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We use the recently developed tools for an exact bosonization of a finite number N of nonrelativistic
fermions to discuss the classic Tomonaga problem. In the case of noninteracting fermions, the bosonized
Hamiltonian naturally splits into an O�N� piece and an O(1) piece. We show that in the large-N and low-
energy limit, the O�N� piece in the Hamiltonian describes a massless relativistic boson, while the O(1)
piece gives rise to cubic self-interactions of the boson. At finite N and high energies, the low-energy
effective description breaks down and the exact bosonized Hamiltonian must be used. We also comment
on the connection between the Tomonaga problem and pure Yang-Mills theory on a cylinder. In the dual
context of baby universes and multiple black holes in string theory, we point out that the O�N� piece in our
bosonized Hamiltonian provides a simple understanding of the origin of two different kinds of non-
perturbative O�e�N� corrections to the black hole partition function.
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I. INTRODUCTION

In a recent work [1] we have discussed an exact boson-
ization of a finite number N of nonrelativistic fermions.
The tools developed there have many potential applications
to several areas of physics. An example is the half-BPS
sector of N � 4 super Yang-Mills (YM) theory and its
holographic dual string theory in AdS5 � S

5 space-time,
some aspects of which were discussed in [1] and more
recently in greater detail in [2]. In the present work we will
discuss application of our exact bosonization to the classic
Tomonaga problem [3] of nonrelativistic fermions on a
circle.

Historically, the Tomonaga problem has played an im-
portant role1 in the development of tools for treating a
system of a large number of fermions interacting with
long-range forces like Coulomb force, which is an essential
problem one encounters in condensed matter systems. In
the toy model of a one-dimensional system of nonrelativ-
istic fermions, Tomonaga was the first to show that inter-
actions can mediate new collective dynamical degrees of
freedom, which are quantized as bosons. The essential idea
was the observation that a long-range (in real space) force
like Coulomb interaction becomes short range in momen-
tum space, so particle-hole pairs in a low-energy band
around Fermi surface (which consists of just two points
in one dimension) do not get ‘‘scattered out’’ of the band.
As a result, the interacting ground state, as well as excited
states with low excitation energy compared to the Fermi
energy, involve only particle-hole pairs in a small band
around the Fermi surface. For a large number of fermions,
there is a finite band around the Fermi surface in which the
excited states satisfy this requirement. In his work,
Tomonaga laid down precise criteria for the collective
boson low-energy approximation to work, and showed
that when his criteria are met, both the free as well as the

interacting fermion systems can be described by a system
of free bosons, under a suitable approximation, for a sys-
tem of a large number of fermions.

In the present work, we will apply our exact bosoniza-
tion tools to the Tomonaga problem. The states of our
bosonized theory are multiparticle states of a system of
free bosons, each of which can be in any of the first N
levels of a harmonic oscillator, where N is the number of
fermions. These states diagonalize the noninteracting part
of the fermion Hamiltonian exactly. We will show that the
standard effective low-energy theory for appropriate
Fourier modes of the spatial fermion density operator can
be derived from this bosonized theory. We will see that the
conditions under which this can be done are precisely the
ones required by Tomonaga for his approximations to
work. However, for the noninteracting case2 our exact
bosonization is applicable even outside the regime of
validity of the low-energy approximation.

The organization of this paper is as follows. In Sec II we
summarize the work of [1]3 on the exact bosonization of a
finite number N of nonrelativistic fermions. The presenta-
tion here is different and simpler, though completely
equivalent to that in [1]. The merit of this presentation is
that it makes the bosonization rules simpler and graphical,
making applications of these rules very easy. In Sec. III we
derive the bosonized Hamiltonian for a system of N non-
relativistic fermions on a circle. The free fermion system
has a degenerate spectrum, so we need to do further work
before applying the bosonization rules of Sec. II. After

1See, for example, [4] for an account of this.

2In the case of interacting fermions, our bosons are generally
interacting and then approximations become necessary to make
further progress. For example, a four-Fermi interaction may be
possible to handle in the limit of a large number of fermions at
low energies. This is discussed further in Sec VI.

3The work in this paper discusses two different exact bosoni-
zations of the Fermi system; here we will limit our discussion to
bosonization of the first type.
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explaining how to take care of the degeneracy, we derive
the bosonized form of the Hamiltonian. The nontrivial part
of the bosonized Hamiltonian naturally splits into a sum of
a large, O�N� piece and a small, O(1) piece. We show that
ignoring the latter corresponds to the relativistic boson
approximation of Tomonaga. We do this by computing
the partition function of the O�N� piece in the
Hamiltonian, which reduces at large N to that of a relativ-
istic boson. The O(1) piece gives rise to a cubic self-
interaction of this boson. This is shown in Sec. IV where
we derive the effective low-energy cubic Hamiltonian for
these self-interactions. Extension beyond low-energy ap-
proximation is discussed in Sec V. The interacting fermion
case is discussed in Sec. VI. Connection of the Tomonaga
problem with Yang-Mills theory on a two-dimensional
cylinder is discussed in Sec. VII. We end with a summary
and some comments in Sec. VIII. Details of some compu-
tations described in the text are given in Appendices A, B,
and C. In Appendix D we discuss possible extension of our
bosonization techniques to higher dimensions. Appendix E
gives some details of the connection of the Tomonaga
problem with two-dimensional YM and, via this connec-
tion, with the physics of certain black holes.

II. REVIEW OF EXACT BOSONIZATION

In this section we will review the techniques developed
in [1] for an exact operator bosonization of a finite number
of nonrelativistic fermions. The discussion here is some-
what different from that in [1]. Here, we will derive the first
bosonization of [1] using somewhat simpler arguments,
considerably simplifying the presentation and the formulae
in the process. Moreover, the present derivation of boson-
ization rules is more intuitive, making its applications
technically easier.

Consider a system of N fermions each of which can
occupy a state in an infinite-dimensional Hilbert space
H f. Suppose there is a countable basis of H f: fjmi; m �
0; 1; � � � ;1g. For example, this could be the eigenbasis of a
single-particle Hamiltonian, ĥjmi � E�m�jmi, although
other choices of a basis would do equally well, as long as
it is a countable basis. In the second quantized notation we
introduce creation (annihilation) operators  ym ( m) which
create (destroy) particles in the state jmi. These satisfy the
anticommutation relations

 f m;  
y
n g � �mn: (1)

The N-fermion states are given by (linear combinations of)

 jf1; � � � ; fNi �  yf1
 yf2
� � � yfN j0iF; (2)

where fm are arbitrary integers satisfying 0 � f1 < f2 <
� � �< fN , and j0iF is the usual Fock vacuum annihilated by
 m;m � 0; 1; � � � ;1.

It is clear that one can span the entire space ofN-fermion
states, starting from a given state jf1; � � � ; fNi, by repeated

application of the fermion bilinear operators

 �mn �  ym n: (3)

However, the problem with these bosonic operators is that
they are not independent; this is reflected in the W1

algebra that they satisfy,

 ��mn;�m0n0 	 � �m0n�mn0 � �mn0�m0n: (4)

This is the operator version of the noncommutative con-
straint u 
 u � u that the Wigner distribution u satisfies in
the exact path-integral bosonization carried out in [5].

A new set of unconstrained bosonic operators was in-
troduced in [1],N of them forN fermions. In effect, this set
of bosonic operators provides the independent degrees of
freedom in terms of which the above constraint is solved.
Let us denote these operators by �k, k � 1; 2; � � � ; N and
their conjugates, �yk , k � 1; 2; � � � ; N. As we shall see
shortly, these operators will turn out to be identical to the
�k’s used in [1]. The action of �yk on a given fermion state
jf1; � � � ; fNi is rather simple. It just takes each of the
fermions in the top k occupied levels up by one step, as
illustrated in Fig. 1. One starts from the fermion in the
topmost occupied level, fN, and moves it up by one step to
(fN � 1), then the one below it up by one step, etc. pro-
ceeding in this order, all the way down to the kth fermion
from top, which is occupying the level fN�k�1 and is taken
to the level (fN�k�1 � 1). For the conjugate operation, �k,
one takes fermions in the top occupied k levels down by
one step, reversing the order of the moves. Thus, one starts
by moving the fermion at the level fN�k�1 to the next level
below at (fN�k�1 � 1), and so on. Clearly, in this case the
answer is nonzero only if the (k� 1)th fermion from the
top is not occupying the level immediately below the kth
fermion , i.e. only if �fN�k�1 � fN�k � 1�> 0. If k � N
this condition must be replaced by f1 > 0.

These operations are necessary and sufficient to move to
any desired fermion state starting from a given state. This
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FIG. 1. The action of �yk .
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can be argued as follows. First, consider the following
operator, �k�1�

y
k . Acting on an arbitrary fermion state,

the first factor takes top k fermions up by one level; this is
followed by bringing the top (k� 1) fermions down by one
level. The net effect is that only the kth fermion from the
top is moved up by one level. In other words, �k�1�

y
k �

 yfN�k�1�1 fN�k�1
� �fN�k�1�1;fN�k�1

. In this way, by com-
posing together different �k operations we can move indi-
vidual fermions around. Clearly, all the N �k operations
are necessary in order to move each of the N fermions
indvidually. It is easy to see that by applying sufficient
number of such fermion bilinears one can move to any
desired fermion state starting from a given state.

It follows from the definition of �yk , �k operators that
they satisfy the following relations:
 

�k�
y
k � 1; �yk�k � ��rk � 1�;

��l; �
y
k 	 � 0; l � k;

(5)

where �fN�k�1 � fN�k � 1� � rk and ��m� � 1 if m 
 0,
otherwise it vanishes. Moreover, all the �k’s annihilate the
Fermi vacuum.

Consider now a system of bosons each of which can
occupy a state in an N-dimensional Hilbert space H N .
Suppose we choose a basis fjki; k � 1; � � � ; Ng of H N . In
the second quantized notation we introduce creation (an-
nihilation) operators ayk (ak) which create (destroy) parti-
cles in the state jki. These satisfy the commutation
relations

 �ak; a
y
l 	 � �kl; k; l � 1; � � � ; N: (6)

A state of this bosonic system is given by (a linear combi-
nation of)

 jr1; � � � ; rNi �
�ay1 �

r1 � � � �ayN�
rN����������������������

r1! � � � rN!
p j0i: (7)

It can be easily verified that Eqs. (5) are satisfied if we
make the following identifications

 �k �
1��������������������

ayk ak � 1
q ak; (8)

 �yk � ayk
1��������������������

ayk ak � 1
q ; (9)

together with the map
 

rk � fN�k�1 � fN�k � 1; k � 1; 2; � � �N � 1;

rN � f1: (10)

This identification is consistent with the Fermi vacuum
being the ground state of the bosonic system. The map
(10) first appeared in [6]. The first of these arises from the
identification (9) of �k’s in terms of the oscillator modes,

while the second follows from the fact that �N annihilates
any state in which f1 vanishes.

Using the above bosonization formulae, any fermion
bilinear operator can be expressed in terms of the bosons.
For example, the Hamiltonian can be rewritten as follows.
Let E�m�,m � 0; 1; 2; � � � be the exact single-particle spec-
trum of the fermions (assumed noninteracting). Then, the
Hamiltonian is given by

 H �
X1
m�0

E�m� ym m: (11)

Its eigenvalues are E �
PN
k�1 E�fk�. Using fk �PN

i�N�k�1 ri � k� 1, which is easily derived from (10),
these can be rewritten in terms of the bosonic occupation
numbers, E �

PN
k�1 E�

PN
i�N�k�1 ri � k� 1�. These are

the eigenvalues of the bosonic Hamiltonian

 H �
XN
k�1

E�n̂k�; n̂k �
XN
i�k

ayi ai � N � k: (12)

This bosonic Hamiltonian is, of course, completely equiva-
lent to the fermionic Hamiltonian we started with.

We end this section with the remark that our bosoniza-
tion technique does not depend on any specific choice of
fermion Hamiltonian and can be applied to various prob-
lems like c � 1, half-BPS sector of N � 4 super Yang-
Mills theory, [2], etc.

III. FREE NONRELATIVISTIC FERMIONS ON A
CIRCLE—LARGE-N LIMIT

In this and the next section, we will discuss the theory
obtained by bosonization of the noninteracting part of the
fermion Hamiltonian. The case of interacting fermions will
be taken up in Sec. V. In the second quantized language, we
may write the free part as

 Hfree � �
@

2

2m

Z L

0
dx�y�x�@2

x��x�: (13)

Here L is the size of the circle and m is the mass of each
fermion. In terms of the Fourier modes, ��n �R
L
0
dx���
L
p e�2�inx=L��x�, where n � 0; 1; 2; � � � , we have

 Hfree � !@
X1
n�1

n2��y�n��n � �
y
�n��n�; ! �

2�2
@

mL2 :

(14)

Note that the zero mode, �0, does not enter in the expres-
sion for the Hamiltonian. The fermion modes satisfy the
canonical anticommutation relations,

 f��n; �
y
�lg � �nl; (15)

all other anticommutators vanish.
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A. The bosonized Hamiltonian

The bosonization rules that we have developed in Sec. II
cannot be applied directly to this Hamiltonian because of
the degeneracy between �n modes. To get around this
difficulty, we will change the Hamiltonian by replacing
n2 in the sum in (14) by �n� ��2, where � is a small
positive real number.4 The original problem will be recov-
ered by setting � to zero after bosonization is done.5 For a
nonzero positive value of epsilon,6 the energy of the mode
for �n is higher than that for �n. So the spectrum is now
nondegenerate and looks like that shown in Fig. 2. The next
step is to redefine �0 �  0, ��n �  2n�1 and ��n �  2n,
n � 0. The Hamiltonian (14) can then be rewritten as

 Hfree �
!@
4

X1
n�0

�n� e�n� � ��1�n2�	2 yn n: (16)

Here e�n� vanishes for even n and equals unity for odd n,
i.e.

 e�n� � 1
2�1� ��1�n�: (17)

Note that the zero mode piece in (16) vanishes when � is
set to zero. Since this Hamiltonian has the generic form
(11), its bosonied version can be readily written down
using (12). Setting � to zero in the final expression, we get
 

Hfree �
!@
4

XN
k�1

�n̂k � e�n̂k��2;

n̂k �
XN
i�k

ayi ai � N � k:

(18)

This is the final form of the bosonized Hamiltonian for free
nonrelativistic fermions on a circle.

B. The relativistic boson approximation

In his work, Tomonaga showed that for a large number
of noninteracting fermions, small fluctuations of the Fermi
surface are described by a free relativistic boson. Our
bosonic states diagonalize Hfree exactly, even for highly
excited states. So it is not surprising that the relativistic
boson is not manifest in our bosonization. However, we
should be able to recover the relativistic boson from it in
the low-energy, low-momentum sector of the large-N limit.
In the remainder of this subsection we will explain how
that happens.

The first step is to extract the part of Hfree which
describes low-energy and low-momentum fluctuations of
the 2 Fermi points. To this end, we note that Hfree can be
rewritten as follows:

 Hfree � HF �H0 �H1; (19)

where HF �
!@
4

PN
k�1�N � k� e�N � k��

2 is the energy
of the Fermi vacuum and

 H0 �
@!N

2

�XN
k�1

kayk ak � �̂
�
; (20)

 

H1 �
@!
4

XN
k�1

�
��k2 � ��1�Ne�k��ayk ak

� 2�k��1�N�k � e�N � k��e
�XN
i�k

ayi ai

�

�

�XN
i�k

ayi ai � ��1�N�ke
�XN
i�k

ayi ai

��
2
�
: (21)

Details of the manipulations required to cast the
Hamiltonian in this form suitable for perturbative treat-
ment are given in Appendix A. In (20), �̂ � N� � N�F is
the operator which measures change in the number of

3
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5
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−n
+n

2n−1
2n

FIG. 2 (color online). The spectrum with a specified ordering
for degenerate levels.

4This can arise from the use of a twisted boundary condition,
as in [7]. This reference also provides a good review of the
standard approximate bosonization.

5This is, in fact, our general rule for bosonization of a
fermionic system described by any other Hamiltonian with
degeneracy. The latter is typically due to some symmetry in
the system. One adds extra terms which break all the symmetries
and give a nondegenerate Hamiltonian. The parameters of sym-
metry breaking are set to zero after completing bosonization. In
this way, one gets a bosonization of the original fermionic
system.

6We could alternatively, but completely equivalently, have
chosen a small negative value for epsilon.
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negative momentum fermions in the given state compared
to the Fermi vacuum. In terms of bosonic occupation
number operators, the number of negative momentum
fermions, N�, is given by the expression

 N� �
XN
k�1

e�n̂k�; (22)

where n̂k has been defined in (18). Using (A2), we get

 �̂ � N� � N�F �
XN
k�1

��1�N�ke
�XN
i�k

ayi ai

�
: (23)

It is clear from the above that for large values of N, the
dominant contribution to the excitation energy of states in
which only a few low-energy modes are present comes
from H0, which is a factor of N larger than H1. In fact, in
the large-N limit one can completely ignore the contribu-
tion of H1 on low-energy states. In this sector, then, the
Hamiltonian reduces to just H0. This approximation is the
usual linearized approximation to the dispersion relation,
which is valid for low-energy states.

The partition function

The simplest way to see that in the large-N limit the
Hamiltonian H0 describes a two-dimensional massless
relativistic boson is to compute its partition function.
Since �̂ commutes with H0, it is natural to classify states
by the eigenvalues of this operator, which we shall denote
by �. We introduce a chemical potential � for it and
consider the more general partition function

 ZN�q; y� �
X1

r1;r2;���;rN�0

q1=2
P

N
k�1

krky
P

N
k�1
��1�N�ke�

P
N
i�k

ri�;

(24)

where q � e�@!N	 and y � e�� and we have used (23).
The desired partition function, which we shall denote by
ZN�q�, is obtained by setting� � 1

2 @!N	, i.e. y � q1=2 in
ZN�q; y�.

The partition function ZN�q; y� satisfies the following
recursion relation:

 ZN�q; y� � �1� q
N��1�ZN�1�q; y

�1�

� ye�N�qN=2ZN�1�q; y�	: (25)

A proof of this recursion relation is given in Appendix B.
Note that the right-hand side is different for even and odd
N because of the appearance of e�N� in this expression.
Using Z0�q; y� � 1 in it, one can generate ZN�q; y� for any
value of N. Using Mathematica we have checked for a
number of values of N that ZN�q; y� is given by the follow-
ing analytic expression:

 

ZN�q; y� �
X�N�1�=2

�����N�1�=2�

y�q�����1=2��
Y��N�1�=2���

n�1

�1� qn��1

�
Y��N�1�=2���

n�1

�1� qn��1: (26)

This expression is valid for odd values of N.7 The upper
limit on the sum over � is different from the lower limit
because there are �N � 1�=2 fermions in the Fermi vacuum
with non-negative momenta, which includes zero momen-
tum fermion, and in excited states all of them can have
negative momenta.

The partition function of a massless relativistic compact
boson on a circle contains a product of two identical factors
which come from the sum over nonzero oscillator modes,8

the contribution from each chiral sector being
Q
1
n�1�1�

qn��1. In addition, there is a sum over the eigenvalues of
the zero modes in the two chiral sectors, which can be
recast as the lattice sum over momentum and winding
modes. The partition function calculated in (26) has a
similar structure. If we set y � q1=2 in it and take a naive
large-N limit, ignoring the � dependence in the product
factors, then this partition function matches precisely with
the partition function for a massless compact scalar in
which the zero mode lattice sum is restricted to momentum
modes only. The sum over the winding modes is missing
because of the restriction to a fixed numberN of fermions.9

It is rather remarkable that in the process of keeping
track of �, a bunch of harmonic oscillator states is trans-
formed into a massless relativistic boson. At large but finite
N, this is only approximately true, as is evident from the
expression in (26). The corrections go as e�N . They have
interesting interpretation in Yang-Mills theory on a cylin-
der, which is known to be related to the Tomonaga prob-
lem. This is discussed further in Sec. VI.

IV. FREE NONRELATIVISTIC FERMIONS ON A
CIRCLE—1=N EFFECTS

In this section we would first like to identify the opera-
tors which create the single-particle states of a massless
relativistic boson, which we have counted in the calcula-
tion of the partition function above. We would then like to
incorporate the effects of a small but nonzero value of 1=N

7For finite N, ZN�q� has an asymmetry between even and odd
N. The reason for this asymmetry is that for odd N, the Fermi
ground state is unique while for even N the ground state is
doubly degenerate. We take N to be odd since we want to work
with a unique ground state, but of course the calculations can just
as easily be done for even values of N.

8These are the oscillator modes of the relativistic boson, not to
be confused with the oscillators ak, a

y
k (or �k, �

y
k ). The oscil-

lator modes of the relativistic boson are more like the 
�l, which
can be expressed in terms of �k, �

y
k , as in Eqs. (29) and (30).

9We would like to thank A. Dabholkar and S. Minwalla for a
discussion on this point.
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on this free relativistic boson. In the following discussion
we will assume that the large-N limit is taken through odd
values.

A. States

The operator �̂ commutes with both H0 and H1 sepa-
rately, as can be easily verified. The label � on the states of
the massless relativistic boson is therefore a conserved
quantum number. Setting y � q1=2 in the expression for
the partition function given in (26), one finds that the
lowest amount of energy carried by a state labeled by the
value � is @!N�2. The states which realize these eigen-
values for the operator �̂ are easily constructed by inspec-
tion of the fermionic states. Using the obvious notation j�i
for them, we have

 j�i �

(
�y2��1�

y
2��2 � � ��

y
1 j0i; � > 0

�y2j�j�
y
2j�j�1 � � ��

y
1 j0i; � < 0:

(27)

The following properties can be easily verified:

 �̂j�i � �j�i; H0j�i � @!N�2j�i; H1j�i � 0:

(28)

Since j�i is the lowest energy state in the sector labeled by
�, it acts as a sort of ‘‘vacuum’’ state in that sector. A tower
of excited states can then be created by the oscillator
modes of the massless boson on each of these vacuua. In
order to keep the following discussion simple, we will
restrict ourselves to states in the � � 0 sector. The discus-
sion can be easily generalized to arbitrary values of �. At
the end we will indicate the changes that need to be made
to accommodate general �.

In the � � 0 sector, at the lowest excitation level there
are two states,

 ��y1 �
2j0i; �y2 j0i:

Using the rules of bosonization discussed in Sec. II, their
excitation momentum can be seen to be the lowest possible
and of opposite sign. These are the expected two single-
particle chiral states at lowest energy. Moreover, since they
are also eigenstates of the full Hamiltonian Hfree, one can
calculate their H1 eigenvalues. For odd N these vanish, as
can be easily checked using (21). The absence of a ‘‘tree-
level’’ 1=N correction (which is the same as the correction
in first-order perturbation theory) to the energy of these
states is consistent with their interpretation as one-particle
states of a massless relativistic boson.

At the next level of excitation, we have five possible
states:
 

��y1 �
4j0i; �y1�

y
3 j0i; ��y1 �

2�y2 j0i;

�y4 j0i; ��y2 �
2j0i:

It is easy to see that the last state has the same total
momentum as the Fermi vacuum, so it accounts for the

nonchiral state with two single-particle lowest states of
opposite chirality expected at this level of excitation. The
other four states must, therefore, account for the expected
two single-particle chiral states and the two two-particle
chiral states obtained from the lowest single-particle chiral
states. As at the lowest excitation level, these states are
eigenstates of the full Hamiltonian, and therefore also that
of H1. However, unlike in the above case, the eigenvalues
do not all vanish. This is not necessarily a problem since
consistency of interpretation as states of a massless rela-
tivistic boson is ensured if we can form their linear combi-
nations which are such that the expectation value of H1

vanishes in all of them. Such linear combinations can, in
fact, be formed. These are:

 

1��
2
p ���y1 �

4 � �y1�
y
3 	j0i;

1��
2
p ���y1 �

2�y2 � �
y
4 	j0i;

with opposite sign of momentum for each of the second
pair of states compared to the first pair. In each of these
orthogonal pairs, we would like to interpret one of the
linear combinations as a single-particle state of the mass-
less boson, while the orthogonal combination would be a
two-particle state of the same momentum and energy. Also,
H1 sends a linear combination to its orthogonal combina-
tion. This is why its expectation value in any of these states
vanishes. But this also means that H1 has nonzero matrix
elements between the two states of the orthogonal combi-
nations. These matrix elements of H1, which connect a
single-particle state with a two-particle state, can be inter-
preted as low-energy scattering amplitudes in a relativistic
field theory of a massless scalar with a cubic coupling
whose strength goes as 1=N. Finally, also note that the
remaining state ��y2 �

2j0i with zero net momentum has a
vanishing H1 eigenvalue.

The above analysis can be extended to higher excited
states in a straightforward manner. The results are similar;
for odd N one can always find orthogonal linear combina-
tions which are such that the expectation value of H1

vanishes in these combinations, while the matrix elements
are in general nonzero.

In Tomonaga’s work, the modes of the relativistic boson
are related to modes of the spatial fermion density operator.
We should, therefore, expect a relation between the linear
combinations we have found above and the modes of
fermion density operator. It turns out that for low-energy
excitations, precisely one of the linear combinations in
each of the two chiral sectors is an appropriate mode of
the fermion density:

 

1��
l
p

X
n�even

 yn�2l njF0i � 
y�lj0i

�
1��
l
p

Xl
k�1

��y1 �
2�l�k��1�y2k�1j0i;

(29)
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1��
l
p

X
n�odd

 yn�2l njF0i � 
y�lj0i �
1��
l
p

Xl
k�1

��y1 �
2�l�k��y2kj0i;

(30)

where jF0i is the Fermi ground state, which is in fact also
the bosonic ground state, j0i. These expressions are valid
only for l � N�1

2 ,10 withN having been assumed to be odd.
Moreover, the fermion bilinears in (29) and (30), which are
equivalent to the chiral bilinears,

P
�y
��n�l���n, are related

to the modes of the original fermion density only for
sufficiently small values of l11 such that there are no holes
deep inside the Fermi sea. The examples considered above
correspond to l � 1, 2.

These fermion bilinears may be interpreted as single-
particle states of the massless relativistic boson at energy l
and momentum �l. Multiple applications of the fermion
bilinears on the Fermi vacuum must then, for consistency,
reproduce all the other linear combinations at any excita-
tion energy and momentum level. It is easy to check that
this is true for a few low lying levels. Consider, for ex-
ample, the state �
y�1�

2j0i. Using (29) and the bosonization
rules of Sec. II, it is easy to see that

 �
y�1�
2j0i � 
y�1��

y
1 �

2j0i � ���y1 �
4 � �y1�

y
3 	j0i: (31)

The minus sign in the second term on the right-hand side
above comes from a fermion annihilation operator crossing
over a fermion in the vacuum state. This linear combina-
tion of oscillator states is orthogonal to the combination
that appears in 
y�2j0i. Some other examples of small l
chiral states are:

 

�
y�1�
3j0i � ���y1 �

6 � 2��y1 �
3�y3 � �

y
1�
y
5 	j0i;


y�1

y
�2j0i �

1��
2
p ���y1 �

6 � �y1�
y
5 	j0i:

(32)

An example of a nonchiral multiparticle state is

 
y�1

y
�1j0i � ��

y
2 �

2j0i: (33)

Both the states in (32) are orthogonal to the single-particle
state for l � 3. This holds true in a few other small-l
examples that we have checked. We believe that it is
generally true for l � N�1

2 . It would be nice to have a
general proof of this statement.

B. Interactions

In the large-N and low-energy limit, noninteracting non-
relativistic fermions in one space dimension are known to
be described by a collective field theory [8] of a massless
boson with a cubic coupling which is of order 1=N. We
have already mentioned possible O�1=N� interactions
among the density modes 
�l in the previous subsection.
Here we will discuss these interactions in more detail. As
we will see, a cubic interacting boson theory arises in the
large-N and low-energy sector of our bosonized theory,
like in the collective field theory approach. The difference
is that we have a greater and more systematic control on
1=N corrections. We can of course also go beyond the low-
energy large-N approximation, where the local cubic scalar
field theory description breaks down, since our bosoniza-
tion is exact.

Consider the action of H1, (21), on the states 
y�lj0i.
Each of the oscillator states occurring in the sum in (29)
and (30) is an eigenstate of H1, with an eigenvalue that can
be easily computed. In fact,

 H1��
y
1 �
r�ys j0i �

8<: @!
4 �r

2 � s2���y1 �
r�ys j0i; r; s odd; including s � 1;

@!
4 ��r� 1�2 � �s� 1�2���y1 �

r�ys j0i r; s even; s � 0:
(34)

It follows that

 H1

y
�lj0i �

@!��
l
p

Xl
k�1

�l�l� 1� � 2lk	��y1 �
2�l�k��1�y2k�1j0i;

(35)

 H1

y
�lj0i �

@!��
l
p

Xl
k�1

�l�l� 1� � 2lk	��y1 �
2�l�k��y2kj0i:

(36)

It is now easy to verify that for l � N�1
2 ,

h0j
�lH1

y
�lj0i � 0,12 so that the linear combinations of

the oscillator states which appear in (35) and (36) must be
multiparticle states of the massless boson. We have already
seen examples of such linear combinations in (31) and
(32). These are special cases of (35) for l � 2, 3.

Notice that a specific linear combination of oscillator
states enters on the right-hand side of (35) (the same is true
of (36)). For example, for l � 3 there are two different
multiparticle states in each chiral sector, 
y�1


y
�2j0i and

�
y�1�
3j0i, but only the former enters in (35) and (36),

which is a two-particle state. For l � 4 we have a more
10For l > N�1

2 , the sum over k terminates at k � N�1
2 , irrespec-

tive of the actual value of l. Since there cannot be any single-
particle states for l > N�1

2 , these states must be interpreted as
multiparticle states.

11Very high energy modes of the fermion density also involve
mixed chirality fermion bilinears. This is discussed in detail in
Sec. V.

12For l > N�1
2 , it can be easily checked that H1


y
�j0i is not

orthogonal to the state 
y�j0i. Remember that for l > N�1
2 , the

sum over k in (29) and (30) has to be truncated at N�1
2 .
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nontrivial example. Here, one can show that

 H1

y
�4j0i � 4@!�

���
3
p

y�1


y
�3j0i � �


y
�2�

2	j0i: (37)

So in this case the right-hand side is a linear sum of the two
possible two-particle states. More generally, for l � N�1

2 ,
H1


y
�lj0i can be written as a linear sum of all possible two-

particle states only:

 H1

y
�lj0i � @!

Xl�1

m�1

cl�m

y
�m


y
��l�m�j0i; l �

N � 1

2
:

(38)

We have calculated the coefficients cl�m. The calculation is
described in Appendix C. We get

 cl�m �
���������������������
lm�l�m�

p
: (39)

The above calculations can be summarized as follows. In
a field theory setting, the low-energy and large-N limit of
the Fermi system under discussion is described by the
following Hamiltonian of a massless relativistic scalar in
two dimensions with a cubic coupling:

 

H � @!
�
N
X
l

l��y�l��l ��
y
�l��l�

�

��X
l

Xl�1

m�1

���������������������
lm�l�m�

p
�y
��l�m��

y
�m��l � c:c:

�

� �� ! ��

��
: (40)

This is an effective Hamiltonian which is valid only for
energies l� N since it is only for low energies that �’s
satisfy the approximate commutation relation,
���l; �

y
�m	 � �lm. It describes the effective low-energy

dynamics in the � � 0 sector.
It is straightforward to extend the above discussion to

states with arbitrary �. The single-particle states of the
massless boson in the two chiral sectors can be obtained
by applying the operators 
y�l on the corresponding vac-
uum state, j�i, similar to Eqs. (29) and (30) which give the
states in the � � 0 sector. We have already seen in Eq. (28)
that for � � 0 there is an additional O�N� term, @!N�2, in
the effective Hamiltonian. It turns out that there is an
additional term in the effective low-energy Hamiltonian,
but this term is O(1) in N. It arises because the expectation
value of H1 does not vanish in the states with a nonzero
value of �. The complete effective low-energy Hamiltonian
turns out to be

 

H � @!
�
N�2 � N

X
l

l��y�l��l ��
y
�l��l�

� 2�
X
l

l��y�l��l ��
y
�l��l�

�

��X
l

Xl�1

m�1

���������������������
lm�l�m�

p
�y
��l�m��

y
�m��l � c:c:

�

� �� ! ��

��
: (41)

A cubic effective Hamiltonian for nonrelativistic fermions
in one space dimension was first obtained in the collective
theory approach by [8]. Our expression for the Hamil-
tonian agrees with that obtained by [9] (see also [10]) in
the context of two-dimensional Yang-Mills theory on a
circle.

V. BEYOND LOW-ENERGY EFFECTIVE THEORY

As we have seen in the previous sections, the cubic
bosonic low-energy effective field theory is a result of a
controlled large-N and low-energy limit of a more com-
plete finite-N bosonization of the Fermi system. In this
more complete setting it is naturally possible to go beyond
the low-energy approximation and to do calculations, for
example, of the correlation functions, at high energies and
finite N. At high energies, there are two distinct ways in
which we must modify the perturbative calculations of the
previous section. First, at high energies the contribution of
H1 to the Hamiltonian can be comparable to that of H0, so
perturbation expansion breaks down. In the noninteracting
theory this can be taken care of by doing exact calculations.
Second, at high energies the states created from the vac-
uum by the modes of the fermion density operator, ~
�l �
1��
l
p
R
dxe�2�ilx=L�y�x���x�, are not identical to the single-

particle states created by 
�l from the vacuum. In fact, we
have

 

~
y�lj0i � 
y�lj0i �
1��
l
p

Xl
n�1

 y2�l�n� 2n�1j0i;

~
y�lj0i � 
y�lj0i �
1��
l
p

Xl
n�1

 y2n�1 2�l�n�j0i:

(42)

In the above equations, the second term on the right-hand
side contributes only for l > N�1

2 . It is a � � �1 state.
Such terms will show up as extra contributions in scattering
amplitudes. Consider, for example, the ‘‘two-particle’’
state ~
y�m ~
y

��l�m�j0i. For l 
 N�3
2 , this state is not the

same as the state 
y�m

y
��l�m�j0i, but has an extra contri-

bution. For example, let us take l � N�3
2 . Then,
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 ~
 y�m ~
y
����N�3�=2��m�j0i � 
y�m


y
����N�3�=2��m�j0i

�
1��������������������������

m�N�3
2 �m�

q �y1�
y
N�1j0i:

(43)

The extra term on the right-hand side above will contribute
in the calculation of the three-point function,
h0j~
y

��N�3�=2 ~
y�m ~
y
����N�3�=2��m�j0i, because of the extra

term in (42).
Basically, the point is that at low energies, it is possible

to restrict the states created by the modes of the fermion
density to the � � 0 sector. However, at high energies,
effects of the � � 0 states will show up, under appropriate
conditions, in the correlation functions of the modes of the
fermion density.

VI. INTERACTING NONRELATIVISTIC
FERMIONS ON A CIRCLE

The full fermionic Hamiltonian is a sum of the free part
and interactions,

 H � Hfree �Hint: (44)

Following Tomonaga, we will assume an interaction of the
following form (which could arise, for example, from the
Coulomb force between the fermions):

 Hint �
Z L

0
dx
Z L

0
dy~
�x�~
�y�J�x� y�; (45)

where ~
�x� � �y�x���x� is the fermion spatial density and
J�x� y� is the fermion-fermion interaction potential. If the
interaction has a range much larger than L=N, it is a good
approximation to replace Hint by

P
ll�J�l�

y
�l��l �

J�l�
y
�l��l�, where J�l are the Fourier modes of the

interaction potential; the sum has a cutoff at some l� N
because of the long range of the interaction potential and so
it is consistent to restrict to states with � � 0. For poten-
tials with a range smaller than L=N, one must take into
account the fact that the modes of the fermion density have
extra terms like that in Eq. (42). In this case, interactions
can excite states with � � 0 and one needs to take these
into account in calculations.

VII. TWO-DIMENSIONAL YANG-MILLS ON A
CYLINDER

Tomonaga’s problem has surprising connections with a
variety of interesting problems in field theory and string
theory. In fact, it is known for some time now that non-
relativistic fermions appear in two-dimensional Yang-
Mills on a cylinder with U�N� gauge group [10]. In recent
works it has been pointed out that they also appear in the
physics of black holes [11,12], with possible connections
to the physics of baby universe creation. Because of this,
our bosonization has applications to these problems as

well. We provide some details on these connections in
Appendix E.

Two-dimensional Yang-Mills theory on a cylinder can
be shown to be equivalent to a string theory [13,14]. See
also [15–18]. In this context, an interesting observation due
to [9] is that states with excitation energy of O�N2� are D1-
branes. This observation is mainly based on the presence of
O�e�1=gs � e�N� contributions to the partition function
[9,19]. As discussed below, such contributions are also
present in (26) for large finite N.

For connection with black holes and baby universes (see
Appendix E), one considers Type IIA string theory on CY
supporting a supersymmetric configuration of D4, D2, and
D0 branes. The backreacted geometry is a black hole in the
remaining four noncompact directions, which is character-
ized by the D4, D2, and D0 charges. It was shown in [11]
that the bound state of D4, D2, and D0 branes maps to the
partition function of pure two-dimensional Yang-Mills
theory on a cylinder. The point of [12], relevant for the
present discussion, is that the partition function with a
given asymptotic charge must necessarily include multi-
centered black holes, corresponding to configurations with
multiple filled bands of fermion energy levels. In the black
hole context, the near-horizon limit of the multicentered
configurations gives rise to an ensemble of AdS2 � S2

configurations. The existence of such multiple configura-
tions gives rise to nonperturbative corrections to the
Ooguri-Strominger-Vafa (OSV) [20] relation; schemati-
cally

 ZBH � j j2 � O�e�N�: (46)

The uncorrected equation is valid for a single black hole,
and corresponds in the fermion theory to two decoupled
Fermi surfaces (at the top and at the bottom) which is the
correct description in the N ! 1 limit. The O�e�N� cor-
rections arise in the black hole context from the fact that
partition function over geometries with a given asymptotic
charge Q includes multiple black holes with charges Qi
such that Q �

P
Qi. The contribution of these to the total

partition function is given by e��I�, I �
P
SBH�Qi�. In the

case of the fermion theory, the O�e�N� corrections signify
the fact that at finite N, the approximation of the Fermi sea
as having two infinitely separated Fermi surfaces is not
valid and includes in the partition function many more
states than actually exist in the system; the corrections
subtract those states iteratively.

In our present formalism, the structure of Eq. (46) can be
recognized in (26). Setting y � q1=2 in it, we get

 ZN�q� �
X�N�1�=2

�����N�1�=2�

q�
2

Y��N�1�=2���

n�1

�1� qn��1

�
Y��N�1�=2���

n�1

�1� qn��1: (47)
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Writing out the first few terms in the � sum explicitly, we get

 ZN�q� �
�
1� q� q

1� q�N�1�=2

1� q��N�1�=2��1
� � � �

� Y��N�1�=2��1

n�1

�1� qn��1
Y�N�1�=2

n�1

�1� qn��1

� �1� 2q� q�N�1�=2 � � � ��
Y�N�1�=2

n�1

�1� qn��1
Y�N�1�=2

n�1

�1� qn��1

� �1� 2q� q�N�1�=2 � � � ���1� q�N�1�=2 � � � ��

�Y1
n�1

�1� qn��1

�
2
: (48)

We see that there are two types [12] of O�e�N� corrections.
One arises from the first factor which originated from sum
over �. The other arises from the second factor which came
from writing the two product factors (in the second equal-
ity above) as their N ! 1 limit and the deficit. This
division is of course arbitrary, only the overall structure
of the final result, which is as indicated in (46), being
meaningful. We see that the Hamiltonian (20) of a bunch
of harmonic oscillators provides a simple example of the
two types of nonperturbative corrections discussed in [12].

VIII. SUMMARY AND DISCUSSION

In this paper we have used the tools recently developed
by us [1] for an exact bosonization of a finite number N of
nonrelativistic fermions to discuss the classic Tomonaga
problem. We have shown that the standard cubic effective
Hamiltonian for a massless relativistic boson arises in a
systematic large-N and low-energy limit. At finite N and
high energies, however, the low-energy effective descrip-
tion breaks down and the exact bosonized Hamiltonian
must be used. A curious feature of this exact bosonized
theory is that there is no underlying space visible. The
latter emerges only in the semiclassical (large-N) limit at
low energies. Our bosonized theory thus provides an inter-
esting example of this phenomenon which is expected to be
a generic property of any consistent theory of quantum
gravity.

Tomonaga’s problem has an interesting connection with
pure Yang-Mills theory on a cylinder. In the context of the
recent discussion of baby universes in string theory black
holes, we have pointed out that the O�N� piece in our
bosonized Hamiltonian provides a simple model for under-
standing the origin of two different kinds of nonperturba-
tive O�e�N� corrections to the partition function. We may
recall here that in the application of our bosonization to the
half-BPS sector of N � 4 super Yang-Mills theory [1,2],
our bosonic oscillators turned out to create single-particle
giant graviton states from the AdS5 � S

5 ground state. It
would be interesting to investigate whether our bosonic
oscillators also have a natural interpretation in the baby
universe context.

It is possible to generalize our bosonization to higher
space dimensions. A brief discussion of this has been given

in Appendix D. An interesting aspect of the bosonized
theory seems to be the absence of a manifest reference to
the number of dimensions. This is not really surprising
since space-time emerges only in the semiclassical low-
energy limit in our bosonized theory. It would be interest-
ing to further explore the bosonized theory in higher di-
mensions. In particular, it would be interesting to see how
the bosonized theory encodes symmetries, e.g. spatial
rotations.

APPENDIX A: CALCULATION OF
PERTURBATIVE FORM OF HAMILTONIAN

In this appendix we will give details of the derivation of
(19)–(21) from (18). The first step is to rewrite (18) as
follows:
 

Hfree �
@!
4

XN
k�1

�
�N � k� e�N � k�	

�

�XN
i�k

ayi ai � ��1�N�ke
�XN
i�k

ayi ai

���
2
: (A1)

In writing this, we have made use of the identity

 e
�XN
i�k

ayi ai � N � k
�
� e�N � k� � ��1�N�ke

�XN
i�k

ayi ai

�
;

(A2)

which can be easily derived from the definition of e�n�
given in (17). Opening up the square, the first term in the
square brackets gives rise to HF. The cross term is

 

@!
2

XN
k�1

�N � k� e�N � k�	
�XN
i�k

ayi ai

� ��1�N�ke
�XN
i�k

ayi ai

��
: (A3)

Using

 

XN
k�1

g�k�
XN
i�k

ayi ai �
XN
k�1

f�k�ayk ak; f�k� �
Xk
i�1

g�i�;

(A4)

the cross term can be rewritten as
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@!
2

XN
k�1

�
kN �

k2

2
�
��1�N

2
e�k�

�
ayk ak

�
@!
2

XN
k�1

�N � k� e�N � k�	��1�N�ke
�XN
i�k

ayi ai

�
:

(A5)

The leading term is @!N
2

PN
k�1�ka

y
k ak �

��1�N�ke�
PN
i�k a

y
i ai�	, which is just H0. The rest com-

bines with the square of the second term in Hfree above to
give H1.

APPENDIX B: RECURSION RELATION FOR THE
PARTITION FUNCTION

In this appendix we will give details of the derivation of
the recursion relation (25). First we note that

 e
�XN
i�k

ri

�
�

8<: e�
PN�1
i�k ri�; rN even;

1� e�
PN�1
i�k ri�; rN odd;

(B1)

from which it follows that

 

XN
k�1

��1�N�ke
�XN
i�k

ri

�
� e�rN� �

XN�1

k�1

��1�N�ke
�XN
i�k

ri

�
�

8<:�
PN�1
k�1 ��1�N�1�ke�

PN�1
i�k ri�; rN even;

e�N� �
PN�1
k�1 ��1�N�1�ke�

PN�1
i�k ri�; rN odd:

(B2)

Using this result in (24), we can explicitly do the summation over rN by writing it as separate sums over even and odd rN .
We get

 ZN�q; y� �
X

rN�even

q�1=2�NrN
X1

r1;r2;���;rN�1�0

q1=2
P

N�1
k�1

krky�
P

N�1
k�1
��1�N�1�ke�

P
N�1
i�k

ri�

� ye�N�
X

rN�odd

q�1=2�NrN
X1

r1;r2;���;rN�1�0

q1=2
P

N�1
k�1

krky
P

N�1
k�1
��1�N�1�ke�

P
N�1
i�k

ri�: (B3)

Equation (25) now trivially follows from this.

APPENDIX C: CALCULATION OF THE
COEFFICIENTS cl�m

In this appendix, we will give details of the calculation
of the coefficients cl�m which determine the tree-level
scattering amplitudes through Eq. (38). For definiteness,
the following calculations are done for the ’�’ sign for l
odd. Calculations for the other choices can be done
similarly.

We need to prove the following identity:

 

Xl�1

m�1

��������������������
m�l�m�

p

y�m


y
��l�m�j0i

�
Xl
k�1

�l�l� 1� � 2lk	��y1 �
2�l�k��1�y2k�1j0i: (C1)

For l odd, this can be rewritten as

 

X�l�1�=2

m�1

��������������������
m�l�m�

p

y�m


y
��l�m�j0i

�
Xl
k�1

�
l� 1

2
� k

�
��y1 �

2�l�k��1�y2k�1j0i: (C2)

In terms of the fermion bilinears, the left-hand side of this
identity is

 

X�l�1�=2

m�1

X
n�even

 yn�2m n
X

p�even

 yp�2�l�m� pjF0i: (C3)

Figure 3 shows the fermion state one gets after the first
fermion bilinear has created a particle-hole pair in the
Fermi vacuum. After the second fermion bilinear has acted
on this state, two types of states can result. One can have a
state with a single particle-hole pair (the second bilinear
either moves the particle up or the hole down), as shown in

p + 2(l−m)

p

N−1

FIG. 3. A particle-hole pair state created from vacuum by a
single fermion bilinear.
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Figs. 4(a) and 4(b). Or one can have a state with two particle-hole pairs, as shown in Figs. 5(a) and 5(b). Adding up all the
contributions, paying due attention to minus signs coming from fermion anticommutations, we get

 X�l�1�=2

m�1

XN�1

p�N�1�2�l�m�

�
�j4ai � j4bi �

Xp�2

n�N�1�2m

��2m� p� 3� N���p� 2� n�j5ai

�
XN�1

n�p�2

��2l� p� 4m� 2� n���n� 2m� 1� N���N � 3� p�j5bi

�
XN�1

n�p�2

��4m� n� 2l� 2� p���p� 2l� 2m� 1� N���N � 3� p�j5ci
�
: (C4)

In the above expression we have used the shorthand notation j:i for the state shown in the figure with the corresponding
number. Also ��n� � 1 for n 
 0 and zero otherwise. Using the rules of bosonization described in Sec. II, one can write
down these states in the bosonic language. We get

p + 2(l−m)

N−1

p−2m

(a)

N−1

p+2l=n+2m

p

(b)

FIG. 4. The state with a single particle-hole pair resulting from
the action of two fermion bilinears on vacuum.

p+2(l−m)

n+2m

N−1

p

n

(a)

p+2(l−m)

n+2m

N−1

p

n

(b)

N−1

p

n

p+2(l−m)

n+2m

(c)

FIG. 5. The states with two particle-hole pairs resulting from the action of two fermion bilinears on vacuum.
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 X�l�1�=2

m�1

XN�1

p�N�1�2l�2m

�
���y1 �

p�2l�2m�N�yN�p�2mj0i���
y
1 �
p�2l�N�yN�pj0i

�
Xp�2

n�N�1�2m

��2m�p�3�N���p�2�n���y1 �
p�2l�4m�n�1��y2 �

n�2m�N�yN�p�1�
y
N�nj0i

�
XN�1

n�p�2

��2l�p�4m�2�n���n�2m�1�N���N�3�p���y1 �
p�2l�4m�n�1��y2 �

n�2m�N�yN�n�1�
y
N�pj0i

�
XN�1

n�p�2

��4m�n�2l�2�p���p�2l�2m�1�N���N�3�p���y1 �
n�2l�4m�p�1��y2 �

p�2l�2m�N�yN�n�1�
y
N�pj0i

�
:

(C5)

The contribution of the first two terms can be rewritten as

 

X�l�1�=2

m�1

�Xl�m
k�1

�
Xl

k�m�1

�
��y1 �

2l�2k�1�y2k�1j0i; (C6)

which evaluates to precisely the right-hand side of (C2). To prove this identity, then, we need to show that the contribution
of the remaining three terms above vanishes. This contribution can be rewritten as follows:

 

X�l�1�=2

m�1

X
k

�
�
Xl�m
r�1

Xm
s�r�1

��m� r� 1���s� r� 1��m;k�s �
Xl�m
r�1

Xr�1

s�1

��l�m� s� k� 1���s� 2���m� r��m;k�r

�
Xl�m
s�1

Xs�1

r�1

��l�m� r� k� 1���s� 2��l�m;k�s

�
��y1 �

2�l�r�s�2k��1��y2 �
2k�1�y2r�

y
2s�1j0i: (C7)

Notice that for a given value of (k� s) either the first or the
third term contributes. This is because for odd l, m, and
(l�m) can never be equal in the range 1 � m � l�1

2 . It is
easy to see that because of this the contribution of the
middle term gets cancelled for any given values of k, r,
s. This proves the identity (C2). We have thus verified that
the coefficients cl�m are given by (39).

APPENDIX D: REMARKS ON BOSONIZATION OF
NONRELATIVISTIC FERMIONS IN HIGHER

DIMENSIONS

If we recall the definition of the exact Fermi-Bose
equivalence [1], it is clear that the fermionic oscillators
 ym, n need not refer to fermions in one dimension, as long
as they satisfy the anticommutation relation

 f ym;  ng � �mn; m; n 2 Z� � f0; 1; . . . ;1g; (D1)

e.g. consider fermions moving in a 2D harmonic oscillator
potential. The fermionic oscillators here can be labeled
 ym1;m2

,  n1;n2
which satisfy

 f ym1;m2
;  n1;n2

g � �m1;n1
�m2;n2

; m1; m2; n1; n2 2 Z�:

(D2)

Now it is easy to construct (see below) invertible maps

 f: Z� � Z� ! Z�; m � f�m1; m2�: (D3)

Using such maps, the ‘‘2D’’ fermion anticommutation
relation (D2) becomes the ‘‘1D’’ relation (D1), with m �
f�m1; m2�, n � f�n1; n2�.

The existence of invertible maps like (D3) follows from
the countability of set Z� � Z�. An explicit construction
of such a map is as follows. First, let us make a change of
coordinates �m1; m2�� �l;m2� where l � m1 �m2: the
range of �l;m2� are l � 0; 1; 2; . . . ;1; m2 � 0; 1; . . . ; l.
With this, the desired functionm � f�m1; m2� is defined as

 m � ��l;m2� �
l�l� 1�

2
�m2: (D4)

The inverse function � � �m1; m2� is given by
 

l��� � fl�12�
����������������
1� 8�

p
� 1��;

m2��� � �� 1
2l����l��� � 1�:

(D5)

The function fl�x� is defined as the largest integer con-
tained in the non-negative real number x.

Some examples of the values of m1, m2 and the corre-
sponding m are

 

�m1; m2� �0; 0� �1; 0� �0; 1� �2; 0� �1; 1� �0; 2�
m 0 1 2 3 4 5

:

Using this map, the fermionic Hamiltonian for the two-
dimensional harmonic oscillator, viz.
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HF �
X
m1;m2

E2�m1; m2� 
y�m1; m2� �m1; m2�; E2�m1; m2�

� m1 �m2 � 1 � l� 1

�
X1
��0

E1��� 
y
� �; E1��� � l��� � 1

� fl�12�
����������������
1� 8�

p
� 1�� � 1 (D6)

becomes

 HB �
XN
k�1

E1�n̂k�; n̂k �
XN
i�k

ayi ai � N � k: (D7)

Here E1 is the equivalent one-dimensional fermionic en-
ergy level, defined in (D6).

The above discussion proves that fermions in two-
dimensional harmonic oscillator potential can be boson-
ized using our prescription. Similar remarks also apply to
the case of fermions in a two-dimensional box.

Indeed, fermions in an arbitrary D-dimensional har-
monic oscillator or a D-dimensional box can also be
bosonized. For example, for a harmonic potential in D �
3, the bosonic Hamiltonian becomes

 HB �
XN
k�1

E1�n̂k�; n̂k �
XN
i�k

ayi ai � N � k;

E1��� � l��� � 3
2; l� � fl�l�����;

(D8)

where the function l���� is defined as the positive root of
the cubic equation l�����l���� � 1��2l���� � 4� �
12� � 0.

Because of the appearance of the fl�. . .� function, the
above formulae, though exact, are not particularly easy to
deal with. It would be interesting to simplify these expres-
sions by trying different parametrizations of the Z� �
. . .Z� lattice.

Dimension as an emergent concept: In the above dis-
cussions of fermions in a D-dimensional harmonic oscil-
lator, the dimensionD can be read off from the equation for
E1���, the equivalent 1D fermion. For �� 1, we have

 E 1��� / �
1=D:

This is easy to show, along the lines of the D � 1, 2, 3.
Note that this asymptotic formula is only valid for large N.
The dimensionality emerges only at large N.

APPENDIX E: CONNECTIONS AMONG BLACK
HOLES, TWO-DIMENSIONAL YM AND THE

TOMONAGA PROBLEM

We will first briefly discuss the connection between
black holes and two-dimensional Yang-Mills theory. For
more details see [11,12]. Let us consider type IIA string on
a Calabi-Yau manifold Y which can be described as Lm �
L�m fibred over T2. Here Lm represents a line bundle

whose holomorphic sections have m zeroes and L�m

represents a line bundle whose holomorphic sections
have m poles. We consider configurations which have N
D4, N2 D2, and N0 D0 branes. The N D4 branes wrap T2

and one of the two complex fibre directions and the N2 D2
branes wrap the T2. From the point of view of the four
noncompact directions (transverse to the Calabi-Yau mani-
fold), the D4 branes appear as point particles; when the
backreactions of these branes (as well as of the D2 and D0
branes) are taken into account, these geometries appear as
black holes in four noncompact dimensions. The noncom-
pact Calabi-Yau is regarded as the local description of a
compact Calabi-Yau.

The low-energy degrees of freedom on these D4 branes
are described by a 4� 1 YM theory, to begin with.
However, we are interested in sectors with a certain amount
of supersymmetry which are effectively described by a 4d
topological YM theory: 4d because the black hole partition
function corresponds to the 	! 0 limit of (	 �
Euclidean time) [20], and topological because the appro-
priate amount of supersymmetry can be ensured by a
topological twisting of the original YM theory. It can
further be shown that this 4d topological YM theory is
equivalent to a 2d bosonic YM theory [11] under appro-
priate identification of parameters of the two theories.

The equivalence of the 2d bosonic YM to a theory of free
fermions was established in [10,18]. Very briefly, one uses
the gauge A0 � 0 and solves the Gauss law as

 

E�x� � _A1�x� � Wx0VWLx;

Wab � P
�
exp

�
ig
Z b

a
dxA1

��
:

(E1)

The 2d YM Hamiltonian becomes

 

H �
1

2

Z L

0
dxTrE2 � �

1

2g2L
Tr�W�1 _W�2;

W � W0L;
(E2)

where the Gauss law constraint gives

 �W; _W	 � 0:

The Hamiltonian, together with the constraint and the
original Poisson bracket of A1, corresponds to the singlet
sector of a unitary matrix quantum mechanics. The
Hamiltonian becomes, after a similarity transformation
(as usual),

 H � �
g2

2L

XN
i�1

@2

@�2
i

in terms of the eigenvalues �i of W; the wave functions in
this basis get an additional factor, called the van der Monde
determinant
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 4 �
Y
i<j

sin
�i � �j

2

which make them completely antisymmetric with respect

to exchange of the eigenvalues. The resulting system de-
scribes N free fermions on a circle. Note that the eigen-
values �i have a range 0 � �i � 2�.
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