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We derive hydrodynamic-like equations that are applicable to short-time-scale color phenomena in the
quark-gluon plasma. The equations are solved in the linear response approximation, and the gluon
polarization tensor is derived. As an application, we study the collective modes in a two-stream system
and find plasma instabilities when the fluid velocity is larger than the speed of sound in the plasma. The
chromohydrodynamic approach, discussed here in detail, should be considered as simpler over other
approaches and well-designed for numerical studies of the dynamics of an unstable quark-gluon plasma.
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I. INTRODUCTION

Bulk features of electromagnetic plasmas are usually
studied by means of fluid equations [1]. To get more de-
tailed information, one refers to kinetic theory [1]. Since
the fluid equations are noticeably simpler than the kinetic
ones, the hydrodynamic approach is also frequently used in
numerical simulations of the plasma evolution, studies of
the nonlinear dynamics, etc. [1]. The situation in the field
of quark-gluon plasma studies is rather different. Although
chromohydrodynamics equations were discussed by sev-
eral authors over a long period of time [2–12], they were
not carefully studied. The field of their applicability was
not established and very few important results were ob-
tained by means of them. Consequently, the chromohydro-
dynamics has not attracted much attention. Instead, field
theory diagrammatic methods have been successfully ap-
plied to reveal equilibrium properties of the quark-gluon
plasma [13], while transport theory [14–16] proved effi-
cient in the nonequilibrium studies. In particular, the im-
portant role of instabilities in the quark-gluon plasma
evolution was clarified within the kinetic theory approach,
see the review [17]. The kinetic equations were also a basis
of extensive numerical simulations of the unstable QCD
plasma [18–24]. The early stage of relativistic heavy-ion
collisions, when the quark-gluon system is produced, was
effectively studied using methods of classical field theory,
see e.g. the review [25] and very recent publications
[26,27].

Inspired by the success of hydrodynamic methods in the
electromagnetic plasma, we discuss the approach to be
applied to the quark-gluon plasma. Before going to the

main subject of our study, however, a very important point
has to be clarified. Real hydrodynamics deals with systems
which are in local equilibrium, and thus it is only appli-
cable at sufficiently long time scales. The continuity and
the Euler or Navier-Stokes equations are supplemented by
the equation of state to form a complete set of equations.
The equations can be derived from kinetic theory, using the
distribution function of local equilibrium, which by defi-
nition maximizes the entropy density, and thus the function
cancels the collision terms of the transport equations.
Such a real chromohydrodynamics was derived in [10]
where the state of local equilibrium was found, using the
collision term of the Waldman-Snider form. The chromo-
hydrodynamics has occurred trivial in the sense that
although the local equilibrium can be colorful, all color
components of the plasma move with the same hydrody-
namic velocity. Therefore, chromodynamic effects disap-
pear entirely once the system is neutralized. It actually
happens even before the local equilibrium is achieved
[28]. Thus, there is no QCD analog of the magneto-
hydrodynamics which is well known in the electromag-
netic plasma. The magneto-hydrodynamic regime appears
due to a large difference of electron and ion masses which
effectively slows down a mutual equilibration of electrons
and ions. Therefore, at a relatively long time scale one
deals with the charged electron fluid in local equilibrium
which moves in a passive background of positive ions.

Since the hydrodynamic equations express the macro-
scopic conservation laws, the equations hold not only for
systems in local equilibrium but for systems out of equi-
librium as well. In particular, the equations can be applied
at time scales significantly shorter than that of local equili-
bration. At such a short time scale the collision terms of the
transport equations can be neglected. However, extra as-
sumptions are then needed to close the set of equations, as
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the (equilibrium) equation of state cannot be used. In the
electromagnetic plasma physics, several methods to close
the system of equations were worked out.

In this paper we discuss not a real hydrodynamics de-
scribing the quark-gluon plasma in local equilibrium, but
the fluid equations which are valid at much shorter time
scale. The approach is designed to study temporal evolu-
tion of the unstable QCD plasma. In Sec. III the fluid
equations are derived from the kinetic theory which is
presented in Sec. II. The equations are solved in the linear
response approximation in Sec. IV and the polarization
tensor is derived. As an example, the collective plasma
modes in the two-stream system are analyzed in Sec. V.
The paper is closed with a few remarks on the hydrody-
namic approach.

Throughout the paper we use the natural units with c �
@ � kB � 1 and the metric �1;�1;�1;�1�.

II. KINETIC THEORY

In this section we briefly present the transport theory of
quarks and gluons [14,15] which is used to derive the fluid
equations.

The distribution function of quarks Q�p; x�, where p is
the four-momentum and x is the four-position, is a hermi-
tian Nc � Nc matrix in color space (for a SU�Nc� color
group). The distribution function is gauge dependent and it
transforms under a local gauge transformation U as

 Q�p; x� ! U�x�Q�p; x�Uy�x�: (1)

The distribution function of antiquarks, which we denote
by �Q�p; x�, is also a hermitian Nc � Nc matrix in color
space it also transforms according to Eq. (1). The distribu-
tion function of gluons is a hermitian �N2

c � 1� � �N2
c � 1�

matrix, which transforms as

 G�p; x� !U�x�G�p; x�Uy�x�; (2)

where

 U ab�x� � 2 Tr��aU�x��bUy�x��; (3)

with �a, a � 1; . . . ; N2
c � 1 being the SU�Nc� group gen-

erators in the fundamental representation with Tr��a�b� �
1
2�

ab.
The four-momentum p, which is the argument of the

distribution functions, is not constrained by the mass-shell
condition but it is taken into account in the momentum
integration measure. We use the notation

 

Z
p
� � � 	

Z d4p

�2��3
2��p0���p2�; (4)

and the color current is expressed in the fundamental
representation as

 

j��x� � �
g
2

Z
p
p�
�
Q�p; x� � �Q�p; x�

�
1

Nc
Tr�Q�p; x� � �Q�p; x��


 2�a Tr�TaG�p; x��
�
; (5)

where g is the QCD coupling constant. A sum over hel-
icities, two per particle, and over quark flavors Nf is
understood in Eq. (5), even though it is not explicitly
written down. The SU�Nc� generators in the adjoint repre-
sentation are expressed through the structure constants
Tabc � �ifabc, and are normalized as Tr�TaTb� � Nc�

ab.
The current can be decomposed as j��x� � j�a �x��a with
j�a �x� � 2 Tr��aj

��x��.
The distribution functions of quarks, antiquarks and

gluons satisfy the transport equations:

 p�D�Q�p; x� 

g
2
p�fF���x�; @�pQ�p; x�g � C�Q; �Q;G�;

(6)

 p�D�
�Q�p; x� �

g
2
p�fF���x�; @�p �Q�p; x�g � �C�Q; �Q;G�;

(7)

 

p�D�G�p; x� 

g
2
p�fF ���x�; @

�
pG�p; x�g � Cg�Q; �Q;G�;

(8)

where f. . . ; . . .g denotes the anticommutator and @�p the
four-momentum derivative; the covariant derivatives D�

and D� act as
 

D� � @� � ig�A��x�; . . .�;

D� � @� � ig�A��x�; . . .�;

with A� and A� being four-potentials in the fundamental
and adjoint representations, respectively:

 A��x� � A�a �x��a; A��x� � TaA�a �x�:

The strength tensor in the fundamental representation is
F�� � @�A� � @�A� � ig�A�; A��, while F �� denotes
the field strength tensor in the adjoint representation. C,
�C and Cg represent the collision terms which are neglected

in our further considerations, as we are interested in short-
time-scale phenomena which are ‘‘faster‘‘ than the
collisions.

The transport equations are supplemented by the Yang-
Mills equation describing generation of the gauge field

 D�F���x� � j��x�; (9)

where the color current is given by Eq. (5).
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III. FLUID EQUATIONS

We assume here that there are several streams in the
plasma system, and then the distribution function of, say,
quarks Q�p; x� can be decomposed as Q�p; x� �P
�Q��p; x� where the index � labels the streams. Since

we are interested in the short-time-scale phenomena—
‘‘faster‘‘ than collisions—the complete quark distribution
function Q�p; x� as well as the distribution function of
every stream Q��p; x� satisfy the collisionless transport
equation. The streams interact with each other only via
the mean-filed which is generated in a self-consistent way
by the current where every stream contributes. We note that
the decomposition of the distribution function Q�p; x� into
streams is, in principle, not unique. However, if the stream
distribution functions Q��p; x� solve the transport equa-
tions combined with the field generation equation, the
complete distribution function solves the transport equa-
tion and the field generation equation as well.

Further analysis is limited to quarks but inclusion of
antiquarks and gluons is straightforward. Integrating the
collisionless transport Eq. (6) satisfied byQ� over the four-
momentum with the integration measure (4), one finds the
covariant continuity equation

 D�n
�
� � 0; (10)

where n�� is Nc � Nc matrix defined as

 n�� �x� 	
Z
p
p�Q��p; x�: (11)

The four-flow n�� transforms under gauge transformations
as the quark distribution function, i.e. according to Eq. (1).

Multiplying the transport Eq. (6) by the four-momentum
and integrating the product with the measure (4), we get

 D�T
��
� �

g
2
fF�

�; n�� g � 0; (12)

where the energy-momentum tensor is

 T��� �x� 	
Z
p
p�p�Q��p; x�: (13)

We further postulate that n�� and T��� have the form of an
ideal fluid i.e.

 n�� �x� � n��x�u
�
� �x�; (14)

 T��� �x� �
1

2
����x� 
 p��x��fu

�
� �x�; u���x�g � p��x�g

��;

(15)

where the hydrodynamic velocity u�� is, as n�, �� and p�, a
Nc � Nc matrix. The anticommutator of u�� and u�� is
present in Eq. (15) to guarantee the symmetry of T���
with respect to �$ � which is evident in the definition
(13).

Since Eqs. (14) and (15) are of crucial importance for
our further considerations, let us discuss them in more

detail. There are two aspects of the ideal-fluid form of
n�� and T��� to be justified: the Lorentz structure and the
matrix structure. We start the discussion with the Lorentz
structure. Equations (14) and (15) assume that n�� and T���
can be expressed as products of the Lorentz scalars n�, ��
and p� and the four-vector u�� . Such a Lorentz structure
appears when the distribution function Q��p; x�, which
gives n�� and T��� through Eqs. (11) and (13), is isotropic
in the local rest frame where u�� � �1; 0; 0; 0�. One does not
need to assume that the function is of local equilibrium
form, the isotropy is a sufficient condition. And we note
that the isotropy of the momentum distribution, required
Eqs. (14) and (15), is not a serious limitation because we
actually consider not a single stream but a superposition of
several streams. And then, one can easily model an arbi-
trary momentum distribution as a sum of several momen-
tum distributions, everyone isotropic in its Lorentz rest
frame. Thus, the Lorentz structure expressed by Eqs. (14)
and (15) seem to be well justified.

The problem of the matrix structure of Eqs. (14) and (15)
is more complicated. We first note that n�� and T��� have to
be matrix value functions as the distribution function
Q��p; x� which defines them through Eqs. (11) and (13)
is a matrix in a color space. The question is whether n�, ��,
p� and u�� have to be all matrix quantities. When the
system under consideration is colorless, these quantities
can be treated as scalars in the color space. However, as
explicitly shown in Sec. IV, even small perturbations of
these quantities induced by a color field are of matrix
value. Therefore, n�, ��, p� and u�� have to be all treated
as matrices.

When n�� and T��� are expressed through n�, ��, p� and
u�� , one faces the problem of ordering the matrices. One
can define n�� in three ways: n�� � n�u

�
� , n�� � u��n� and

n�� � fn�; u
�
� g=2 where f. . . ; . . .g is the anticommutator.

The three different definitions obviously lead to three
different fluid equations coming from D�n

�
� � 0. We first

note that the problem of ordering does not appear when
small perturbations of colorless state are studied because
the linearized equations are all the same, as follows from
considerations presented in Sec. IV. The problem of order-
ing is also absent for systems, which are significantly
colorful, if the matrices belong to the Cartan subalgebra
of SU�Nc�, as then they commute with each other.
Unfortunately, we have not found a general solution of
the ordering problem. Numerical simulations will be very
helpful to clarify whether the three formulations are
equivalent to each other.

In the case of an Abelian plasma, the relativistic version
of the Euler equation is obtained from Eq. (12) by remov-
ing from it, following Landau and Lifshitz [29], the part
which is parallel to u�� . An analogous procedure is not
possible for the non-Abelian plasma because the matrices
n�, u�� , and u��, in general, do not commute with each
other. Thus, one has to work directly with Eqs. (10) and
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(12) with n�� and T��� of the form (14) and (15). The
equations have to be supplemented by the Yang-Mills
Eq. (9) with the color current of the form

 j��x� � �
g
2

X
�

�
n�u

�
� �

1

Nc
Tr�n�u

�
� �

�
; (16)

where only the quark contribution is taken into account.
The fluid Eqs. (10) and (12) do not form a closed set of

equations even when the chromodynamic field is treated as
an external one. There are five matrix equations �� �
0; 1; 2; 3� and six unknown matrix functions: n��x�,
���x�, p��x� and three components of the four-velocity
u�� �x�. We note that the constraint u�� �x�u���x� � 1 is
imposed.

There are several ways to close the system. In the case of
real hydrodynamics, which describes the system in local
thermodynamic equilibrium, one adds the equation of
state. Although the system under consideration is not in
equilibrium, we can still add a relation analogous to the
equation of state. The point is that the energy-momentum
tensor (13) of a weakly interacting gas of massless quarks
is traceless (T����x� � 0) because p2 � 0. Then, Eq. (15)
provides the desired relation

 ���x� � 3p��x� (17)

due to the constraint u�� �x�u���x� � 1. In fact, the com-
plete energy-momentum tensor of any conformal theory is
traceless but quantum effects, as the trace anomaly, can
spoil conformal invariance. The phenomenon of mass gen-
eration in a medium modifies Eq. (17) but the effect is
small in the perturbative regime studied here. We also note
that ���x� and p��x� are not the energy density and pres-
sure of the equilibrium system but the matrices in color
space which in equilibrium become the energy density and
pressure, respectively.

Another method to close the system of equations is to
neglect the gradients of pressure (p��x�), assuming that the
system’s dynamics is dominated by a self-consistently
generated chromodynamic field. In the following section,
where the equations are solved in the linear response
approximation, we use both methods to close the system.

Our analysis is limited to quarks but, as already men-
tioned, inclusion of antiquarks and gluons is straightfor-
ward. Since the distribution functions of quarks, antiquarks
and gluons of every stream are assumed to obey the colli-
sionless transport equation, we have a separated set of fluid
equations for quarks, antiquarks and gluons of every
stream. The equations are coupled only through the chro-
modynamic mean field. The quarks belong to the funda-
mental representation of the SU�Nc� group and thus, the
hydrodynamic quantities n��x�, ���x�, p��x� and u�� �x� are
Nc � Nc matrices. Antiquarks can be treated as in kinetic
theory that is as belonging to the fundamental representa-
tion even so they belong, strictly speaking, to the trans-
posed fundamental representation. Since gluons belong to

the adjoint representation, the hydrodynamic quantities,
and consequently the fluid equations, are �N2

c � 1� �
�N2

c � 1� matrices.

IV. LINEAR RESPONSE ANALYSIS

In this section the hydrodynamic Eqs. (10) and (12) are
linearized around an stationary, homogeneous and color-
less state described by �n, ��, �p and �u�. We mostly skip here
the index � to simplify the notation. The index is restored
in the very final formulas.

Because every stream is assumed to be colorless, the
matrices �n, ��, �p and �u� are proportional to the unit matrix
in the color space. Thus,

 

�n �u� �
1

Nc
Tr� �n �u�� � 0; (18)

which means that the color four-current of every stream
vanishes. The quantities of interest are decomposed as

 n�x� � �n
 �n�x�; ��x� � ��
 ���x�; (19)

 p�x� � �p
 �p�x�; u��x� � �u� 
 �u��x�: (20)

Since the state described by �n, ��, �p and �u� is assumed to be
stationary, homogeneous and colorless, we have

 D� �n � 0; D� �� � 0; D� �p � 0; D� �u� � 0:

(21)

And because we consider only small deviations from the
stationary, homogeneous and colorless state, the following
conditions are obeyed

 �n� �n; ��� ��; �p� �p; �u� � �u�:

(22)

Actually, �n, ��, �p and �u� should be diagonalized to be
comparable to the �n, ��, �p and �u�.

Substituting the linearized n� and T��, which are

 n� � �n �u� 
 �n�u� 
 �n �u�; (23)

 

T�� � � ��
 �p� �u� �u� � �pg�� 
 ���
 �p� �u� �u�


 � ��
 �p�� �u��u� 
 �u� �u�� � �pg��; (24)

into Eqs. (10) and (12), one finds

 �nD��u� 
 �D��n� �u� � 0; (25)

 

�D����
 �p�� �u
� �u� 
 � ��
 �p�� �u��D��u

��


 �D��u�� �u�� �D��p� gF�� �n �u� � 0: (26)

Projecting Eq. (26) on �u�, one finds

 �u �D���
 � ��
 �p�D��u
� � 0: (27)
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To derive Eq. (27) one has to observe that u�u� � 1 �
�u� �u�, and consequently, �u��u� � O���u�2� and
�u�D��u� � O���u�2�.

Acting on Eq. (26) with the projection operator (g�� �
�u� �u�), one gets the linearized relativistic Euler equation

 

� ��
 �p� �u�D
��u� � �D� � �u� �u�D

���p� g �n �u�F
�� � 0:

(28)

As already mentioned, Eqs. (25), (27), and (28) do not form
a closed set of equations. In the following two sections we
solve the fluid Eqs. (25), (27), and (28), adopting two
different methods to close the system.

A. Pressure gradients neglected

The system is closed when the pressure gradients are
neglected, which physically means that the system’s dy-
namics is dominated by the mean field. When the term with
the pressure gradient is dropped in Eq. (28), the Eq. (27)
effectively decouples from the remaining equations, and
one has to solve only two Eqs. (25) and (28) where �� is
absent.

In principle, Eqs. (25) and (28) with the pressure term
neglected can be formally solved in a gauge covariant
manner, using the inverse operator of the covariant deriva-
tive. However, we are interested here only in computing the
polarization tensor. Thus, we replace the covariant deriva-
tives by the normal ones to fully linearize the equations,
and the gauge independence of the result is checked a
posteriori. After performing the Fourier transformation,

which is defined as

 f�x� 	
Z d4k

�2��4
e�ik�xf�k�; (29)

Equations (25) and (28) get the form

 �u �k��n
 �nk��u� � 0; (30)

 i� ��
 �p� �u�k
��u� 
 g �n �u�F

�� � 0: (31)

Equations (30) and (31) are easily solved providing

 �n � �ig
�n2

��
 �p

�u�k�
� �u � k�2

F��; (32)

 �u� � ig
�n

��
 �p

�u�
�u � k

F��: (33)

Since Tr�F��� � 0, the induced current equals

 �j� � �
g
2

X
�

� �n��u
�
� 
 �n� �u�� �; (34)

where the index labelling the streams present in the plasma
system is restored. Because the linearized strength tensor
equals F���k� � �ik�A��k� 
 ik�A��k�, one finally finds

 �j��k� � �����k�A��k�; (35)

with

 ����k� � �
g2

2

X
�

�n2
�

��� 
 �p�

� �u� � k��k
� �u�� 
 k

� �u�� � � k2 �u�� �u�� � � �u� � k�
2g��

� �u� � k�2
: (36)

The polarization tensor ����k� is proportional to the unit matrix in color space, it is symmetric and transverse
(k�����k� � 0), and thus it is gauge independent.

The polarization tensor obtained within the kinetic theory in analogous approximation [30] is

 ����k� � �
g2

2

Z
p
f�p�

�p � k��k�p� 
 k�p�� � k2p�p� � �p � k�2g��

�p � k�2
; (37)

where f�p� is the distribution function of quarks in the
colorless, stationary and homogeneous state. One observes
that Eq. (37) transforms into Eq. (36) when

 f�p� �
X
�

�n� �u0
��
�3�

�
p�

��� 
 �p�
�n�

u�

�
: (38)

The deltalike distribution function (38), and conse-
quently the approximation, where the pressure gradients
are neglected, hold for systems where the thermal
momentum (pthermal) is much smaller than the collective
momentum (pcollec) of the hydrodynamic flow. In the elec-

tromagnetic plasma of electrons and ions, such a situation
occurs for a sufficiently low temperatures when the effects
of pressure are indeed expected to be small. For the system
of massless partons, the condition pthermal � pcollec is
achieved by requiring that pcollec is large rather than
pthermal is small. For massless particles in local equilibrium
pthermal 
 T, where T is the local temperature, while the
formula (38) clearly shows that pcollec 
 T �	� �v� where �v�
and �	� are the velocity and Lorentz factor of the collective
flow. Therefore, the condition pcollec � pthermal requires
�	� � 1.
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B. Effect of pressure gradients included

Equation (17) allows one to close the system of fluid
equations, not neglecting the pressure gradients. Using the
relation (17), one has to solve three Eqs. (25), (27), and
(28).

Performing the linearization analogous to that from the
previous section and the Fourier transformation, Eqs. (25),
(27), and (28) get the form

 

�u �k��n
 �nk��u� � 0; (39)

 �u �k���

4

3
��k��u

� � 0; (40)

 i
4

3
�� �u�k��u� 
 i

1

3
� �u� �u�k� � k����
 g �n �u�F�� � 0:

(41)

Substituting �� obtained from Eq. (40) into the Euler
Eq. (41), one gets

 

�
g�� 


1

3� �u � k�2
�k�k� � �u�k�� �u � k��

�
�u�

� i
3

4
g

�n
��� �u � k�

�u�F
��: (42)

Observing that

 �k�k� � �u�k�� �u � k���k
�k� � �u�k�� �u � k��

/ �k�k� � �u�k�� �u � k��;

the operator in the left-hand-side of Eq. (42) can be in-
verted as

 �
g�� �

1

k2 
 2� �u � k�2
�k�k� � �u�k�� �u � k��

�

�

�
g�� 


1

3� �u � k�2
�k�k� � �u�k�� �u � k��

�
� g��;

(43)

and Eq. (42) is exactly solved by

 

�u� � i
3

4
g

�n
��� �u � k�

�
g�� �

1

k2 
 2� �u � k�2

� �k�k� � �u�k�� �u � k��
�

�u�F
��: (44)

Substituting �n and �u� into the current (34), one finds
the polarization tensor as

 ����k� � �
g2

2

X
�

3 �n2
�

4 ���

1

� �u� � k�2

�
� �u� � k��k� �u�� 
 k� �u�� � � � �u� � k�2g�� � k2 �u�� �u��

�
� �u� � k�k

2�k� �u�� 
 k
� �u�� � � � �u� � k�

2k�k� � k4 �u�� �u��
k2 
 2� �u� � k�

2

�
; (45)

where the stream index � has been restored. The first term
in Eq. (45) corresponds to the polarization tensor (36)
found when the pressure gradients are neglected while
the second term gives the effect of the pressure gradients.
The first term is, as already mentioned, symmetric and
transverse. The second term is symmetric and transverse
as well. Thus, the whole polarization tensor (45) is sym-
metric and transverse.

As explained below Eq. (38), the pressure gradients can
be neglected and the distribution function can be approxi-
mated by the deltalike form (38) when �	� � 1. Because
the four-velocity is expressed as �u�� � � �	�; �	� �v��, it is
easy to check that the second term in Eq. (45) is small,
when compared to the first one, for �	� � 1. However, one
has to be careful here: when the wave vector k is exactly
parallel to �v� and both are, say, in the z direction, then the
two terms of the nonzero components of the polarization
tensor (45) ��00;�0z;�zz� vanish as 1= �	2

�. For the re-
maining nonzero components of (45) ��xx;�yy�, the sec-
ond term is identically zero. We return to this point when
the collective modes are discussed.

V. COLLECTIVE MODES IN THE TWO-STREAM
SYSTEM

As an application of the polarization tensors derived in
the previous section, we discuss here collective plasma
modes in the two-stream system. Within kinetic theory
such a system was studied in [31–34]. The two-stream
configuration has not much to do with the experimental
situation in heavy-ion collisions where the momentum
distribution of the produced partons is very different
from the two-peak shape characteristic for the two-stream
system. Thus, it should be treated only as a toy model.
However, the model dynamics is rather nontrivial due
to several unstable modes. While the two-stream con-
figuration is rather of academic interest, one can model
experimentally relevant situations with several
streams. And in the linear regime, such a multistream
configuration can be studied along the lines presented
below.

Since Fourier transformed chromodynamic field A��k�
satisfies the equation of motion as
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 �k2g�� � k�k� �����k��A��k� � 0; (46)

the general dispersion equation of the collective plasma
modes is

 det�k2g�� � k�k� �����k�� � 0: (47)

Because of the transversality of ����k� not all components
of ����k� are independent from each other, and conse-
quently the dispersion Eq. (47), which involves a determi-
nant of a 4� 4 matrix, can be simplified to the determinant
of a 3� 3 matrix. For this purpose one usually introduces
the color dielectric tensor "ij�k�, where the indices i, j � 1,
2, 3 label three-vector and tensor components, which is
expressed through the polarization tensor as

 �ij�k� � �ij 

1

!2 �ij�k�;

where k 	 �!;k�. Then, the dispersion equation gets the
form

 det�k2�ij � kikj �!2"ij�k�� � 0: (48)

The relationship between Eq. (47) and (48) is most easily

seen in the Coulomb gauge when A0 � 0 and k �A�k� �
0. Then, E � i!A and Eq. (46) is immediately trans-
formed into an equation of motion of E�k� which further
provides the dispersion Eq. (48).

The dielectric tensor given by the polarization tensor
(36), which neglects the effect of pressure, is

 "ij�!;k� �
�
1�

!2
p

!2

�
�ij �

g2

2!2

X
�

�n2
�

��� 
 �p�

�

�
�vi�kj 
 �vj�ki

!� k � �v�
�
�!2 � k2� �vi� �vj�
�!� k � �v��2

�
; (49)

where �v� is the hydrodynamic velocity related to the
hydrodynamic four-velocity �u�� ; !p is the plasma fre-
quency given as

 !2
p 	

g2

2

X
�

�n2
�

��� 
 �p�
: (50)

The dielectric tensor given by the polarization tensor
(45), which includes the effect of pressure, is

 "ij�!;k� �
�
1�

!2
p

!2

�
�ij �

3g2

8!2

X
�

�n2
�

���

�
�vi�k

j 
 �vj�ki

!� k � �v�
�
�!2 � k2� �vi� �vj�
�!� k � �v��2

�
�!� k � �v���!2 � k2�� �vi�kj 
 �vj�ki� � �!� k � �v��2kikj � �!2 � k2�2 �vi� �vj�

�!� k � �v��2�!2 � k2 
 2 �	2
��!� k � �v��2�

�
; (51)

with the plasma frequency given as

 !2
p 	

3g2

8

X
�

�n2
�

���
: (52)

In the following subsections we consider the collective
modes in the two-stream system with the wave vectors
perpendicular and parallel to the hydrodynamic velocity.
The velocities �v� are chosen to be oriented along the axis z,
i.e. �v� � �0; 0; �v��. The index �, which labels the streams
has two values, � � �. For simplicity we also assume that

 

�v 	 �v
 � � �v�; �n 	 �n
 � �n�;

�� 	 ��
 � ���; �p 	 �p
 � �p�:
(53)

Then, the plasma frequency equals !2
p � g2 �n2=� ��
 �p� or

!2
p � 3g2 �n2=�4 ���.

A. k ? �v

The wave vector is chosen to be parallel to the axis x,
k � �k; 0; 0�. Due the conditions (53), the off-diagonal
elements of the matrix in Eq. (48) vanish.

1. No pressure gradient effect

With the dielectric tensor given by Eq. (49), the disper-
sion equation is
 

�!2 �!2
p��!2 �!2

p � k2�

�
!2 �!2

p � k2 � 
2 k
2 �!2

!2

�

� 0; (54)

where 
2 	 !2
p �v2. As solutions of the equation, one finds

the stable longitudinal mode with !2 � !2
p and the stable

transverse mode with !2 � !2
p 
 k2. There are also trans-

verse modes with

 !2
� �

1

2
�!2

p � 

2 
 k2 �

�����������������������������������������������������
�!2

p � 

2 
 k2�2 
 4
2k2

q
�:

(55)

As seen, !2

 > 0 but !2

� < 0. Thus, the mode !
 is stable
and there are two modes with pure imaginary frequency
corresponding to !2

� < 0. The first mode is overdamped
while the second one is the well-known unstable Weibel
mode leading to the filamentation instability.

As discussed below Eq. (38), the pressure gradients can
be neglected when �	� 1, and thus, the solutions (55) are
physically relevant in this limit. Therefore, we write down
the solutions (55) for �	� 1 which are

CHROMOHYDRODYNAMIC APPROACH TO THE UNSTABLE . . . PHYSICAL REVIEW D 74, 105003 (2006)

105003-7



 !2
� �

1

2
�k2 �

�������������������������
k4 
 4!2

pk2
q

�: (56)

As seen in Eq. (56), the modes are independent of �	, if it is
sufficiently large.

2. Effect of pressure gradients included

As in the ‘‘pressureless‘‘ case, there are two stable
modes!2 � !2

p and the stable transverse mode with!2 �

!2
p 
 k

2. The transverse modes corresponding to those
given by Eq. (55) are obtained by solving the equation
 

!4 �!2�k2 
!2
p� 
 


2�!2 � k2� � 
2 �!2 � k2�2

!2 � k2 
 2 �	2!2

� 0: (57)

Defining the dimensionless variables a 	 !=!p and b 	
k=!p, the above equation can then be rewritten as follows

 a2�a4 � F�b; �v�a2 �G�b; �v�� � 0; (58)

where

 F�b; �v� 	
�3
 2b2��1� �v2� 
 2b2

3� �v2 ;

G�b; �v� 	 b2 3 �v2 � 1� b2�1� �v2�

3� �v2 :

(59)

Solutions of Eq. (58) are given by a2 � 0 and

 a2
� �

1

2
�F�

�������������������
F2 
 4G

p
� (60)

The solution with a2
� describes the unstable mode (a2

� <
0) provided G is positive. The condition G> 0 gives

 �v 2 >
1

3
and k2 <

3 �v2 � 1

1� �v2 !
2
p: (61)

As seen, the instability appears when the stream velocity is
larger than the speed of sound in the ideal gas of massless
partons and when the wavelength is sufficiently long. We
also note that in the limit �	� 1 the solutions (60) repro-
duce, as expected, those given by Eq. (56).

B. k k �v

The velocities and the wave vector are chosen to be
oriented along the z� axis i.e. �v� � �0; 0;� �v� and k �

�0; 0; k�. Then, the matrix in Eq. (48) is diagonal. As in the
case k ? �v, we discuss separately the collective modes
given by the dielectric tensors (49) and (51). However, it
is physically rather unjustified because, as explained at the
very end of Sec. IV, the tensor (49) cannot be treated as an
approximation of (51) even for 	� 1. The effects of the
mean-field and of the pressure gradients appear to be
equally important. Therefore, only the results of
subsection V B 2 are physically reliable.

1. No pressure gradient effect

With the dielectric tensor given by Eq. (49), the disper-
sion equation reads

 

�!2 �!2
p � k

2�2
�
!2 �!2

p �!
2
p

�
k �v

!� k �v


�k2 �!2� �v2

2�!� k �v�2

�
k �v

!
 k �v


�k2 �!2� �v2

2�!
 k �v�2

��
� 0: (62)

There are two transverse stable modes with !2 � !2
p 


k2. The longitudinal modes are solutions of the equation
which can be rewritten as

 1�!2
0

�
1

�!� k �v�2



1

�!
 k �v�2

�
� 0; (63)

where !2
0 	 !2

p=2 �	2. With the dimensionless quantities
x 	 !=!0, y 	 k �v=!0, Eq. (63) is

 �x2 � y2�2 � 2x2 � 2y2 � 0; (64)

and it is solved by

 x2
� � y2 
 1�

����������������
4y2 
 1

q
: (65)

As seen, x2

 is always positive and thus, it gives two real

(stable) modes; x2
� is negative for 0< y<

���
2
p

and then,
there are two pure imaginary modes. The unstable one
corresponds to the two-stream electrostatic instability.

2. Effect of pressure gradients included

The transverse modes are the same as in the ‘‘pressure-
less‘‘ case while the longitudinal modes are solutions of the
equation

 

1�!2
0

�
1

�!� k �v�2



1

�!
 k �v�2

�


!2
p

2

�
�! �v� k�2

�!� k �v�2�2 �	2�!� k �v�2 
!2 � k2�



�! �v
 k�2

�!
 k �v�2�2 �	2�!
 k �v�2 
!2 � k2�

�
� 0; (66)

which, in terms of the dimensionless quantities introduced in the previous section, is
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 1�
1

�x� y�2

�
1


� �vx� y= �v�2

2�x� y�2 
 1
�	2 �x2 � y2= �v2�

�
�

1

�x
 y�2

�
1


� �vx
 y= �v�2

2�x
 y�2 
 1
�	2 �x2 � y2= �v2�

�
� 0: (67)

The equation can be converted to

 �x2 � y2�2�x4 � B�y; �v�x2 � C�y; �v�� � 0 (68)

with

 B�y; �v� 	
18
 6 �v2y2 
 6y2= �v2 � 4y2 � 6 �v2

�3� �v2�2
;

C�y; �v� 	 y2
�3� 1

�v2��6� y2�3� 1
�v2��

�3� �v2�2
;

(69)

which is solved by x2 � y2 and

 x2
� �

1

2
�B�

������������������
B2 
 4C

p
�: (70)

As for the case when the wave vector is perpendicular to
the velocity, there are only instabilities when the stream
velocity is bigger than the speed of sound in the ideal gas of
massless partons, as C> 0 is satisfied when

 

�v 2 >
1

3
and k2 < 3

1� �v2

3 �v2 � 1
!2
p: (71)

It is also interesting to note that for the particular case �v2 �
1=3, C � 0, and the solutions of the dispersion relations
get a very simple form. Namely, we have !2

� � 0 and

 !2

 �

3

4
�!2

p 
 k
2�: (72)

VI. CONCLUDING REMARKS

The fluid Eqs. (10) and (12) with n�� and T��� given by
the formulas (14) and (15) form a closed set of equations
when supplemented by the relation (17). If the chromody-
namic field is generated self-consistently by the color fluid,
the Yang-Mills Eq. (9) with the color current of the form
(16) must be added. The derivation of these equations is the
main result of our paper. Although some information is lost
when going from kinetic theory to hydrodynamics, the
dynamical content of the fluid equations is still very rich.
The results of Sec. V, where the two-stream system is
studied, demonstrate it convincingly. The system is shown
to be unstable with respect to the magnetic and electric
modes, if the hydrodynamic velocity is sufficiently large.

As noted in the Introduction, the hydrodynamic ap-
proach is frequently used in studies of electromagnetic
plasmas. Numerical simulations of the fluid equations are

much simpler than those of kinetic theory because the
distribution function depends on four-position and momen-
tum while in the fluid approach one deals with a few
functions of four-position only. For this reason we expect
that the equations derived here will be useful in numerical
studies of the unstable quark-gluon plasma. Hopefully, the
late stage of instability development, when the dynamics is
strongly nonlinear, can be attacked within the fluid ap-
proach. In the case of the two-stream system, our analytic
results from Sec. V can be used to gauge numerical calcu-
lations. While the two-stream configuration is rather aca-
demic, one can model situations, which are relevant for
quark-gluon plasma from relativistic heavy-ion collisions,
with several streams. And then, our fluid equations can be
applied.

We also note that the hydrodynamic approach presented
here can be extended to include the effect of collisions
which can be modeled with transport coefficients (viscos-
ities, conductivities) and additional terms in the fluid equa-
tions. Then, the approach would be applicable to longer
time scales.

Our derivation of the chromohydrodynamic equations is
based on the parton kinetic theory valid in the regime of
very weak couplings or, equivalently, of very high tem-
peratures T � Tc, where Tc is the temperature of the
deconfinement phase transition. One may wonder what
happens in the regime of not so weak couplings. Because
the hydrodynamic equations are the expressions of the
conservation laws, one can hope that the structure of the
equations survives when the plasma is no longer weakly
coupled. Lattice studies indicate that an equilibrium quark-
gluon plasma at temperatures close to Tc is very different
from the ideal gas of massless quasiparticles [35]. The
deviations can be, at least partially, accounted for in a
quasiparticle model when the gluon dispersion relation is
modified, see e.g. [36–38]. In such a case, our approach
can be easily adapted for by changing the relation (17). We
hope to report about those results in the near future.
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