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The main objective of this paper is to study thermodynamics and stability of static electrically charged
Born-Infeld black holes in AdS space in D � 4. The Euclidean action for the grand canonical ensemble is
computed with the appropriate boundary terms. The thermodynamical quantities such as the Gibbs free
energy, entropy and specific heat of the black holes are derived from it. The global stability of black holes
are studied in detail by studying the free energy for various potentials. For small values of the potential, we
find that there is a Hawking-Page phase transition between a BIAdS black hole and the thermal-AdS
space. For large potentials, the black hole phase is dominant and is preferred over the thermal-AdS space.
Local stability is studied by computing the specific heat for constant potentials. The nonextreme black
holes have two branches: small black holes are unstable and the large black holes are stable. The extreme
black holes are shown to be stable both globally as well as locally. In addition to the thermodynamics, we
also show that the phase structure relating the mass M and the charge Q of the black holes is similar to the
liquid-gas-solid phase diagram.
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I. INTRODUCTION

Hawking and Page showed the existence of a phase
transition between AdS black holes and thermal-AdS space
[1]. In extending these concepts, it was shown that such
phase transitions are not unique to the AdS spaces, but may
occur in asymptotically dS spaces and flat spaces as well
[2]. On the other hand, in recent years, thermodynamics of
black holes in AdS space has generated renewed attention
due to the AdS/CFT duality [3]. Such a duality relate
thermodynamics of black holes in AdS space to the ther-
modynamics of dual CFT. Hence by studying the phase
transitions of AdS black holes leads to a novel way of
studying phase transitions in the dual field theories [4].

In this paper our main focus is on thermodynamics of
black holes in Einstein-Born-Infeld gravity in AdS space.
Born-Infeld electrodynamics was first introduced in 1930’s
to obtain a classical theory of charged particles with finite
self-energy [5]. Born-Infeld theory has received renewed
attention since it turns out to play an important role in
string theory. It arises naturally in open superstrings and in
D-branes [6]. The low energy effective action for an open
superstring in loop calculations lead to Born-Infeld type
actions [7]. It has also been observed that the Born-Infeld
action arises as an effective action governing the dynamics
of vector-fields on D-branes [8]. For a review of aspects of
Born-Infeld theory in string theory see Gibbons [9] and
Tseytlin [10].

One of the interesting features of Born-Infeld electro-

dynamics is that the electric field for a point particle is E �

Q=
������������������������
r4 �Q2=b2

p
leading to a screening effect on E for

small values of r. Here, b is the nonlinear parameter in
the theory. Hence one can interpret the point-particle ob-

ject as an extended source with an effective radius ro �
Q2=b2. Lattice simulations of Bonn-Infeld-QED was done
in [11] and the short distance screening of E was shown to
be similar as in the classical theory. When Born-Infeld
electrodynamics is coupled to gravity, the above behavior
makes drastic changes to the singular nature of the black
hole solutions of the theory as compared to the ones
resulting when gravity is coupled to Maxwell’s electro-
dynamics. Such properties are discussed in detail in Sec. II
of this paper.

The Born-Infeld black hole with a zero cosmological
constant was obtained by Garcia et al. [12] in 1984. Two
years later, Demianski [13] also presented a solution with
the title ‘‘Static Electromagnetic Geon’’ which differs with
the one in [12] by a constant. Trajectories of test particles
in the static charged Born-Infeld black hole was discussed
by Breton [14]. This black hole in isolated horizon frame-
work was discussed by the same author in [15]. Gibbons
and Herdeiro [16] derived a Melvin Universe type solution
describing a magnetic field permeating the whole Universe
in Born-Infeld electrodynamics coupled to gravity. By the
use of electric-magnetic duality, they also obtained Melvin
electric and dyonic Universes. Static particlelike and black
hole solutions for the Einstein-Born-Infeld-dilaton system
were constructed in [17,18]. Black hole solutions to the
theory with derivative corrections to the Born-Infeld action
were derived in [19].

In this paper, we focus on the static charged black holes
of the Born-Infeld electrodynamics in AdS space. This is
the nonlinear generalization of the Reissner-Nordstrom
black hole (RNAdS) and is characterized by charge Q,
mass M and the nonlinear parameter b. Such black holes
have been presented in [20–22]. As a new result, we
present an interesting phase structure between the mass
M and the chargeQ of the BIAdS black holes. We will also
derive the thermal properties of the black holes from the*fernando@nku.edu

PHYSICAL REVIEW D 74, 104032 (2006)

1550-7998=2006=74(10)=104032(10) 104032-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.104032


path-integral approach developed by Gibbons and
Hawking [23]. In this approach, the Euclidean partition
function for quantum gravity is interpreted as the thermal
partition function for a given ensemble with the black hole
temperature T. We will compute the Euclidean action for
black holes in the grand canonical ensemble where the
electrostatic potential at infinity is fixed. The pure-AdS
space is treated as the background space for this computa-
tion. Corresponding thermodynamic quantities such as
Gibbs free energy, entropy and specific heat are calculated.
The global and local thermodynamic stability of the BIAdS
black holes are studied in detail. Some thermal properties
of BIAdS and BIdS black holes were studied in [21,22].
First law of thermodynamics for BI black holes was dis-
cussed in [24]. However, there are new results related to
these black holes, which were not presented in the above
papers.

The paper is presented as follows: In Sec. II, the Born-
Infeld black hole solutions are discussed. In Sec. III, the
Euclidean action is computed. Thermodynamics and
stability are discussed in Sec. IV. Finally, the conclusion
is given in Sec. V.

II. BORN-INFELD BLACK HOLES IN ANTI-DE
SITTER SPACE

In this section we will present details of the static
spherically symmetric charged black holes in Born-Infeld
nonlinear electrodynamics coupled to gravity in D � 4.
These black holes have been discussed in [20–22].
However, there are interesting details to the properties of
the singularities and the horizons when the parameters of
the black hole is varied which were not discussed in the
above papers which will be highlighted here.

The Einstein-Born-Infeld action in D � 4 is given by,

 S �
1

16�G

Z
d4x

�������
�g
p

��R� 2�� � L�F��; (1)

where

 L�F� � 4b2

�
1�

��������������������������
1�

F��F��
2b2

s �
: (2)

Here, b is the Born-Infeld parameter and � � �3=l2 is the
negative cosmological constant. The parameter b is related
to the sting tension �0 as b � 1=�2��0�. Note that in the
limit b! 1, L�F� takes the form

 L�F� � �F��F�� �O�F4�; (3)

reducing to the standard Maxwell’s form.
By solving the equations of motion, the Born-

Infeld–anti-de Sitter (BIAdS) black hole solutions can be
written as

 ds2 � �f�r�dt2 � f�r��1dr2 � r2d�2; (4)

with

 f�r� � 1�
2M
r
�
r2

l2
�

2br2

3

�
1�

�������������������
1�

Q2

r4b2

s �

�
4Q2

3r
H�r�: (5)

The function H�r� is given by

 H0�r� �
�1���������������
r4 � Q2

b2

q : (6)

To obtain the black hole solution, the above equation can
be integrated as,

 H�r� �
Z 1
r

d~r���������������
~r4 � Q2

b2

q �

�������
b

4Q

s
K

�
cos�1

�
r2 �Q=b

r2 �Q=b

�
;

1���
2
p

�
:

(7)

Here K is an elliptic integral of the first kind [25]. The
elliptic integral also can be written as a hypergeometric
function F with the relation,

 

r
2Q

K

�
cos�1

�r2 � Q
b

r2 � Q
b

�
;

1���
2
p

�
� F

�
1

4
;
1

2
;
5

4
;�

Q2

b2r4

�
: (8)

Replacing the H�r� in the Eq. (5) by the hypergeometric
function one obtains,

 f�r� � 1�
2M
r
�
r2

l2
�

2br2

3

�
1�

�������������������
1�

Q2

r4b2

s �

�
4Q2

3r2 F

�
1

4
;
1

2
;
5

4
;�

Q2

b2r4

�
(9)

This is the form obtained in the Refs. [21,22]. We will
continue to use this form in the rest of the paper. The black
hole solutions without the cosmological constant was ob-
tained by Garcia et al. in [12]. Note that there is another
solution with,

 H�r� � �
Z r

0

d~r���������������
~r4 � Q2

b2

q

� �

�������
b

4Q

s
K

�
cos�1

�Q
b � r

2

Q
b � r

2

�
;

1���
2
p

�
: (10)

Here, the integration limits differ to the one in Eq. (7). The
H�r� obtained in this case has the property that f�r� is
regular at r � 0 when M � 0. For � � 0, such solutions
were presented as ‘‘static electromagnetic geons’’ by
Demianski [13]. The difference between these two solu-
tions is explained in detail in [26].

The electric field Ftr � E for the black hole solution is
given by,

 E�r� �
Q���������������

r4 � Q2

b2

q : (11)
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The electric gauge potential is given by

 At �
Q
r
F

�
1

4
;
1

2
;
5

4
;�

Q2

b2r4

�
��; (12)

where � is a constant. In order to fix the gauge potential at
the horizon to be zero, i.e. At�r�� � 0, the quantity � is
chosen as

 � �
Q
r�

F

�
1

4
;
1

2
;
5

4
;�

Q2

b2r4
�

�
: (13)

Hence, � represents the electrostatic potential difference
between the horizon and the infinity. � will play an im-
portant role in Sec. III when the thermodynamical stability
is analyzed.

The behavior of the function f�r� closer to the origin is
important in observing variety of solutions with differing
singular structure for the BIAdS black holes. Hence for
small r,

 f�r� � 1�
�2M� a�

r
� 2bQ�

2b2

3
r2 �

r2

l2
�
b2

5
r4:

(14)

Here,

 a �

����
b
�

s
Q3=2�

�
1

4

�
2
: (15)

The nature of the curvature singularity at r � 0 depends on
the relation between M and a=2. When M> a=2, the
space-time is similar to the Schwarzchild–anti-de Sitter
(SchAdS) black holes. When M< a=2, the space-time is
similar to the RNAdS black holes. In this case it is possible
to have zero, two or one degenerate horizon. When M �
a=2, the function f�r� � 1� 2bQ at r � 0 which is finite.
However, some curvature invariants do diverge at r � 0 for
this case [15].

In the limit b! 1, the elliptic integral in Eq. (7) can be
expanded to give

 f�r�RNAdS � 1�
2M
r
�
Q2

r2 �
r2

l2
; (16)

resulting in the function f�r� for the Reissner-Nordstrom-
AdS (RNAdS) black hole for Maxwell’s electrodynamics.

Extreme black holes

To further our understanding as to how the parameters of
the black holes characterize the nature of the singularities,
the extreme black hole solutions will be discussed here.
Note that for extreme black holes, both f�r� and df�r�dr
has to be zero at the horizon. Such conditions will lead to
the equation,

 1�
�
2b2 �

3

l2

�
r2

ex � 2b
�����������������������
r4

exb2 �Q2
q

� 0; (17)

which gives the solution as

 r2
ex �

�2b2 � 3
l2� �

����
�
p

3
l2
�4b2 � 3

l2
�

: (18)

Here,

 � �
�
2b2 �

3

l2

�
2
� �1� 4b2Q2�

�
4b2 �

3

l2

�
3

l2
: (19)

There will be a real root for rex only when 1� 4b2Q2 < 0.
Hence even if the solutions are of RNAdS type, there will
be two horizons only when Qb> 1=2. The mass of the
extreme black hole is given by,

 Mex �
r2

ex

3
�

2Q2

3rex
F

�
1

4
;
1

2
;
5

4
;�

Q2

b2r4
ex

�
: (20)

If M>Mex then there will be two horizons. For M � Mex

there will be a degenerate horizon. If M<Mex, there are
no horizons and will yield a naked singularity. Note that
these three cases can be discussed only for M< a=2 lead-
ing to RNAdS type solutions. If M> a=2 there will be a
horizon always without the possibility of extreme black
holes. Hence one can give a general description of the
nature of the solutions for all the bounds discussed above
as follows;

IfM> a=2) SchAdS type black hole with one horizon
If M � a=2 and Qb> 1=2)

the solution is SchAds type black hole with one horizon
If M � a=2 and Qb< 1=2)

the solution is RNAdS type naked singularity
If Mex <M< a=2) RNAdS type black hole with two

horizons.
If M<Mex < a=2) RNAdS type naked singularity.
If M � Mex < a=2) RNAdS type extreme black hole

with a degenerate horizon
These categories of solutions can be well represented by

the graphs in Figs. 1–3.
All these categories can be represented in one graph for

M vs Q for fixed b value as in the Fig. 4.
Figure 4 reminds us the liquid-gas-solid phase diagram

with M representing the pressure P and Q representing the
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FIG. 1. The function f�r� vs r for Qb< 1=2. Here b � 1, Q �
0:1, l �

���
3
p

and G � 1.
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temperature T [27]. The SchAdS type black holes are like
the solid phase, the RNAdS type black holes are like the
liquid phase and the naked singularities are like the gase-
ous phase. The point where all three types of solutions
meet in the figure represents the ‘‘triple point’’ where all
three phases coexists. This point is located at Q � 1

2b and

M � a
2 �

1
2

���
b
�

q
Q3=2��14�

2 � 1:31103
b . The nonlinear nature of

the Born-Infeld theory has led to the possibility of a variety
of solutions, which would not be possible in the RNAdS
black hole case. Having a variety of solutions has led to this
interesting phase structure.

In comparison, the RNAdS black holes corresponding to
Maxwell’s electrodynamics do have an extreme black
holes with the radius rex at

 r2
ex �

1

6
��l2 � l

����������������������
l2 � 12Q2

q
�: (21)

The mass of the extreme black hole is,

 Mex �
rex

2
�
r3

ex

2l2
�
Q2

2rex
: (22)

Depending on whether M>Mex, the solution will have
two horizons, one degenerate horizon or none. Figure. 5
represents the possible cases. It must be obvious how the
nonlinear nature brings out a rich phase structure to the
BIAdS solutions as compared to the RNAdS solutions.

III. EUCLIDEAN ACTION CALCULATION

In this section we will compute the Euclidean-Born-
Infeld action which facilitate the study of thermodynamics
of black holes in the grand canonical ensemble. The pro-
cedure for computing the Gibbs-Euclidean action is similar
to the one initiated by Hawking and Page [1] for the
SchAdS black hole in D � 4. Extension of this work
applied to the RNAdS black holes in all dimensions is
given in [28].

In this approach, initially the electrical potential and the
temperature is fixed on a boundary with a finite radius rB.
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FIG. 2. The function f�r� vs r for Qb � 1=2 Here b � 1, Q �
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FIG. 3. The function f�r� vs r for Qb> 1=2. Here b � 1, Q �
2, l �

���
3
p

and G � 1.
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Qb=1/ 2

FIG. 4. The function M vs Q for b � 0:25. Here l �
�����������
3000
p

and G � 1. The dark line shows the M � a=2 bound and the
light line shows the M � Mex bound. ‘‘NS’’ represents naked
singularities.
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FIG. 5. The function M vs Q for RNAdS black holes. Here l �
1 and G � 1. The graph is the M � Mex bound.
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The Euclidean action has three components; bulk, surface
and the counter term. The counter term comes from the
pure AdS4. It is necessary to have a counter term since the
integrals of the bulk and the surface terms diverge when rB
is sent to infinity at the final stage of the computation to
remove the artificial boundary. Once the Euclidean action
is computed one can obtain the Gibbs free energy, which
will facilitate the study of the global stability of the black
holes.

First, to make the action Euclidean, the time coordinate t
is substituted with i�. This will make the metric positive
definite:

 ds2 � f�r�d�2 � f�r��2dr2 � r2d�2: (23)

There is a conical singularity at the horizon r � r� in the
Euclidean metric. To eliminate it, the Euclidean time � is
made periodic with period �. Here, � � 1=T where T is
the Hawking temperature. The Hawking temperature of the
black hole solutions discussed above can be calculated as
follows: T � �=2�. Here � is the surface gravity given by

 � � �
1

2

f�r�
dr

��������r�r�

:

Here, r� is the event horizon of the black hole. Since
f�r� � 0 at r � r�, the Eq. (5) can be used to calculate
the surface gravity exactly and the corresponding tempera-
ture as,

 T �
1

4�

�
1

r�
��r� � 2b2r� �

2b
�����������������������
Q2 � r2

�b
2

q
r�

�
: (24)

Now the Euclidean Einstein-Born-Infeld action can be
written as,
 

I � �
1

16�G

Z
M
dx4�R� 2�� L�F��

�
1

8�

Z
@M

dx3
���
h
p
K � Icounter term (25)

The above action is written on a compact region given by
M and the boundary @M. The boundary is at a finite
radius r � rB and it has the topology S1 	 S2. Here hij is
the induced metric on the boundary and, K is the trace of
the intrinsic curvature of the boundary.

The first term is the action defined on the bulk. The
second term defined on the boundary is the Gibbons-
Hawkings boundary term [23]. Note that since gauge po-
tential is fixed at infinity, the boundary terms related to the
gauge field will not contribute to the Euclidean action. To
obtain a finite value for the Euclidean action one has to
introduce a counter term. In this case the counter term will
be the minus of the Euclidean action for the pure-AdS
geometry. Note that there are other approaches to compute
the counter terms [29–32]. Choosing an appropriate refer-
ence background to compute the counter terms has its own
complications as discussed in [28].

The equations of motion derived from the action of the
theory in Eq. (1) is,

 Rab �
1
2gabR��gab � Tab (26)

 5a

�
Fab���������������

1� F2
p

�
� 0: (27)

The scalar curvature R can be obtained from Eq. (26) as,

 R � 4�� T; (28)

where

 T �
2F2���������������

1� F2
p � 2L�F�: (29)

Substituting the above relations, one can compute the on-
shell bulk contribution Ibulk as,

 Ibulk � �
1

16�G

Z
M
dx4 ���

g
p

�
2�� L�F� �

2F2���������������
1� F2
p

�
:

(30)

Note that in the limit b! 1, the above action becomes,

 Ibulk RNAdS � �
1

16�G

Z
M
dx4 ���

g
p
�2�� F2�; (31)

which is the same as given in [28]. Substituting for the
electric field Fr� given by,

 Fr� � iFrt �
iQ���������������
r4 � Q2

b2

q : (32)

Ibulk can be integrated to be,

 Ibulk �
!�

16�G

Z rB

r�

�
6r2

l2
� 4b2r2 � 4b

����������������������
r4b2 �Q2

q �
dr:

(33)

Here! is the volume of the two-sphere and� is the inverse
temperature. The integration with respect to r yields,

 Ibulk �
!�

16�G

�
2

l2
�r3
B � r

3
�� �

4b2

3
�r3
B � r

3
��

� 4b
Z rB

r�

�����������������
r4 �Q2

q �
: (34)

The Euclidean action for the pure-AdS space is given by,

 IAdS �
!�0

16�G

Z rB

r�

6r2

l2
: (35)

Since we are computing this for D � 4 which is an even
dimension, r� � 0 for the pure-AdS space [33]. For odd
dimensions, r� is not zero for pure-AdS space-times as
discussed in [33]. Note that �0 is the time period for pure-
AdS case. It has to be rescaled to match with the period �:
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 f�r��2 � �2
0

�
1�

r2

l2

�
: (36)

After some approximations,

 �0 � �
�
1�

Ml2

r3 �
2b2l2

3

�
1�

�������������������
1�

Q2

r4b2

s �

�
2Q2l2

3r4 F

�
1

4
;
1

2
;
5

4
;�

Q2

b2r4

��
: (37)

The final result for the Euclidean-Born-Infeld action can be
obtained by sending rB to infinity leading to the following
value,
 

IE �
!�

16�G

�
r� �

r3
�

l2
�

2r3
�b

2

3

�
1�

��������������������
1�

Q2

r4
�b

2

s �

�
4Q2

3r

Z 1
r

d~r���������������
~r4 � Q2

b2

q �
: (38)

In deriving this we have made use of the fact that f�r�� �
0. One can replace the integral with the hypergeometric
function F which brings the action to be,

 IE �
!�

16�G

�
r� �

r3
�

l2
�

2r3
�b

2

3

�
1�

��������������������
1�

Q2

r4
�b

2

s �

�
4Q2

3
F

�
1

4
;
1

2
;
5

4
;�

Q2

b2r4
�

��
: (39)

When b! 1, the above action approaches the Euclidean
action for the RNAdS case which is computed in [28] as
follows:

 IRNAdS �
!�

16�G

�
r� �

r3
�

l2
�
Q2

r2
�

�
: (40)

IV. THERMODYNAMICS AND STABILITY

To discuss the thermodynamics and stability of the
system one has to find a way to ‘‘fix’’ the potential since
we are working with the grand canonical potential.
However, due to the mathematical complexity of the action
and the temperature, we will define a new variable x as,

 x �
Q

r2
�

: (41)

The reason for this substitution is the fact that the hyper-
geometric function depends on Q2=r4. Such a substitution
does not change the results. Hence, the horizon r� as a
function of x and � becomes,

 r��x;�� �
�

xF �14 ;
1
2 ;

5
4 ;�

x2

b2�
: (42)

One can write all the thermodynamic quantities as func-
tions of x and �. We will make use of this substitution in

computing all the thermodynamic quantities for fixed po-
tential later in the section IV.

A. Temperature

When the black hole is extreme the temperature is zero
leading to a diverging �. We varied the potential � and
plot the � against the horizon radii r�. Following are the
results:

In the Fig. 6, the temperature becomes zero leading to an
extreme black hole. Hence at this potential the possibility
of a RNAdS type black hole exists.

In the Fig. 7, the temperature does not become zero
anywhere. Hence this may be a SchAdS type or an
RNAdS black hole. In fact for � � 0, � behaves in a
similar fashion as expected as given in Fig. 8.

In comparison, the RNAdS black hole exhibits the exact
same behavior when inverse temperature is considered
against the horizon radii, which is discussed in [28]. The
difference in the BIAdS case is that the Fig. 7 could
represent a black hole with one or two horizons.
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FIG. 7. The inverse temperature � vs horizon radii r� at fixed
potential � � 0:2. Here b � 2, l � 1, G � 1.

 

0 20 40 60 80 100
r

1

2

3

4

5

6

7

8

10

FIG. 6. The inverse temperature � vs horizon radii r� at fixed
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B. State variables

The state variables of the system may be computed using
the Euclidean action computed in Sec. III. First the entropy
is computed as

 S � �
�
@I
@�

�
�
� I: (43)

Note that this is computed as

 S � �
�
@I
@x

�
�

��
@�
@x

�
�
� I: (44)

This expression was shown to be equal to A
4G as expected.

Here, A is the area of the horizon of the black hole. The
Fig. 9 represents the behavior of entropy with temperature
for � � 10.

The conserved charge ~Q is given by

 

~Q � �
1

�

�
@I
@�

�
�
: (45)

This expression was shown to be equal to !Q
4�G as expected

[28].

C. Local stability

The local stability of the black holes can be studied by
computing the specific heat at constant potential:

 C� � T
�
@S
@T

�
�
: (46)

By writing both T and S as functions of x and � this can be
computed symbolically easily. The exact expression is
complicated and hence will not be written here. However,
C� will be plotted for various values of � as follows:

The black holes represented in Fig. 10 include extreme
black holes since there is a horizon corresponding to zero
temperature. The black holes for this potential is locally
stable since the specific heat is positive for T > 0. On the
other hand, for nonextreme black holes given in the Fig. 11,
there are two branches to consider: small and large black
holes. The large black holes have positive specific heat and
are locally stable while the small black holes are unstable
locally. There is a minimum temperature dividing these
two branches.

D. Gibbs free energy and Hawking-page phase
transition

In order to study the global stability of the black holes,
we will study the grand canonical (Gibbs) free energy of
these solutions. The Gibbs free energy can be computer in
terms of the Euclidean action as,

 F �
IE
�
: (47)
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FIG. 10. The specific heat C� and temperature T vs horizon
radii r� at fixed potential � � 10. Here l � 1, b � 0:4 and G �
1.
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FIG. 11. The specific heat C� and the temperature T vs
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The free energy F is plotted against the temperature T for
fixed potential in the Fig. 12.

For small �, there are no extreme black holes and hence
the black holes do not reach zero temperature. There are
two branches for the small and large black holes. The large
black hole branch has the smaller free energy. According to
the Fig. 12, for potentials smaller than � � 0:63 (approxi-
mately), the pure-Ads geometry is preferred until the criti-
cal temperature Tcritical is reached where the free energy of
the larger black holes becomes zero. At this critical tem-
perature there is a phase transition as discussed for SchAdS
and is well known as Hawking-Page transition [1]. Beyond
the temperature Tcritical, the large black holes have negative
free energy and are preferred over pure-AdS geometry.

For �> 0:63, the phase transition occurs at the mini-
mum temperature Tminimum of the black holes. It is also
interesting to note that there is a discontinuity in the free
energy between the pure-AdS geometry and the black hole
phase for potentials larger than 0.63. This behavior con-
tinues until the potential reaches a critical value. Beyond
that there is only one branch which include extreme black
holes as represented by the � � 1:3 case. Here for all
positive temperatures, the black holes are globally pre-
ferred over the pure-Ads geometry. When one continues
to increase the potential, the free energy continues to
becomes smaller as represented by the � � 3 case.

There is an interesting observation to make here in
comparison with the RNAdS black hole phase transitions
discussed in [28]. When there were two branches for the
black hole free energy, the unstable smaller black holes
always had positive free energy. In contrast, here, even the
smaller branch does has negative free energy for some
values of �. There is a ‘‘energy gap’’ between the pure-
AdS geometry and the black holes. The reason for this can

be clarified as follows: In RNAdS black holes, at the
critical potential where the extreme black holes start to
appear, the maximum free energy is zero at T � 0 point.
On the other hand, for BIAdS black holes, at the critical
potential where the extreme black holes start to appear, the
maximum free energy is lower than zero at T � 0 point.
This can be given by the Fig. 13.

In the Fig. 14, the free energy of the BIAdS black holes
are compared to the RNAdS black holes for potentials
leading to nonextreme black holes. The nonlinear parame-
ter b is varied to observe how it effects the free energy.
From the graphs one can come to the conclusion that the
BIAdS black hole is thermodynamically preferred over the
RNAdS black hole.

 

T

F

FIG. 13. The free energy F vs temperature T for the RNAdS
black hole and the BIAdS black hole at their respective critical
potentials when the extreme black hole phase appear. The dark
curve shows RNAdS black hole and the light curve shows the
BIAdS black hole.
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V. CONCLUSIONS

In this paper we presented some properties and thermo-
dynamics of Born-Infeld black holes in the grand canonical
ensemble.

BIAdS black holes represents properties similar to both
SchAdS and RNAdS black holes. We present an interesting
phase structure relating mass M and the charge Q of the
solutions. The structure looks similar to the liquid-gas-
solid phase diagram with M representing P and Q repre-
senting temperature T. The ‘‘Triple Point’’ is atM � 1:31103

b
and Q � 1

2b . A natural question that comes to mind is to
what kind of ‘‘phase transition’’ may occur when crossing
the boundaries between SchAdS type black holes, RNAdS
type black holes and naked singularities. Also a question
arises whether there is an analog ‘‘Critical Point’’ where
the gas-liquid phase boundary ends in a liquid-gas-solid
phase diagram for the RNAdS black holes and naked
singularities [27]. To answer such questions one has to
study the thermodynamics in the canonical ensemble.
Since in a canonical ensemble the charge is fixed, it would
be easier to relate thermodynamical behavior and phase
structure between M and Q discussed in Sec. II. For the
RNAdS black hole, the free energy obtained in a canonical
ensemble has similar behavior to a van der Waals-Maxwell
liquid gas system as described in [28]. It would be interest-
ing to see if BIAdS black holes have similar properties.

In studying the thermodynamical stability of the BIAdS
black holes, there are two cases to consider: extreme and
nonextreme black holes. For the nonextreme black holes
there are two branches consisting of small and large black
holes. The smaller black holes are locally as well as
globally unstable. On the other hand, the large black holes

are locally stable since the specific heat is positive.
Globally the large black holes are preferred for tempera-
tures T > Tcritical or T > Tminimum depending on the value
of the electric potential �. For temperatures smaller than
Tcritical or Tminimum, pure-AdS space is globally preferred.
There seems to be an ‘‘energy gap’’ between the pure-AdS
geometry and the black holes for certain values of the
potential. Further study should address the origin of this
behavior. For the potentials consisting extreme black holes
there is only one branch and the black holes are locally as
well as globally stable.

There are several avenues to extend this work for one
who is interested.

In an interesting paper, Gubser and Mitra [34], showed
that there is a relation between thermodynamical instabil-
ity and classical instability of large RNAdS black holes.
Since the thermodynamical stability is well analyzed here
for BIAdS black holes, one may study the classical stabil-
ity under metric perturbations to see any similar behavior.
BI black holes without the cosmological constant were
shown to be stable under metric perturbations by the
present author in [35].

One of the possible extensions of this work is to study
thermodynamics of the BIAdS black holes in D � 5. The
main motivation for this comes from the conjecture that
physics of string theory in AdS5 	 S

5 is identical to N � 4
gauge theory on the boundary of AdS5. It has been tested
for large SchAdS black holes in D � 5 and has shown to
match with the thermodynamics of the gauge theory in
D � 4 [4,36].

The Born-Infeld black holes in de Sitter space would
certain to offer new surprises. According to [20] such BIdS
black holes could behave similar to SchdS or RNdS black
holes with maximum of three horizons. One wonder what
phase structure it has between M and Q. Since the possi-
bility of three, two, one or no horizons, it should definitely
be even richer than the one for BIAdS black holes.
Furthermore, one can study the Hawking-Page phase tran-
sitions of BIdS black holes. Such phase transitions for
RNdS black holes are discussed in [2].

Peca and Lemos [37] studied the thermodynamics of the
RNAdS black hole in the grand canonical ensemble using
York’s formalism [38,39]. In this approach, the black hole
is enclosed in a cavity with a finite radius to compete the
action. The analysis of the BIAdS black hole in the York’s
formalism would be a worthy extension of the work pre-
sented here.
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