisms.
The ��e with energies between EL and EM may have com-
plicated flavor evolution histories which quite early cease
to follow the bi-polar mode.

Our argument becomes more accurate at high neutrino
luminosity. With larger L�, more low-energy neutrinos and
antineutrinos join the bi-polar flavor transformation, and
more of them are locked into this collective mode until
A & �. As a result, the threshold energies EL and EM

decrease, and EH increases as L� goes up. This is indeed
the case as one can see from the comparison of the simu-
lations with L� � 1051 and 5� 1051 erg=s (Fig. 9).

We have assumed ! to be a constant in our idealized
analysis. This is not the case in reality. From Fig. 8 one sees
that j!j slowly decreases with radius. If L� is large enough,
neutrinos and antineutrinos will be in the bi-polar mode
even at values of radius where the matter potential A�r	 is
negligible. We expect ! to be a function of �m2, �, f��E�	
and the local neutrino density neff

� �L�; r	, but to be inde-
pendent of S, Ye, etc.. We note that neutrinos and antineu-
trinos start to deviate from the collective mode behavior at
some radius rC as ~& adiabatically rotates away from the
direction of ��

~�. Further, we note that the value of EC

should be determined from !�rC	 using Eq. (55). One can
attempt to estimate rC ( & rBE) from Eqs. (48) and (49)
directly, resulting in the condition

 �rBE	 �
j�m2j

4
���
2
p
GF

1

neff
� �L�; rBE	hE�i

’
hE�i
2�E�

: (56)

The value of rBE derived from Eq. (56) is an overestimate
of rC. We have seen in Fig. 8 that collective flavor trans-
formation ceases at r * rBE. However, at r ’ rC, all the
NFIS’s begin to slightly deviate from alignment, but are
more or less still following the collective mode.
Nevertheless, we expect �rC	, like �rBE	, to be deter-
mined by f��E�	 only. As a result, neff

� �L�; rC	, and thus
!�rC	 and EC, are actually independent of L�, if L� is large
enough.

 

FIG. 10 (color online). The toy scenario explaining the evolution of NFIS &. The NFIS & can be viewed as a ‘‘magnetic spin’’ which
is coupled with a constant field HV and a field � rotating with angular frequency !. We actually consider here two ‘‘magnetic spin’’
couplings, one with‘‘magnetic moment’’�V and the other with��. The vector ��� rotates in the êv

x � êv
y plane in the clockwise sense

when viewed from above, looking in the �êv
z direction. The ‘‘magnetic spin’’ & is aligned initially with the dominant field � at time

t � 0 [panels (a) and (d)]. The problem is easily solved in the corotating frame where � is not rotating. In this corotating frame, the
‘‘magnetic spin’’ & rotates around the effective field ~Heff � ��V �!	HV ���� [panels (b) and (e)]. If � slowly reduces its length to
zero, the angle between the spin & and the effective field ~Heff is constant (adiabatic process), and & ends up almost aligned with HV at
t � 1 if �V �!> 0 [panel (c)] or almost antialigned with HV if �V �!< 0 [panel (f)].
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We have calculated the energy spectra of neutrinos at
r � 400 km using the single-angle approximation with
S � 140 and 250, and L� � 1051 and 5� 1051 erg=s.
The values of EC in most of the cases agree well with
each other for the same neutrino mass hierarchy. The value
of EC in the case with S � 140 and L� � 1051 erg=s is
different from those in the other three cases for the normal
mass hierarchy [see, e.g., Fig. 9(a)] because L� is not large
enough, or equivalently, the baryon density profile is not
sufficiently condensed toward the surface of the neutron
star. We also note that &�ez�E�e	 is not a strict step function,

but has a transition region of finite width. The transition
region in the normal mass hierarchy scenario overlaps with
that in the inverted mass hierarchy scenario, which seems
to suggest that the values of j!�rC	j are at least similar in
these two cases.

B. Onset of collective neutrino flavor transformation

The radius where significant neutrino flavor transforma-
tion starts can be very important for nucleosynthesis and
for estimates of the expected late-time neutrino signal [29–
31]. We define rX as the radius where hP�e�ei falls just

below 0.9. In Fig. 11(a), we plot rX�L�	 for the cases with
S � 140 and 250 in the normal mass hierarchy scenario
based on our single-angle and multiangle simulations. For
both entropy values, rX�L�	 in single-angle simulations
monotonically decreases as L� increases. As a comparison,
we also plot the corresponding values of rX=MSW�Esync	 in
Fig. 11(a). Here Esync ’ 2:47 MeV is the characteristic
neutrino energy for the full synchronization mode, and
rX=MSW�E�	 is the radius where a �e with energy E� has

P�e�e � 0:9 in the standard MSW mechanism. One sees

that the values of rX�L�	 asymptotically approach
rX=MSW�Esync	. This is not a surprise. According to
Eq. (48), neutrinos are in the synchronization mode if
neff
� �L�; r	 is large. In turn, neff

� �L�; r	 increases with in-
creasing L� at a fixed radius r. As L� increases, more and
more low-energy neutrinos and antineutrinos are locked
into the synchronization mode, and the characteristic neu-
trino energy of the synchronization mode decreases and
asymptotically approaches Esync. One also sees that for the
same L�, the radius rX�L�	 is much closer to rX=MSW�Esync	

in the S � 250 case than in the case with S � 140. This is
because with larger S the baryon density profile is more
condensed toward the neutrino sphere, and rX�L�	, like
rX=MSW�Esync	, is smaller in this case. Therefore,
neff
� �L�; rX	 is larger with a larger S but the same L�, and

the synchronization is more complete.
It is interesting to see that the values of rX�L�	 obtained

from the multiangle simulations all fall between those from
the single-angle simulations and rX=MSW�Esync	. Com-
paring Eq. (26b0) with (26b00), one can see that the
single-angle approximation uses neff

� �L�; r	 on the radial
trajectory. Note that neff

� �L�; r	 has smaller values on the
radial trajectory than it does on any other trajectory. On
average, values of neff

� �L�; r	 are larger in the multiangle
simulations than in the single-angle ones at the same
radius r. At the same time, the full synchronization mode
obtains when neff

� �L�; r	 ! 1. Thus rX�L�	 computed
from single-angle calculations gives upper bounds on the
actual rX�L�	, and rX=MSW�Esync	 gives a lower bound on
this quantity.
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FIG. 11 (color online). Plots of rX�L�	 for both the normal [panel (a)] and inverted [panel (b)] neutrino mass hierarchies. The dashed
and solid lines are based on single-angle simulations with S � 140 and 250, respectively. The cross and star symbols are based on the
average of rX on the radial and tangential trajectories in our multiangle simulations with S � 140 and 250, respectively. The error bars
associated with the cross and star symbols indicate the range of values of rX on different trajectories. These are too small to be visible
in most of the cases. For the normal mass hierarchy case [panel (a)], rX asymptotically approaches rX=MSW�Esync	 with large L�, which
is 73.9 (dot-dashed lines) and 34.4 km (dotted lines) for S � 140 and 250, respectively. The dot-dashed line in panel (b) represents a
crude estimate for where the collective neutrino flavor transformation exits the synchronization mode and enters the bi-polar mode
[Eq. (57)].
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In Fig. 11(b), we plot the numerical values of rX�L�	 in
our single-angle and multiangle simulations for the cases
with S � 140 and 250, respectively, and employing the
inverted mass hierarchy. One sees that the values of rX�L�	
monotonically increase with L�. In addition, they are not
very sensitive to the value of S. To explain this phenome-
non, we note that rBS, the radius where the neutrinos exit
the synchronization mode and enter the bi-polar mode, can
be estimated from the condition

 

j�m2j

4
���
2
p
GF

1

neff
� �L�; rBS	hE�i

’
�hE�ei � hE ��ei	

2

2�hE�ei
2 � hE ��ei

2	
(57)

[see Eqs. (48), (49), and (51)]. Clearly neff
� �L�; rBS	 de-

pends only on �m2, � and f��E�	. Once these parameters
are specified, neff

� �L�; rBS	 is fixed. As a result, rBS�L�	
must increase with L� for a fixed neutrino density
neff
� �L�; rBS	. In addition, rBS�L�	 depends only on �m2,
�, f��E�	 and L�, and is independent of S, Ye, etc.. We plot
the estimated values of rBS�L�	 determined from Eq. (57)
in Fig. 11(b). These indeed increase with L�. However, the
estimated values of rBS�L�	 are always larger than rX�L�	.
This is because we have made many simplifications in
deriving Eq. (57). In particular, we have assumed that the
‘‘magnetic moments’’ of the NFIS’s in the opposite direc-
tions are �m2=2hE�ei and �m2=2hE ��ei. This is a very crude

approximation. According to Ref. [17], the flavor conver-
sion of neutrinos and antineutrinos in the bi-polar mode is
suppressed very little by the matter potential in the scenario
with the inverted mass hierarchy. This is contrary to a
contemporary false belief that a large matter potential al-
ways strongly suppresses neutrino flavor transformation.
Therefore, rX�L�	 should roughly trace the actual values of
rBS�L�	,

 rX�L�	 ’ rBS�L�	: (58)

We conclude that, like rBS�L�	, rX�L�	 with the inverted
mass hierarchy has little dependence on S or Ye, and
increases monotonically with L�. Because the single-angle
approximation uses the smallest value of neff

� among all
trajectories, it gives lower bounds on the actual values of
rX�L�	. This is clear in Fig. 11(b).

We note that rBS�L�	 is the same for both the normal and
inverted mass hierarchies. Using this information, we can
estimate whether significant neutrino flavor transformation
for the normal mass hierarchy case begins in the bi-polar
mode or not. Comparing panel (a) with panel (b) in Fig. 11,
we note that for the normal mass hierarchy, neutrinos and
antineutrinos start flavor transformation in the synchroni-
zation mode for S � 250. They begin flavor transformation
through the bi-polar mode for S � 140 when L� is less
than a few times 1051 erg=s.

For the inverted neutrino mass hierarchy, our simula-
tions show that chaotic behavior in neutrino flavor trans-
formation can occur in the narrow region of radius where

the collective behavior transitions from the synchronized
to the bi-polar mode. To study this, we manually added
random perturbations of order 10�12 in &�e�E	 at radius

r � 50 km (the region just below the synchronized-to-bi-
polar transition for the particular case with S � 140 and
L� � 1051 erg=s). We follow the evolution of �&��E	, the
difference between the NFIS’s of neutrino �with energy E
in the perturbed and unperturbed cases. We find that
j�&��E	j for neutrinos of all species and energies grows
with the same exponential factor in the transition region

 j�&��E	j / exp
�
2:5

r
km

�
: (59)

In Fig. 12 we plot lnjh�&�eij as a function of radius r. Note

that the difference jh�&�eij between the energy-averaged �e
NFIS’s of the perturbed and unperturbed cases is�5� 108

times larger at the radius where the system is fully in the bi-
polar mode than in the region before the synchronized-to-
bi-polar transition. This chaotic behavior obviously causes
difficulty in accurately simulating neutrino flavor trans-
formation. However, we have performed several computa-
tions with different numerical schemes, all of which show
qualitatively similar results. Therefore our analysis and
conclusions are not affected by this behavior. At this point
we do not know whether this behavior reflects true chaos or
the appearance of a critical point in the neutrino/antineu-
trino system.

It is appropriate to comment on the validity of the single-
angle approximation at this point. The traditional single-
angle approximation picks the radial trajectory as the
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FIG. 12 (color online). The difference between two almost
identical systems grows exponentially in the region where col-
lective neutrino flavor transformation changes from the synchro-
nized mode to the bi-polar mode in the inverted neutrino mass
hierarchy case. The solid line shows the exponential growth of
jh�&�e ij (difference between the energy-averaged �e NFIS’s of

the two systems) as a function of radius in the transition region.
The dot-dashed line is a linear fit to lnjh�&�e �r	ij. This line has

slope �2:5=km.
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representative trajectory, which turns out to have the small-
est neff

� . As a result, the neutrino background effect tends to
be underestimated. A slightly better approximation would
be to average over all trajectories. This ‘‘averaged’’ case
would have changed the geometric factor D�r=R�	 in
Eq. (29) to
 

D�r=R�	 �
1

2

�
1�

����������������������
1�

�
R�
r

�
2

s ��
1�

����������������������
1�

�
R�
r

�
2

s

�
1

2

�
R�
r

�
2
�
: (290)

Even with this improvement, we would not expect to be
able to simulate the complicated entanglement of neutrino
flavor transformation among different trajectories. The
single-angle approximation is only accurate when neutri-
nos on different trajectories have the same flavor trans-
formation histories. This does not seem to be the case for
the bi-polar collective transformation. As a result, it will be
necessary to use multiangle simulations to accurately
gauge, e.g., the effect of neutrino flavor transformation
on Ye. Nevertheless, as we have demonstrated, the numeri-
cal simulations using the single-angle approximation are
very useful as a means of exploring the basic physics of
neutrino flavor transformation in the hot bubble. These
simple models do provide simple checks on more complex
and computationally-intensive simulations.

V. CONCLUSIONS

We have carried out large-scale multiangle simulations
of neutrino flavor transformation in the hot bubble employ-
ing the atmospheric neutrino mass-squared difference,
j�m2j ’ 3� 10�3 eV2, and effective 2� 2 vacuum mix-
ing angle � � 0:1. The numerical results we have pre-
sented support previous conjecture on the existence of
collective neutrino flavor transformation of the bi-polar
type in the supernova environment [17]. Our simulations
also show that both neutrinos and antineutrinos can simul-
taneously undergo significant flavor conversion, largely
driven by flavor off-diagonal potentials, at values of radius
much smaller than those expected from ordinary MSW.
This is along the lines of what was predicted in Ref. [16].
We have found that this flavor transformation occurs in
both the normal and inverted neutrino mass hierarchy
scenarios.

For the normal mass hierarchy case, the full synchroni-
zation limit gives a lower bound on the radius where large-
scale neutrino flavor transformation begins. (Ref. [12] was
the first to point out that, since Esync is much smaller than
average neutrino energies, synchronized flavor transforma-
tion modes operate closer to the neutrino sphere than those
driven by the MSW matter potential.) Although an ana-
lytical analysis of neutrino flavor transformation in the bi-
polar mode has yet to be done, our numerical simulations
suggest that, for the normal mass hierarchy, the onset of bi-

polar type flavor transformation always occurs at values of
radius larger than those required in the full synchronization
case. Our simulations also support the prediction of large-
scale neutrino flavor transformation in the inverted mass
hierarchy scenario [17]. (Large-scale neutrino/antineutrino
flavor transformation with small mixing angles in the in-
verted mass hierarchy case previously was seen in the early
universe context [32] and also in the supernova context
[12].) We have found that this may occur at values of radius
even smaller than those seen in the full synchronization
mode in the normal mass hierarchy scenario. We have
found that single-angle simulations can be used to give a
lower bound on the radius where large-scale neutrino flavor
transformation occurs in the inverted mass hierarchy
scenario.

Our ‘‘multiangle’’ calculations are the first to include
self-consistent flavor evolution history entanglement on
intersecting neutrino world lines. Although we find that
‘‘single-angle’’ simulations in some cases can give the
correct qualitative features of large-scale neutrino and/or
antineutrino conversion in the late-time, hot bubble region,
our simulations clearly show that a quantitatively correct
treatment must include coupled flavor development on
different neutrino trajectories. Furthermore, since the lo-
cation where large-scale neutrino and/or antineutrino fla-
vor transformation begins in the supernova envelope can be
a crucial issue for supernova shock reheating [1], r-process
nucleosynthesis [2,3,11,13,18,20], and the supernova neu-
trino signal [29–31], it is essential that simulations be
quantitatively as accurate as possible.

The simulations we have presented focus on the late-
time supernova environment, i.e., the regime after the
shock has been somehow re-energized. This epoch is a
leading candidate for the site of the production of some or
all of the r-process elements and will be a major focus of
future neutrino detectors/observatories should we be lucky
enough to catch a galactic core collapse event. Though our
simulations show that large-scale neutrino and antineutrino
flavor conversion can take place during this epoch for the
expected conditions of neutrino flux and entropy, we must
go further than we have in this paper to produce quantita-
tive predictions. There are three principal reasons for this:
(i) we do not as yet know the matter density distribution
above the proto-neutron star to sufficient accuracy at any
epoch; (ii) we do not know precisely the neutrino and
antineutrino energy distributions and fluxes which are
emergent from the proto-neutron star; and (iii) the matter
composition (i.e., Ye) can be affected by any changes in the
neutrino and antineutrino spectra engendered by flavor
transformation and we have not put this feedback in the
calculations presented here.

On point (ii), recent work on supernova models at tPB <
1 s suggests that additional channels for neutrino scattering
may weaken or dilute the effects of the charged-current
opacities [33,34]. This would tend to make the �e, ��e, and
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�� ����� ��� energy spectra more similar. Of course, if the
neutrino energy spectra and fluxes are identical for all
flavors, interconversion of these will have no astrophysical
effect. We note, however, that reliable neutrino transport
calculations at the late time we considered here do not
exist, and the core’s composition and neutron excess is
expected to change considerably between tPB * 1 s and 1 s
and tPB ’ 10 s. Clearly, this issue is critical for gauging the
astrophysical effect of neutrino flavor mixing.

It is well known that density fluctuations on short length
scales and other inhomogeneities can modify coherent
neutrino flavor evolution through MSW resonances
[35,36]. How these fluctuation-induced modifications
could manifest themselves in quantum flavor history en-
tanglement on intersecting neutrino trajectories is not
known. This issue may be closely related to the problem
of calculating neutrino transport and predicting the emer-
gent neutrino energy spectra in general [37–41] and to the
inclusion of neutrino flavor mixing in the core in particular
[42,43]. Though our simulations are spherically symmet-
ric, they do show that the density and Ye profiles near the
proto-neutron star surface are important for obtaining the
correct flavor evolution of the neutrino and antineutrino
fields, even well above the proto-neutron star.

These uncertainties aside, our calculations indicate that
large modifications of the emergent neutrino and antineu-
trino energy spectra are likely to occur over most of the
range of expected thermodynamic and neutrino emission
parameters of relevance in the late-time supernova envi-
ronment. Furthermore, we have found that these modifica-
tions could set in sufficiently deep in the supernova
envelope to affect Ye [2] and r-process nucleosynthesis
[44,45] through neutrino interactions. However, we have
not included charged-current weak interaction [Eq. (41)]
feedback in the calculations presented here.

We have fixed Ye and gs in this work, essentially to
simplify the computations. In future simulations we will
remove these constraints and allow Ye and gs to be calcu-
lated consistently with feedback from neutrino capture
reactions. However, we expect that the collective neutrino
flavor transformation illustrated here will not be changed
qualitatively with changing Ye and gs. The bi-polar neu-
trino flavor transformation seen in our simulations is
largely independent of the values of Ye and gs. For ex-
ample, we have shown that �e of energy smaller (larger)
than a critical energy EC could convert to other flavors if
�m2 > 0 (�m2 < 0). This critical energy EC asymptoti-
cally approaches a limit if L� is large enough, or equiv-
alently, the electron density profile is sufficiently
condensed toward the proto-neutron star. The asymptotic
limit of EC depends only on the neutrino mixing parame-
ters and the initial energy spectra for neutrinos and
antineutrinos.

Because the proto-neutron star is neutron-rich, the initial
�e energy spectrum may be softer than those for neutrinos

in other flavors. Our simulations suggest that �e and neu-
trinos in other flavors may swap the low-energy (E� < EC)
or high-energy (E� > EC) parts of their spectra depending
on the sign of �m2

13. Note that this stepwise swapping is
independent of the details of the neutrino energy spectra.
With other effects correctly accounted for and a good
signal from a galactic supernova, this phenomenon may
offer a unique probe of the neutrino mass hierarchy
problem.

We have employed 2� 2 neutrino flavor mixing in our
simulations. It is possible to extend our codes to implement
the neutrino mixing of all three active flavors. However, we
expect that neutrino flavor transformation in the hot bubble
region will not change much on inclusion of a third neu-
trino flavor. For one thing, �� and �� are almost equally
mixed in the hot bubble because they experience the same
weak interactions and �23 ’ �=4. For another, the two
neutrino mass-squared differences, �m2

atm and �m2
�, are

separated by over an order of magnitude. Taking �m2 �
�m2

� ’ 8� 10�5 eV2 and � � �12 ’ 0:6, we estimate that
the onset radius of large-scale neutrino flavor transforma-
tion in the full synchronization limit is rX=MSW�Esync	 ’

227 km for an entropy per baryon S � 140. This location
is almost outside the range of the simulation results pre-
sented in Sec. III B.

In summary, though many aspects of our calculations are
reasonable approximations at best (e.g., 2� 2 mixing,
assumptions of spherical symmetry, an infinitely thin neu-
trino sphere, neutrino/antineutrino energy spectra of the
Fermi-Dirac type, etc.), our computations do mark an
important advance in that they self-consistently treat
coupled neutrino flavor evolution on different trajectories.
We cannot claim generality for our conclusions. However,
our assumptions are reasonable, and our results are robust,
and so there is nothing to suggest that our results represent
an isolated case either. Not only do our results show that a
proper treatment of coupled neutrino trajectories is impor-
tant, but they also indicate that the measured neutrino
mass-squared difference values and mixing angles likely
imply large-scale flavor conversion of neutrinos and anti-
neutrinos in astrophysically important regions in the post-
explosion supernova environment.
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versations. We would especially like to thank G. Raffelt for
a careful reading of the manuscript and many useful
comments.

[1] G. M. Fuller, R. W. Mayle, B. S. Meyer, and J. R. Wilson,
Astrophys. J. 389, 517 (1992).

[2] Y.-Z. Qian, G. M. Fuller, G. J. Mathews, R. W. Mayle, J. R.
Wilson, and S. E. Woosley, Phys. Rev. Lett. 71, 1965
(1993).

[3] Y. Z. Qian and G. M. Fuller, Phys. Rev. D 51, 1479 (1995).
[4] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
[5] G. M. Fuller, R. W. Mayle, J. R. Wilson, and D. N.

Schramm, Astrophys. J. 322, 795 (1987).
[6] J. T. Pantaleone, Phys. Rev. D 46, 510 (1992).
[7] G. Sigl and G. Raffelt, Nucl. Phys. B406, 423 (1993).
[8] A. Friedland, B. H. J. McKellar, and I. Okuniewicz, Phys.

Rev. D 73, 093002 (2006).
[9] N. F. Bell, A. A. Rawlinson, and R. F. Sawyer, Phys. Lett.

B 573, 86 (2003).
[10] A. Friedland and C. Lunardini, J. High Energy Phys. 10

(2003) 043.
[11] Y.-Z. Qian and G. M. Fuller, Phys. Rev. D 52, 656 (1995).
[12] S. Pastor and G. Raffelt, Phys. Rev. Lett. 89, 191101

(2002).
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