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In theories with anomalous fermion number nonconservation, the level-crossing picture is considered a
faithful representation of the fermionic quantum number variation. It represents each created fermion by
an energy level that crosses the zero-energy line from below. If several fermions of various masses are
created, the level-crossing picture contains several levels that cross the zero-energy line and cross each
other. However, we know from quantum mechanics that the corresponding levels cannot cross if the
different fermions are mixed via some interaction potential. The simultaneous application of these two
requirements on the level behavior leads to paradoxes. For instance, a naive interpretation of the resulting
level-crossing picture gives rise to charge nonconservation. In this paper, we resolve this paradox by a
precise calculation of the transition probability, and discuss what are the implications for the electroweak
theory. In particular, the nonperturbative transition probability is higher if top quarks are present in the
initial state.
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I. INTRODUCTION

When a classical conservation law is broken by quantum
corrections, It is said that the associated symmetry is
anomalous. An anomaly in a current associated with gauge
symmetry ruins the consistency of the theory. The require-
ment that all gauge anomalies cancel strongly restricts the
possible physical theories. On the other hand, anomalies
arising in other type of currents can lead to interesting
physics. For instance in strong interactions, the anomaly
in the chiral current is important in the well-known pion
decay to two photons. In weak interactions, there is an
anomaly in the baryon number current. Although anoma-
lous baryon number violating transitions are strongly sup-
pressed at small energies, they could be at the origin of the
baryon asymmetry of the universe.

Anomalous transitions leading to fermion number non-
conservation arise in the electroweak theory or any other
model with a similar vacuum structure. The crucial feature
is the existence of many degenerate vacua, separated by
energy barriers and the transition between them leads to the
creation, or destruction, of fermions. The energy barrier
can be passed by either by tunneling, which is represented
by an instanton [1], or by thermal excitations [2,3]. In the
second case, the relevant configuration is the sphaleron [4].
It is defined as the maximum energy configuration along
the path of minimal energy connecting two neighboring
vacua.

To visualize anomalous fermion number nonconserva-
tion, let us consider the path in the bosonic field space,
parametrized by �, that relates two neighboring vacua via
the sphaleron configuration. If the bosonic fields evolve
very slowly along this path, the fermionic states can be
found by solving the static Dirac equationHD�n � En�n.
This equation has positive as well as negative energy states.

A way to represent the fermionic vacuum state is the Dirac
sea. All states with negative energy are filled, whereas all
positive energy states are empty. We are interested in the
variation of the Dirac sea as a function of �. On a graph
containing all energy levels as function of �, it may happen
that an initially negative (therefore occupied) energy level
crosses the zero-energy line and becomes a real particle.
This is the level-crossing picture representation of the
anomalous fermion number nonconservation [5]. In the
case of the electroweak theory, one level for each existing
fermionic doublet crosses the zero-energy line in the tran-
sition between two adjacent vacua [6].

The level-crossing picture can be thought of as a quan-
tum mechanical description of fermion creation. This de-
scription is assumed to match the complete quantum field
theory when the background evolves very slowly.

Consider now the case of two fermions �i, where i � 1,
2 is the flavor index. We first assume that the different
flavors are not mixed by any interaction term, that is to say
the Dirac equation, which generally reads Hij�j � E�j,
can be diagonalized in flavor space for any �. We will call
fermions for which H is diagonal, independent. On the
level-crossing picture for two fermions with different
masses,1 we see that two energy levels cross the zero-
energy line and cross each other. A simplified level-
crossing picture containing these two levels is given in
Fig. 1(a).2

On the other hand, if the two fermions are mixed, for
instance by the interaction between them and the back-
ground sphaleron fields, and the Dirac Hamiltonian is not
diagonalizable, we know from quantum mechanics that the
energy levels cannot cross each other. Therefore, in this

*Electronic address: Yannis.Burnier@epfl.ch

1We consider here fermions made massive through their
Yukawa coupling to the Higgs field and not by a tree mass term.

2The full level-crossing picture of the theory we consider in
the following is given in Fig. 2.
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case, the heavy fermion becomes the light one and the light
one becomes the heavy one, see Fig. 1(b). This is so on the
simplified level-crossing picture but, if we reintroduce the
other energy level, we see that, generally there are excited
states of the light particle and the light fermion evolves to
one of them, see Fig. 3. Therefore, we conclude from the
level-crossing picture that two light fermions are created in
the case with mixing instead of a light and a heavy one.

Suppose now that we introduce another gauge field B�,
which shall be Abelian, not spontaneously broken and free
from any anomaly. We further assume that the different
fermions have different charges with respect to this field.
The cancellation of the anomaly for this gauge field B�
requires that the sum of all the fermionic charges vanishes
and therefore an anomalous transition leading to the crea-
tion of one of each existing fermions perfectly respects the
B-gauge symmetry. However, in the case of mixing be-
tween the fermions, the creation of only light fermions
leads to B-charge violation.

Note that the mixing between the fermions is only
possible if the background has a nonvanishing charge
with respect to the B-gauge symmetry. It means that the
B-gauge is broken in the sphaleron or instanton core. This
is possible, and is generally the case, even if the B-gauge
symmetry is unbroken in vacuum.

Two points deserve further investigations. Firstly, if the
level-crossing picture changes qualitatively, it is interesting
to see if the transition probability undergoes such changes.
Secondly, we have to understand how charge conservation
is ensured.

These questions are mainly model independent, there-
fore we choose to resolve them in a simple 1� 1 dimen-
sional anomalous Abelian Higgs model with two chiral
fermions, which contains the above paradox. In this par-
ticular model, we will show that the probability for the
creation of two light fermions is zero, unless it is accom-
panied by the emission of some other particles that com-
pensate for the charge asymmetry. We will also see that the
transition probability is larger if there are heavy fermions
in the initial or final state, again in contradiction to what the
level-crossing picture suggests.

These paradoxes also arise in the electroweak theory.
Indeed, the quarks have various electric charges and in the
background of the electroweak sphaleron or instanton the
SU�2� �U�1�-gauge symmetry is completely broken by
the presence of a charged weak field background. The
resolution of these questions is of great interest for elec-
troweak baryogenesis.3

This paper is organized as follows. In Sec. II, we design
a 1� 1 dimensional model adapted to our purposes. The
level-crossing picture of this model is derived in Sec. III. In
Sec. IV, we compute the nonperturbative transition rate in
the instanton picture and resolve the paradoxes mentioned
before. The implications of our results for the electroweak
baryogenesis are discussed in Sec. V.

II. THE MODEL

We construct here a simple model which contains the
paradoxes mentioned in the introduction. A good candidate
for studying the creation of massive fermions is the chiral
Abelian Higgs model studied in [3,9–11],
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with j � 1, 2 labeling the different flavors. We use the
following representation for the �-matrices:
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FIG. 1. Naive picture of level crossing containing only the two levels that cross the zero-energy line. The heavy particle is
represented by a thick line. Two cases are pictured; without mixing (a) and with mixing between the two fermions (b). In the latter case
the energy levels cannot cross, therefore the heavy particle becomes a light one and vice-versa.

3Even though with the current constraints on the Higgs mass,
producing the observed baryonic asymmetry within the minimal
Standard Model is impossible, electroweak baryogenesis may
still work in some of its extensions [7] and in supersymmetric
theories [8].
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This model displays similar nonperturbative properties as
the electroweak theory.

We also need a mixing term between the different fla-
vors, which would, at the semiclassical level, prevent the
energy levels of the fermions from crossing each other.
Interaction terms between fermions are not possible in this
simple model. Indeed, if we write interaction terms be-
tween different fermions like fij�

y
i;L�j;R�� � h:c: we

could redefine the fields to diagonalize the matrix fij and
the theory would inevitably lead to independent fermions.4

We therefore have to introduce another scalar field, allow-
ing for other Yukawa couplings. This new scalar field
should be nonzero in the instanton and sphaleron back-
ground to provide a semiclassical mixing term. To this aim,
we couple it to the Higgs field with the interaction term
h
2 j�j

2�j�j2 � v2�. We will also introduce a U�1�B gauge
field B� to give different charges to the two different
flavors. The bosonic sector reads:
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Note that the � field should be charged with respect to B�
to break the B-gauge symmetry in the center of the in-
stanton and sphaleron. We have now to specify the charge
of each of the four spinor components �1;2

L;R with respect to
U�1�A and U�1�B. Let us note �1;2

L;R and 	1;2
L;R the charges

with respect to A� and B�. The following choice turns out
to serve our aim:
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The gauge symmetries imply that there are two classically
conserved electric currents
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These currents are in general anomalous but are conserved
with our particular choice of charges.
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The fermionic current
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is conserved at the classical level, however, its anomaly
does not vanish:
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This is indeed what we need; there is no gauge anomaly but
the fermion number current is anomalous. We can now
write down an interaction between fermions and scalar
field, and the fermionic Lagrangian reads:
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The fermionic spectrum consists of two fermions of differ-
ent mass Fj � vfj, j � 1, 2 interacting with each other by
Yukawa coupling to the scalar field �. The vacuum struc-
ture of the model given by the Lagrangians (3) and (7) is
nontrivial [12]. Taking the A0 � 0 gauge and putting the
theory in a spatial box of length L with periodic boundary
conditions, one finds that there is an infinity of degenerate
vacuum states jni, n 2 Z with the gauge-Higgs configura-
tions given by

 A1 �
2
n
eL

; � � vei�2
nx=L�: (8)

The transition between two neighboring vacua leads to the
creation of two fermions as intended: If the vector field A�
undergoes the variation

4Moreover the first scalar field in (2) vanishes in the center of
the instanton, which would allow the levels to cross at the center.
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which corresponds to the difference between two adjacent
vacua, the fermion number anomaly is
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III. LEVEL-CROSSING PICTURE

We build a path in the bosonic field space that goes
adiabatically from one vacuum to the neighboring one. To
this aim, we find the sphaleron and construct a path that
relates it with the initial and final vacua. Such configura-
tions are relevant for high temperature dynamics [13].

Using the A0 � B0 � 0 gauge, the sphaleron in this
model reads
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. It can be found using results on

solitons with two scalar fields of Ref. [14]. Note that this
solution is only valid for a restricted parameter space

 �v2 > 2M2; (12)

 2M2 ���2 � hv2 � 0: (13)

An example of a path going from vacuum n � 0 at � �
0 to vacuum n � �1 at � � 1 via the sphaleron at � � 1=2
is

 �cl � ve��2
ix�=L��cos�
�� � i sin�
��

� tanh�Mx sin�
���	;

�cl � �i�e��2
ix�=L� sin�
��cosh�1�Mx sin�
���;

Acl
1 � �

2
�
eL

; Bcl
1 � 0:

(14)

These configurations represent a set of static background
fields interpolating between vacua in which the fermions
evolve. The equations of motion for the fermions are

 i@0� � H�; (15)
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the Dirac Hamiltonian. In the limit of slow transition _�

0, the Hamiltonian is time-independent and the spectrum of
the static Dirac equation H�n � En�n for each � leads to
the level-crossing picture. Of course, an analytic solution
to this eigenvalue problem is not possible for each �. We
therefore give the analytic solutions at a few values of �,
check with perturbation theory that the interaction poten-
tial lifts the degeneracy of the levels where they cross each
other, and then give the complete level-crossing picture
resulting from numerical computation.

A. Fermionic spectrum in the vacuum � � 0, 1

For � � 0, 1 the fermionic spectrum is the one of non-
interacting fermions �i, i � 1; 2 [11] and is labeled by an
integer n.
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Note that the spectrum is different in the states � � 0 and
� � 1. The configuration � � 0 is not a true vacuum for
fermions, the fermionic contribution to vacuum energy
being larger for � � 0 than for � � 1. This difference
however vanishes in the limit of infinite system size [11].
All states are doubly degenerate in energy except for � � 0
in the case n � 0.

B. Sphaleron configuration, � � 1=2

The Dirac Hamiltonian in the background of the spha-
leron reads
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In the F3 � �f3 � 0 case, the Dirac equations decouple
and can be solved separately for each fermion. In the limit
L! 1, one finds two zero-modes, one for each fermion:
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The interaction can be introduced perturbatively. To this
aim, the Dirac Hamiltonian is separated in two parts H �
H0 �W with H0 � H�f3 � 0�. In the �1
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0 subspace,

the interaction matrix reads
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and ni � h�ij�ii1=2. The eigenstates of the matrix Mij are

 �� � �i�1 ��2 with energy E� � I;

�� � �1 � i�2 with energy E� � �I:

We see here that the interaction between the fermions lifts
the degeneracy between the states and avoids that the levels
cross each other.

C. Numerical results

The energy levels may be found numerically for each
value of � solving the static Dirac equation with the
Hamiltonian (17) and periodic boundary conditions in the
interval of length L.

The results (Fig. 2 and 3) show, in the cases of indepen-
dent and mixed fermions, the creation of two fermions (two
levels cross the zero-energy line). In the independent case,
one of each fermion is created (Fig. 2), whereas two light
ones are created in the mixed case (Fig. 3). The latter
process violates charge conservation.5 For charge conser-
vation to be preserved, the transition probability of such a
process must vanish. As a precise calculation of the tran-
sition probability is difficult in the sphaleron picture, we
will use the instanton approach in the following, which
leads to a well-defined semiclassical expansion. Note that
the instanton picture will be similar to the adiabatic spha-
leron transition if the fermionic masses are large and their
associated time-scale small in comparison to the instanton
size.

IV. INSTANTON PICTURE

We first derive the Euclidean properties of the model and
then compute the transition probability for a few represen-
tative processes. In Euclidean space, the bosonic
Lagrangian reads
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FIG. 2. Level crossing of two fermions without mixing, F1 �
0:05, F2 � 0:35, f3 � 0, L � 50 and h � m � e � e0 � 1,
M � 0:5. One of each fermion is created when going from � �
0 to � � 1 and the heavy fermion level (dashed) crosses many
energy levels of the light fermion.
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FIG. 3. Level crossing of two fermions with mixing, F1 �
0:05, F2 � 0:35, f3 � 0:24. The heavy fermion (dashed) energy
level cannot cross the light fermion levels and two light fermions
are created.

5Two light fermions of charge �1=2 with respect to the B
gauge field are created
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and the fermionic part
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with �E0 � i�0 and �E1 � �1.

A. Bosonic sector

In order to find the instanton solution, let us point out the
following: if � � B � 0, we know the solution of the
remaining equations, it is the Nielsen-Olesen vortex [15].
We search here for a solution of the same type, adding
some generic form for B and �:

 �cl�r; �� � f�r�e�i�; Aicl�r; �� � "ijr̂jA�r�;
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(24)

with polar coordinates �it � � � r cos�; x � r sin��, r̂ the
unit vector in the direction of r and "ij the completely
antisymmetric tensor with "01 � 1. Some details can be
found in Appendix A, only the main results will be given

here. An example of profile is given in Fig. 4 and the
asymptotic form of the different functions are
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where f0, a0, b0, g0, f1, g1, a1, b1 are constants found by
computing the exact instanton profile.

B. Fermions

The fermionic fluctuations in the background of the
instanton (24) are given by H� � E�, with:
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The zero-modes are found solving the equationH� � 0, withH the Dirac operator in the background of the instanton. We
use polar coordinates �r; �� and expand fermionic fluctuations in partial waves � �

P
1
m��1 e

im��m. This leads to the
following system of equations:
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FIG. 4. Instanton shape (with a different scale for the field B)
for the following values for dimensionless constants (see
Appendix A): m2 � M2

�v2 � 1, � � �
e2 � 4, �0 � �

e02
� 4,  �

�
h � 1, H � h

� � 3.
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 �
@
@r
�
m
r
�
e
2
A�r� �

e0

2
B�r�

�
�1
m � f1f�r��

2
m � f3g�r��

4
m�1 � 0;�

@
@r
�
m
r
�
e
2
A�r� �

e0

2
B�r�

�
�2
m � f1f�r��

1
m � 0;�

@
@r
�
m� 1

r
�
e
2
A�r� �

e0

2
B�r�

�
�3
m�1 � f2f�r��4

m�1 � 0;�
@
@r
�
m� 1

r
�
e
2
A�r� �

e0

2
B�r�

�
�4
m�1 � f2f�r��

3
m�1 � f3g�r��1

m � 0:

(28)

In the case f3 � 0 and B�r� � 0, the two fermions de-
couple and their zero modes are [16]:
 

 j�r� /
� 1

�1

�
exp

�
�
Z r

0
dr0

�
vfjf�r� �

e
2
A�r�

��
;

j � 1; 2: (29)

If f3 � 0 the fermions are coupled and the zero-modes
cannot be found analytically. Their existence can be
checked using the method of Ref. [16] and their asymptotic
forms for r! 1 read6

  1
cl �

�1���
r
p

e�F1r

�e�F1r

�	1e
�F2re�i�

	1e�F2r
�
1� 1

F2r

�
e�i�

0BBBBB@

1CCCCCA;

 2
cl �

�2���
r
p

	2e
�F1r

�
1� 1

F1r

�
ei�

�	2e
�F1rei�

�e�F2r

e�F2r

0BBBBB@

1CCCCCA;
(30)

where �1;2 are normalization constants and 	1;2 parame-
trize the mixing of the two fermions. 	1 and 	2 vanish in
the limit of decoupled fermions (f3 ! 0) and have to be
computed numerically solving the system of Eqs. (28) for
arbitrary value of f3. The values of 	1;2 found numerically
are given as a function of the fermion masses in Fig. 5 and
as function of the coupling f3 in Fig. 6. We will see that the
constant 	1 arises as a multiplicative factor in the proba-
bility of creating two heavy fermions and 	2 in the proba-
bility of creating two light ones. The factors 	1;2 are
therefore the most important parameters to compare the
transition probabilities. It is then useful to get a good
understanding of their dependence on the different parame-
ters. We will therefore provide an analytical approximation
for them.

For small coupling f3, and small instanton size a in units
of fermion mass, we can get a rough approximation by
perturbation theory. We checked numerically that it corre-
sponds reasonably well to the exact case and will be

sufficient for the following discussion. We are interested
in the case were the first fermion is very light in compari-
son to the second one and in comparison to the scalar field,
F1 � m�. The calculations in Appendix B give

 	1  f3v
Z 1

0
dxg�x� sinh�f2x�e

�f1x: (31)

If the inverse fermion mass 1
f1v

is small in comparison to

 

-2 -1.5 -1 -0.5 0
log ( F2 )

-5

-4

-3

-2

-1

0

1

2

log ( 1,2 )

2 for f3 =0.05
1 for f3 =0.05
2 for f3 =0.2
1 for f3 =0.2
2 for f3 =0.5
1 for f3 =0.5

FIG. 6. Coefficients 	1;2 as a function of the mass F2 for some
different couplings f3 and for f1 � 0:01. The constants F1;2, f3

are in units of
����
�
p
v.

 

-1.5 -1 -0.5 0
log ( F2 )

-4

-2

0

2

4

log ( 1,2 )

F1 =0.01

F1 =0.1
F1 =0.5 F1 =1

1

2

FIG. 5. Coefficients 	2 (dashed lines) and 	1 (triangles) as a
function of the mass F2 for some different light fermion masses
F1 � 0:01, 0.1, 0.5, 1 and for f3 � 0:2. The line represent 	1 �
	2 in the degenerate case F1 � F2. The constants F1;2, f3 are in
units of

����
�
p
v.

6We consider here the approximation B � 0 (or e0 � 0), which
does not lead to observable changes (see Fig. 4)
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the typical extent rinst of the function g�r�, we have:

 	1  f3v
Z 1

0
dxg�x� sinh�f2x�: (32)

In the case of a large mass f2 and large instanton size, the
constant 	1 can be large from the presence of the sinh. In
the case of small f2, the integral can be further simplified
to 	1 � f3F2

R
xg�x�dx. A similar computation can be

performed for  cl
2 ,

 	2 � f3v
Z
dxg�x� sinh�f1x�e

�f2x: (33)

If f1rinst � 1 we have 	2 � f3F1

R
dxxg�x�e�f2x, which

is generically small and can be large for a large instanton
size only; it is further suppressed by a large fermion mass
f2.

C. Transition probability

We start with two decoupled fermions (f3 � 0) and
introduce the interaction perturbatively. It is clear what
happens here; the interaction term �if3

��1 1��5

2 �2��
h:c: allows for the decay of the heavy fermion into a light
fermion and a � boson, a process which conserves the
charge and which can be taken into account in final state
corrections (see [17], for inclusion of fermions see [18]).
This is not what we are interested in here. In the non-
perturbative regime, two light fermions are created in the �
background, where the U�1�B gauge is broken and a �
boson should be emitted from the instanton tail as the
U�1�B gauge symmetry is restored far from the instanton
center. We will show here that processes violating charge
conservation have vanishing probability.

1. Green’s function

Green’s functions with creation of two fermions and an
arbitrary number of other particles read
 

Gab�x1; x2; y1 . . . yn; z1 . . . zm; w1; . . . ; wl�

�
Z

D�D ��D�D��D�e�S��; ��;�;��;�	�a�x1��
b�x2�

�
Yn
i�1

��yi�
Ym
j�1

���yj�
Yl
k�1

��yk�; (34)

where � stands for all neutral bosonic degrees of freedom,Ql
k00�1 ��y

00
k �may contain the field A,� and neutral pairs of

fermions and the variable � is a spinor containing the two
fermions as in (16) and a, b � 1; . . . 4.

The main contribution to the Green’s function for the
creation of two fermions comes from the sector with one
instanton (q � �1).7 In this sector, fermions have two

zero-modes (30). The Gaussian path integral over fermi-
onic degrees of freedom can be evaluated, leading to the
fermionic determinant with zero-modes excluded and the
product of the fermionic zero-mode wave functions,8

 

G�x1; x2; y1 . . . yn; z1 . . . zm; w1; . . . ; wl�

�
Z
q��1

D�D��D�e�S��; ��;�;��;�	det0�K��;�	�

�  1
�;��x1� 2

�;��x2�
Yn
i�1

��yi�
Ym
j�1

���yj�
Yl
k�1

��yk�:

(35)

2. Collective coordinates in the one instanton sector

The bosonic action is expanded around the instanton
configuration. Gaussian integration over the quadratic fluc-
tuations gives a determinant det�D2

bos�
��1=2�. However, zero

modes associated to symmetries require introduction of
collective coordinates. There are two translation zero
modes and one coming from U�1�B gauge. Performing an
infinitesimal global gauge transformation, we get

 �� � ei	�� �
 i	ei�g�r�; �� � �A � �B � 0:

(36)

Note that the U�1�A gauge is broken, there is no normal-
izable zero mode associated to this symmetry. Rotation
symmetry does not lead to a further zero mode.9

Collective coordinates are introduced as follows. The
integral over the translation zero modes are replaced by an
integral over the instanton position x0. The integral over
the U�1�B gauge zero-mode is replaced by an integral over
all possible global gauge transformations 	. The Green’s
function reads:
 

G�x1; x2; y1 . . . yn; z1 . . . zm; w1; . . . ; wl�

�
Z
d2x0d	e�Scl det0�Kinst�NBNtrdet0�D2

bos�
��1=2�

�  1
	�x1 � x0� 2

	�x2 � x0�
Yn
i�1

�	�yi � x0�

�
Ym
j�1

��	�yj � x0�
Yl
k�1

�	�yk � x0�; (37)

with

 �	 � ei	�cl; ��	 � e�i	�cl; (38)

 �	 � �cl;  j	 � ei�	=2��5 jcl; j � 1; 2; (39)

7More precisely, in the dilute instanton gas approximation the
result from the one instanton sector can be exponentiated to give
the complete Green’s function [19].

8Note that the zero-mode functions still depend on the back-
ground  i �  i��;��; �	.

9Rotations give the same zero-mode as U�1�B gauge
transformations
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and NB, Ntr the normalization factor coming from variable
change to collective coordinates. To simplify the notations,
we also introduced the matrices �i, i � 1, 2, 5 acting on the
four dimensional spinor (16) as:

 �1 �
12 0
0 0

� �
; �2 �

0 0
0 1 2

� �
;

�5 �
12 0
0 �12

� �
;

(40)

where 12 is the identity on a two dimensional subspace.

3. Fourier transformation of the Green’s function

The Fourier transformation of the Green’s function after
integration over the instanton location x0 reads (writing
spinor indices explicitly)
 

Gab�k1; k2; p1 . . .pn; p01 . . .p0m; q1; . . . ; ql�

� �2
�2��2��P�
Z 2


0
d	��ei�	=2��5 ~ 1

cl�k1��
a

� �ei�	=2��5 ~ 2
cl�k2��

b
Yn
i�1

ei	 ~�cl�pi�
Ym
j�1

e�i	 ~��cl�p
0
j�

�
Yl
k�1

~�cl�qk�; (41)

where � � e�Scl det0�Kinst�NBNtr det�D2
bos�

��1=2� and P �
k1 � k2 �

Pn
i�1 pi �

Pm
i�1 p

0
i �

Pl
i�1 qi. The integration

over the instanton location leads to momentum conserva-
tion. In a similar way, integration over gauge rotation 	
enforces charge conservation. Indeed, the integral over	 is
nonzero only if the powers of ei	 cancel, that is to say, if
charge with respect to the gauge field B� is conserved.10

As the different components of the spinors have different
powers of ei	, different cases have to be considered. We
will concentrate here on three interesting situations, from
which we will be able to derive some general conclusions.

D. Examples of allowed matrix elements

First consider a process involving one � scalar as initial
state, which decays into two fermions. In this case the
integration over the coordinate 	 leads to:

 

Gab�k1; k2; q1� � �2
�
2��2��P�� ~�cl�q1����1

~ 1
cl�k1��

a

� ��2
~ 2

cl�k2��
b

� ��2
~ 1

cl�k1��
a��1

~ 2
cl�k2��

b�: (42)

Applying the reduction formula, we get a nonvanishing

matrix element for two different fermions only by multi-
plying the Green’s function by two fermionic legs �u1�k1�,
�u2�k1�,

 

iM�k1; k2; q1� � �2
�2��2��q� k1 � k2��i�q
2 �m2

H�

� ~�cl�q��i �u1�k1��k̂1 � F��1 1
cl�k1�

� i �u2�k2��k̂2 � F��1 2
cl�k2��: (43)

A straightforward calculation gives (see Appendix C)

 jM�k1; k2; q1�j2 � �2�2
�3�f1�1�2�1� 	1	2��
2: (44)

The decay rate is after integration of the phase space
(supposing m1 � m�):

 �� �
1

2m�

Z
dLipsjM�k1; k2; q1�j2

�
1

2m��m2
� � F

2
2�
�2�2
�3�f1�1�2�1� 	1	2��

2:

(45)

Secondly, we consider a process involving one � scalar
as initial state. The Fourier transformation of the Green’s
function reads

 Gab�k1; k2; q� � �2
�
2��2��q� k1 � k2��~��cl�q�

� ��1
~ 1

cl�k1��
a��1

~ 2
cl�k2��

b:

Applying the reduction formula, we get the matrix element
for the creation of two light fermion by multiplying the
Green’s function by two light fermion legs �u1�k1�, �u1�k2�,

 

iM�k1; k2; q1� � �2
�2��2��q� k1� k2��i�q
2�m2

��~�
�
cl�q�

� i �u1�k1��k̂1�F��1 
1
cl�k1�

� i �u1�k2��k̂2�F��1 2
cl�k2�: (46)

A straightforward calculation gives (see Appendix C)

 jM�k1; k2; q1�j2 � �2�2
�3�g1�1�2	2�
2: (47)

The decay rate after integration of the phase space (sup-
posing m1 � m�) reads

 �� �
�2�2
�3�g1�1�2	2�

2

2m2
�

����������������������
m2
� � 4m2

1

q : (48)

A similar process involves the scalar ��, which decays into
two heavy fermions:

10Note that this do not depend on the existence of the B� field,
but on the existence of the associated global symmetry.
Therefore the requirement of charge conservation will persist
in the limit e0 ! 0.
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 ��� �
�2�2
�3�g1�1�2	1�

2

2m2
�

����������������������
m2
� � 4m2

2

q : (49)

Generalizing these three examples, we see that any
process leading to the creation of two light fermions con-
tains a factor 	2 whereas a process leading the creation of
heavy fermions has a factor 	1. Processes leading to the
creation of one of each fermion contain a factor 1�
	1	2 
 1. Apart from these factors 	1;2, we have a phase
factor, which depends on the exact process but which is
subdominant in two dimensions.

E. Discussion of the different transition probabilities

The integration over the collective coordinate associated
with the gauge symmetryU�1�B leads necessarily to charge
conservation. Therefore the process described by the level-
crossing picture (Fig. 3) cannot take place without the
emission of some other particle that compensates the addi-
tional U�1�B charge. The possible initial and final states are
more restricted than suggested by the level-crossing
picture.

We shall now discuss the transition probability of al-
lowed processes. We leave aside for the moment the phase
space factors, they are not large in 1� 1 dimensions. The
main factors that distinguish the transition rates (45), (48),
and (49) for the three possible fermionic final states are the
constants 	1;2. This is also true if more complicated pro-
cesses are considered. As expected, if the fermions are
light and weakly coupled, the probability to create one of
each fermion is much larger; it is proportional to 1�
	1	2  1, see Fig. 5 and 6. However, in the case where
one fermion is very heavy, 	1 can exceed 1 (see Fig. 5 and
6) and in this case it is favored to create two heavy
fermions rather than one of each. The creation of two light
fermions suggested by the level-crossing picture is indeed
suppressed, the factor	2 having a chance to reach 1 only in
the case of very slow transitions (heavy fermion masses
F1;2 or large instanton radius rinst) and almost degenerate
masses (F1 
 F2).

V. CONCLUSION

In the model considered here, the level-crossing picture
suggests a particular transition which must not and does
not occur. A possible way out would be to reinterpret it as
follows. The level-crossing picture only knows about fer-
mions and the correct bosonic content of the initial and
final states should be added by hand when dealing with a
physical transition. More precisely, all symmetries that are
broken by the fermionic initial and final states should be
restored by supplementary bosonic operators. However,
even with this extra requirement, the level-crossing picture
suggests the creation of two light fermions, a transition that
turns out to be suppressed. The most probable transition is

to create one of each fermion as long as the fermionic
mixing and the time scale of the transition are not large. If
the transition is slow, the mixing is large, and the mass
hierarchy is large ( F2

F1
� 1) the factor 	1 can reach 1 and

the probability of creating two heavy fermions is larger
than to create one of each (see Figs. 5 and 6). On the level-
crossing picture, creating two heavy fermions, or one of
each, can occur only if the energy levels cross each other
several times (see Fig. 2) in spite of the interaction poten-
tial. Note that this is perfectly possible in quantum field
theory although forbidden in the adiabatic quantum me-
chanical description.

The results for the transition probability are rather sur-
prising; for heavy fermions, such as the top quark, or
adiabatic process rinstF2 � 1 (Sphaleron at high tempera-
ture) the probability of creating two heavy fermions is
large. In the realistic electroweak theory, the phase space
factor may be dominant and may change this conclusion. It
is therefore very interesting to reproduce similar computa-
tions in the frame of the electroweak theory at high tem-
perature, or at high energies.

A more interesting setup would be to include heavy
quarks in the initial states. The phase space factor as well
as the matrix element are then large. In this case, the
nonperturbative transition rate can be enhanced by a
huge factor (see Fig. 5). A high top quark density could
therefore catalyze the nonperturbative transition rate. This
phenomenon is relevant for baryogenesis at the electro-
weak phase transition. It could provide a mechanism to
enhance the baryon number violating transition rate in the
symmetric phase, while suppressing it in the broken phase.
Indeed, while bubbles of true asymmetric vacuum expand
in the symmetric universe, it may be that top quarks are
more reflected by the bubble wall and are rare inside the
bubble, and over-dense outside. This density asymmetry
will render the nonperturbative rate faster outside the
bubble, while slower inside.

It should be noted that the present calculation deals with
the instanton rate, although at high temperature, the spha-
leron rate is the relevant quantity. It would therefore be
very interesting to find out if the sphaleron rate also dis-
plays these interesting features.
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APPENDIX A: THE INSTANTON

The bosonic Lagrangian (22) in the @�A� � @�B� � 0
gauge gives the following equations of motion,
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�@�@��� 2ieA�@��� e
2A2

��� �v
2�� �j�j2�� hj�j2� � 0;

�@�@��� 2i�eA� � e0B��@��� �eA� � e0B��2��M2���j�j2�� h�j�j2 � v2�� � 0;

�@�@�A� � i
e
2
���@

$

��� ��@
$

��� � e2A��j�j2 � j�j2� � ee0B�j�j2 � 0;

�@�@�B� � i
e0

2
��@
$

��� e02B�j�j2 � e0eA�j�j2 � 0:

(A1)

We are looking for a solution of the type (24). As for the
Nielsen-Olesen vortex, we impose the asymptotic behavior
of the functions A and f:

 f�r�!
r!0
f1r; f�r� !

r!1
1;

A�r�!
r!0
a1r A�r� !

r!1 1

er
:

(A2)

For the finiteness of the action, the function g(r), B(r)
should respect the following boundary conditions:

 B�r�!
r!0

b1r; g�r�!
r!0

g0;

B�r� � rB0�r� !
r!1

0; g�r� !
r!1

0:
(A3)

We also introduce dimensionless variables with the sub-
stitutions

 A � ~A

���������
�v2
p

e
; f � ~f

���������
�v2
p

e
; g �

����
�
h

s
~g;

B � ~B

���������
�v2
p

e0
; r �

~r���������
�v2
p :

(A4)

The remaining parameters are

 � �
�

e2 ; �0 �
�

e02
;  �

�

h
;

H �
h
�
; m2 �

M2

�v2 :

(A5)

The equations of motion (A2) in polar coordinates and with
the ansatz (24) reads

 

�~f00�r� �
1

~r
~f0�r� �

�
~A�r� �

1

~r

�
2

~f�r� ��~f�r�3 � ~f�r� � ~g�r�2 ~f�r� � 0;

�~g00�r� �
1

~r
~g0�r� � � ~A�r� � ~B�r��2 ~g�r� � ~g�r�3 �m2 ~g�r� �H~g�r���~f�r�2 � 1� � 0;

� ~A00�r� �
~A0�r�

~r
�

~A�~r�

~r2 �
~f�r�2

�
~A�r� �

1

~r

�
�

1

H�
� ~B�r� � ~A�r��~g2�r� � 0;

� ~B00�r� �
~B0�r�

~r
�

~B�r�

~r2 �
1

H�0
� ~B�r� � ~A�r��~g2�r� � 0;

(A6)

where the prime means derivative with respect to ~r.

APPENDIX B: ANALYTICAL APPROXIMATIONS
FOR THE FERMIONIC ZERO-MODES

From the system of Eqs. (28), we neglect the field B�,
eliminate the field A� by the variable change �!
exp�� e

2

R
drA�r��� and contract the four first order dif-

ferential equations into two second order ones. One obtains
the following equations for the new variable �:
 �
�
m�m�1�

r2 �
f0�r�m
rf�r�

�f�r�2f2
1

�
�2�r��

f0�r��02�r�
f�r�

��002 �r��f�r�g�r�f1f3�4�r�; (B1)

 �
�
m�m� 1�

r2 �
f0�r��m� 1�

rf�r�
� f�r�2f2

2

�
�3�r�

�
f0�r��03�r�
f�r�

��003 �r� � f�r�g�r�f2f3�1�r�; (B2)

with

 �1�r� �
1

f�r�f1

�
�02�r� �

m�2�r�
r

�
;

�4�r� �
1

f�r�f2

�
�m� 1��3�r�

r
��03�r�

�
:

(B3)

We discuss the case of the zero-mode  1
cl in the m � 0

partial wave, the case of  2
cl in the m � 1 partial wave is

treated analogously. At zero-order of perturbation we have
the two first components ( 1

1;2) given by (29) and the two
last ones ( 1

3;4) vanish. If we consider now a nonvanishing
f3g�r� in (B2), the function  1

3 is given at first order
perturbation theory by

 �3�r� � f2f3

Z
dr0G�r; r0�f�r0�g�r0� 1

1�r
0�; (B4)

where G�r; r0� is the Green’s function of the differential
operator in the left hand side of Eq. (B2). We were not able
to find a general expression for G�r; r0� for an arbitrary
function f�r�, but satisfactory results are obtained using the
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Green’s function G�r; r0� for constant11 f�r� � v. In this
particular case

 G�r; r0� � �
1

f2
sinh�f2r<� exp��f2r>�; (B5)

with r> � max�r; r0�, r< � min�r; r0�. Form (B4), we get,
for r� 1:

 �3�r�  �f3v exp��f2r�
Z
dr0 sinh�f2r0�g�r0��1�r0�;

(B6)
From this relation, we can read the factor 	1 in Eq. (31).

APPENDIX C: FOURIER TRANSFORMS

For computing cross sections, the unitary gauge is best
suited. It is however known to be singular, which may lead
to discontinuities in the fermionic wave functions. This can
be easily cured using the following regularized gauge
condition:

 ��r; �� � �� 2
�"��� 
�; (C1)

where �"��� 
� is continuous and goes to the step func-
tion as "! 0 (see Ref. [11] for more details). The Fourier
transforms12 of the fields are (we consider here only the
case f3 � 0 for fermions):

 

~��p� �
f1

p2 �m2
H

;

~��p� �
g1

p2 �m2
�

pei�p

m
;

~A��p� �
ia1
mW

"��p�
m2
W � p

2 ;

 jR;L�p� � �ic1

�������
2


p

s
ei=2�5�p

Fj � p

F2
j � p

2 ;

(C2)

where p � �������������p�p�
p and �q the angle between the spacial

axis and the vector p. If f3 � 0 but the field B is neglected,
the Fourier transforms of the two fermionic zero modes
read:
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