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Scalar self-interactions are known to weaken considerably the current constraints on scalar-mediated
fifth forces. We consider a scalar field with a quartic self-interaction and gravitation-strength Yukawa
couplings to matter particles. After discussing the phenomenology of this scalar field, we assess the ability
of ongoing and planned experiments to detect the fifth force mediated by such a field. Assuming that the
quartic and matter couplings are of order unity, the current-generation Eöt-Wash experiment at the
University of Washington will be able to explore an interesting subset of parameter space. The next-
generation Eöt-Wash experiment is expected to be able to detect, or to rule out, the fifth force due to such a
scalar with unit quartic and matter couplings at the 3� confidence level.
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I. INTRODUCTION

Years of effort have been devoted to searching for new
macroscopic forces from submillimeter to solar system
scales [1]. From a theoretical standpoint, modern theories
of particle physics introduce new scalar fields which can
mediate long-range forces. This is certainly true of string
theory, whose plethora of moduli generically couple to
matter with a strength comparable to that of gravity.
Provided they remain light, these scalars should cause
observable deviations from the gravitational inverse square
law and violations of the equivalence principle.

The experimental state of affairs is shown in Fig. 1.
Evidently, a fifth force of gravitational strength, ��
O�1�, is excluded on all scales ranging from 0.1 mm to
102 AU. A crucial underlying assumption, however, is that
the mediating scalar field has negligible self-interactions.
As argued in [2], the addition of a quartic term drastically
changes the picture. Gravitational-strength coupling to
matter is allowed again, even with a quartic coupling as
small as�10�53 [3]. The ability for self-interacting scalars
to hide from experiments relies on the chameleon mecha-
nism [2,4], which suppresses fifth-force signals in two
ways.

Firstly, the presence of ambient matter density generates
a tadpole term in the Klein-Gordon equation, which shifts
the minimum of the potential. Because of the quartic
coupling, the mass of small fluctuations around this effec-
tive minimum can be much larger than the mass in vacuum.
This is most emphatically illustrated with a massless field
with quartic coupling of order unity: in a medium of
density 1 g=cm3, the effective mass is 0.1 mm.

Secondly, the fifth force is further suppressed by the
thin-shell effect, another startling consequence of the non-
linearity of the field equations. Within a dense macroscopic
body, the effective mass of the scalar is large. As a result,
the contribution of the core to the external field is expo-
nentially small. Only a thin shell near the surface exerts a
significant pull on an exterior test particle. In fact, for an

infinite plate, the force at the surface eventually saturates
as the thickness is increased, causing the strength relative
to gravity to fall off rapidly.

It follows that an ideal experiment to detect a chame-
leonlike scalar must: (i) use sufficiently small test masses
to minimize the thin-shell suppression; and (ii) probe the
force at distances & 1 mm to avoid the exponential damp-
ing from the effective mass. These considerations point
towards the Eöt-Wash experiment at the University of
Washington [5].

In this paper we carefully assess the ability of the Eöt-
Wash experiment to detect or exclude chameleon scalar
fields with quartic self-interactions. We find that the cur-
rent apparatus with two disks of 42 holes each is not
sensitive enough to detect a chameleon force with dimen-
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FIG. 1 (color online). Current experimental constraints on the
strength � and range L (in meters) of a Yukawa fifth force,
ignoring self-interactions. Reprinted from [7].
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sionless quartic coupling of order unity, ��O�1�, and
gravitational strength coupling to matter, � � 1. It should
nevertheless place significant constraints on models with
larger values of � or smaller �. The next-generation Eöt-
Wash experiment, whose design involves two disks with
120 wedges removed, is much more promising for detect-
ing self-interacting scalars. Our calculations show it should
detect or exclude chameleon fields with � � � � 1 at the
3� level. Unfortunately it looks unlikely that the next-
generation Eöt-Wash will be able to distinguish between
a chameleon-mediated force and a Yukawa force with
suitable strength and range.

We begin in Sec. II with a summary of the phenomenol-
ogy of self-interacting scalar fields. While it is well-known
that free scalars mediate attractive forces, in Sec. II A we
argue that this is also the case for chameleon scalars. The
chameleon mechanism and thin-shell effect are reviewed in
Secs. II B and II C, respectively. We describe in Sec. III the
expected fifth-force signals for self-interacting scalars for
the current and next-generation Eöt-Wash experiments.
Section IV summarizes our results and discusses prospects
for distinguishing chameleon-mediated forces from
Yukawa forces.

II. PHENOMENOLOGY OF THE
SELF-INTERACTING SCALAR

A. Attractive force theorem

An intuitively appealing conjecture is that scalar-
mediated forces between identical objects should always
be attractive. Certainly this is true when the scalar is a free
field. But is it true when the scalar can interact with itself
and/or other fields? A simple analytical argument gives
some support for this conjecture. To start, consider an
action functional for a single scalar field of the form

 S��� �
Z
d4x

�
1

2
G���@��@��� V���

�

�
X
�

Z
��
m����ds; (1)

where the sum is over all particles (e.g. atomic nuclei)
which couple to the scalar. The integrals inside this sum are
over the world lines �� of these particles. The coupling of
the scalar to each particle is through some� dependence of
its mass. This dependence is typically very weak (i.e.
Planck suppressed), so it is quite a mild assumption to
assert that m����> 0 everywhere. The functions G���
and V��� are also assumed to be positive everywhere,
except that V��� must be 0 at its unique global minimum.
Positivity ofG��� is guaranteed by unitarity, and positivity
of V��� is required for vacuum stability. Now consider two
parallel plates that are uniform and infinite in the y and z
directions and of arbitrary but finite thickness in the x
direction. The plates are assumed to be identical, so that
they may be exchanged by reflecting through the plane

midway between them. Initially, let us say the plates are
touching. Then we move each of them a distance a=2 away
from the other, so that the reflection symmetry is always
through the plane x � 0. We wish to show that the total
energy is an increasing function of the separation a: this is
what it means for the force between the plates to be
attractive.

The total energy per unit area for a given separation
distance a and a given static scalar field configuration � �
��x� is
 

H��; a�
A

�
Z 1
�1

dx
�

1

2
G����@x��

2 � V���

�U1��; x� a=2� �U2��; x� a=2�
�
: (2)

Here U1 and U2 account for the interactions of the plates
with the scalar: if A is the area of the plates, then when
a � 0 we have

 Ui��; x�A �
X
�2i

m������x� x��; (3)

where x� is the x-coordinate of the position of the �-th
particle. The sum in (3) runs over all the particles in plate i.
The claim is that

 H�a�=A 	
minimum

�
H��; a�=A (4)

is an increasing function of a. To see this, consider a1 <
a2. Assume that the minimum of H��; a2� is attained for
� � �2�x�. Now consider the following test function:

 �
1�x� �
�
�2�x�

a2�a1

2 � for x > 0
�2�x�

a2�a1

2 � for x > 0:
(5)

In words, we form �
1 by cutting out the center region
�� a2�a1

2 ; a2�a1

2 � of the minimizer�2 for separation a2. This
procedure is illustrated in Fig. 2 (left). Because of the
assumption of reflection symmetry through the x � 0
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FIG. 2 (color online). (upper left) The solid line shows the
field �2�x� for two plates, for a particular choice of the potential,
and the dashed line shows the spliced-together field �
1�x�.
(lower left) The effective potential Veff � V��� �U1��; x� �
U2��; x� is shown for each of these fields. (right) A closeup of
the Veff plot shows that the effective potential is positive in the
region that is cut out. The area under the curve in this region,
shaded in the plot, is the difference in energies between the two
field configurations �2 and �
1.
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plane, �
1 is a continuous function, but its first derivative
flips sign at x � 0. Now we reason that
 

H�a1�

A
�
H��
1; a1�

A
�
Z ��a2�a1�=2

�1
dxH 2�x�

�
Z 1
�a2�a1�=2

dxH 2�x� �
H��2; a2�

A
�
H�a2�

A
;

(6)

where
 

H 2�x� 	
1

2
G��2��@x�2�

2 � V��2� �U1��2; x� a2=2�

�U2��2; x� a2=2� (7)

is the Hamiltonian density for the field configuration
�2�x�. The first inequality in (6) follows simply from
noting that �
1 is probably not the minimizer �1 for sepa-
ration a1. The next equality comes from using (5). The next
inequality follows from having H 2�x� � 0 everywhere.
The final equality follows from the construction of �2. In
other words, the region between the two plates that we cut
out has a positive energy, as shown in Fig. 2 (right).
Removing this region lowers the total energy.

This ‘‘cutting out the middle’’ argument can be gener-
alized to include more complicated source masses, as well
as several scalars. Gauge fields can also be included with
couplings to the scalars, provided the matter in the source
masses does not couple to them in any way. The validity of
the argument we have given depends on the following
assumptions:

(1) Quantum effects, such as zero-point energy, can be
neglected.

(2) The energy density is bounded from below for all
possible configurations, and is positive in the region
between the masses.

(3) There exists a unique vacuum field configuration.
(4) The two source masses are mirror images under the

reflection symmetry through the x � 0 plane.
(5) Terms with derivatives higher than first order can be

neglected.
(6) The minimizing functions, e.g.�2 in (5), must exist:

that is, the minimum of H��; a�=A must be attained
for any fixed a.

Point 3 precludes the possibility of domain wall configu-
rations of the scalar field(s), which are undesirable for
various phenomenological reasons, and which could also
spoil the argument we have given by interfering with the
reflection symmetry.

It should be possible to replace the assumption in Point 4
with a milder one, namely, that both masses should have
the same sign of scalar charges (meaning that the deriva-
tives of their masses with respect to the scalar have the
same signs). More ambitiously, one might hope to show
that two or more objects without reflection symmetry exert

only attractive forces on each other via couplings to scalar
fields. But in such generalizations, it clearly becomes much
less trivial to choose a good test function analogous to �
1.

Point 5 is important because the test function �
1�x�
usually has a jump in its first derivative at x � 0. If
H��; a�=A involved �00, then there could be a delta func-
tion contribution to H��
1; a�=A which is not captured by
the second equality in (6).

The importance of Point 6 can be appreciated by con-
sidering the case of a free massless scalar with G��� � 1
and m��� � m� e�. Then the energy functional (2) is
precisely what we would obtain from electrostatics, where
� is the voltage and e is the electric charge. This presents
an apparent paradox: we know that two positively charged
plates repel, but naive application of the argument (6)
indicates that the plates attract. The resolution of course
is that Point 6 is important. A correct treatment of the
electrostatic case includes planar ‘‘screening charges’’ at
x � 1, the sum of whose charges exactly cancels the
sum of the charges of the plates; otherwise the energy
functional is not gauge-invariant. (Or, if one wishes to
avoid gauge theoretic concepts, one could argue that with-
out the screening charges, the scalar is drawn into runaway
behavior by the like-signed plates.) If the two screening
charges are equal, respecting the reflection symmetry, then
the voltage is constant between the plates and has linear
slope elsewhere, corresponding to constant electric fields
pointing outward from the plates to infinity. The energy
functional is infinite, but if it is regulated by bringing the
screening charges in a little from infinity to an
a-independent position, then it is simple to see from the
energy functional that the plates indeed repel. Another way
to say the same thing is that they are drawn outward by
their attraction to the screening charges [6].

B. Chameleon mechanism

From now on, we choose a specific scalar field theory,
with a mass term and a �4 self-interaction,

 V��� �
1

2
m2
��

2 �
�
4!
�4: (8)

As in [2], the masses of matter particles are assumed to be
only weakly dependent on �,

 m���� � m�

�
1�

��
MPl

�
; (9)

where the constant � is assumed to be the same for all
matter particles. The matter action in (1) can then be
written

 Smatter��� � �
X
�

Z
��
m����ds

� �
Z
d4x	� ~x�

�
1�

��� ~x�
MPl

�
; (10)
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leading to the effective potential

 Veff��; ~x� �
1

2
m2
��

2 �
�
4!
�4 �

�
MPl

	� ~x��; (11)

once terms independent of � have been discarded. Note
that the last term on the right hand side of (11) becomes a
Yukawa coupling term � �m

MPl

�  � in the case of nonrela-
tivistic Fermionic matter. The equation of motion resulting
from (11) is

 � @�@�� � m2
���

�
3!
�3 �

�
MPl

	� ~x� �
dVeff

d�
: (12)

In a uniform material of nonzero density 	, the mini-
mum of the effective potential is shifted to positive values
of �, and the scalar field picks up an effective mass

 m2
eff;	 �

d2Veff���

d�2

���������	

� m2
� �

1

2
��2

	; (13)

where �	 is the field value which minimizes the effective
potential. This density dependence of the effective mass,
known as the chameleon mechanism, allows the field to
‘‘hide’’ by decreasing its interaction length in the presence
of matter. The effect is most pronounced for a massless
scalar, m� � 0, which would mediate a long-range inter-
action in the absence of the self-interaction term. In this
case, the effective length scale is given by

 m�1
eff;	 �

�
2

9

�
1=6
��1=3��1=6

�
MPl

	

�
1=3
: (14)

For � � � � 1 and 	 � 1 g=cm3, this length scale is
0.13 mm. That is, the fifth force becomes negligible com-
pared to gravity for an object of this density at distances
much larger than 1 tenth of a millimeter.

As an example of the chameleon mechanism, consider
the field near an infinite plate of uniform density and non-
zero thickness, surrounded by a vacuum. This case is
interesting because, for a long-range interaction such as
gravity, the force due to such a plate is independent of
distance from the plate. Furthermore, the force due to a
Yukawa interaction is known to fall off exponentially with
distance from the plate (see, e.g., [7]).

The equation of motion of the chameleon field simplifies
to

 

d2�

dx2
�
�
3!
�3; (15)

wherem� � 0, and the x direction is assumed to be normal
to the plate. The appropriate vacuum solution, satisfying
the boundary condition ��1� � 0 at positive infinity, is

 ��x� �

�����������
12=�

p
x� b

: (16)

Here, the parameter b is determined by the matching
condition at the surface of the plate. The solution diverges

at x � b, so this point must be either inside or on the other
side of the plate. We note that for x� b, ��x� is propor-
tional to ��1=2 and is independent of � as well as the
density of the source plate, consistent with the results
of [3].

The chameleon-mediated fifth force felt by a test particle
sitting outside the plate is

 Fc�x� �
Z
d3x�	testr� � �mtestr� �

��mtest

�����������
12=�

p
�x� b�2

:

(17)

It is evident that, although the gravitational force on the test
particle remains constant with increasing x, the fifth force
falls off as x�2 far from the plate. The self-interaction
transforms the fifth force due to � from a long-range
interaction into a short-range one.

Another useful comparison is between the chameleon
force and the Yukawa force, as shown in Fig. 3. The
strength and characteristic length of the Yukawa force
FY�x� have been chosen such that FY�0� � Fc�0� and
F0Y�0� � F0c�0�, where the surface of the plate is assumed
to be at x � 0. Figure 3 shows that FY�x� falls off much
more rapidly than Fc�x� at distances x * jbj. It will be
shown in Sec. II C that, for a sufficiently thick plate, Fc�x�
is independent of the plate thickness. In this case, the only
remaining length scale in the problem is m�1

eff;	, so by
dimensional analysis, jbj �m�1

eff;	. Therefore, the Yukawa
force becomes substantially weaker than the chameleon
force at distances of the order of the chameleon mass scale
inside the test mass.

C. Thin-shell effect

For a massless scalar, m� � 0, Veff has a minimum
dVeff=d� � 0 only if the field has a self-interaction, � �

0. That is, for m� � � � 0, in an infinitely large material,
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FIG. 3 (color online). Ratio of the Yukawa force to the cha-
meleon force due to an infinite plate of matter. The strength and
length scale of the Yukawa force have been chosen so as to
match the chameleon force and its first derivative at the surface
of the plate, x � 0.
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� will rise without bound, just like the gravitational po-
tential in an infinitely large, uniform-density sphere. The
self-interaction cuts off this increase at some maximum
field value �	, within a few scale lengthsm�1

eff;	 of the edge
of the material. As a result, only the thin shell of material
near this edge contributes to the field value outside the
material. Since the fifth force felt by a test particle outside
the material is proportional to the gradient of the field, the
test particle will only feel a fifth force from the thin shell of
material, rather than the bulk; this is known as the thin-
shell effect.

The thin-shell effect is illustrated in Fig. 4. Evidently,
once the thickness of the plate has grown to a few times the
scale length m�1

eff;	, any further increases in thickness leave

the field outside the plate essentially unaffected. Since the
fifth force on a test particle is proportional to the gradient
of the field, the fifth force saturates for plate thicknesses a
few times m�1

eff;	. Meanwhile, the gravitational force on the
test particle continues to grow linearly with the plate
thickness, causing the ratio of the fifth force F� to the
gravitational force Fgrav to fall off rapidly, as shown in
Fig. 5.

D. Applicability of the uniform-density approximation

The above discussions of the phenomenology of the self-
interacting scalar field have treated the sources of the field
as objects of uniform density. Since actual matter consists
of a lattice of atoms or molecules, and since the equation of
motion (12) of the self-interacting scalar is nonlinear, one
may question the validity of approximating matter as a
substance of uniform density. Reference [8] shows that this
approximation is indeed valid, provided that the length
scale m�1

eff;	 is much larger than the interatomic separation.
The weak dependence of m�1

eff;	 on � means that this
condition is only violated for � many orders of magnitude
greater than unity.

E. Summary of chameleon properties

We have seen that a self-interacting scalar field with a
gravitation-strength Yukawa coupling to matter tends to
give rise to an attractive force. In a medium of density 	, it
acquires a length scale m�1

eff;	, turning the chameleon-
mediated fifth force into a short-range interaction.
Furthermore, the chameleon force between two objects
much larger than m�1

eff;	 couples only to a thin outer shell
on each object.

Such a field is particulary difficult to observe. The
chameleon fifth force falls off rapidly with distance, so
an experiment must be able to test gravity at separations
less than m�1

eff;	 � 0:1 mm. Furthermore, the chameleon
‘‘sees’’ only a shell of thickness m�1

eff;	, so the experiment
must use test masses not much larger than m�1

eff;	. Finally,
the experiment must be sensitive enough to detect fifth
forces with �� 1. Given these constraints, the Eöt-Wash
experiment, at the University of Washington, is a promis-
ing tool for detecting the chameleon.

III. CHAMELEON PREDICTIONS FOR THE
EÖT-WASH EXPERIMENT

A. The Eöt-Wash experiment

The Eöt-Wash experiment [5] uses two parallel disks to
search for short-range deviations from the gravitational
inverse-square law. The upper disk serves as a torsion
pendulum, and the lower disk, the ‘‘attractor’’, rotates
slowly below the pendulum. In the current Eöt-Wash ex-
periment, each of the disks has 42 holes in it, at regular
intervals, as sketched in Fig. 6 (left). As the holes in the
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attractor disk rotate past those in the pendulum, the pen-
dulum experiences a torque that tends to line up the two
sets of holes. By comparing the torque on the pendulum to
that expected for purely Newtonian gravity, Eöt-Wash can
search for deviations from the inverse-square law.

Although work is in progress using the current appara-
tus, the Eöt-Wash group has already begun to construct a
next-generation apparatus. Rather than a series of holes on
the pendulum and attractor disks, each of the next-
generation disks will have a 120-fold symmetric pattern
of wedges, as shown in Fig. 6 (right). That is, each disk will
resemble a pie carved into 240 equal slices, with every
other slice removed, and with a circular region excised
from the center.

B. Solving the field equations

The equation of motion of � cannot be solved exactly
for complicated density configurations such as the Eöt-
Wash pendulum and attractor disks. In order to predict
the form of the chameleon fifth force observable by Eöt-
Wash, numerical computations must be used. The ap-
proach used here is to discretize space into a three-
dimensional lattice, f�x; y; z�g ! f�xi; yj; zk�j1 � i �
Nx; 1 � j � Ny; 1 � k � Nzg. The field ��x; y; z� is re-
placed by the quantities �ijk � ��xi; yj; zk�. On this lat-
tice, the approximate Hamiltonian is a function of the
�ijks,

 

H �
X
i;j;k

�
1

2

��
��
�x

�
2
�

�
��
�y

�
2
�

�
��
�z

�
2
�
�

1

2
m2
��

2
ijk

�
�
4!
�4
ijk � �	ijk�ijk

�
�x�y�z; (18)

where 	ijk � 	�xi; yj; zk�, and ��=�x, etc. are numerical
derivatives.

Recall that, for static mass distributions, the field which
minimizes the Hamiltonian also solves the field Eq. (12). If
the lattice has Nx, Ny, and Nz points in the x, y, and z
directions, respectively, then the Hamiltonian is a function
of NxNyNz variables. The gradient of H can be calculated

by differentiating with respect to reach �ijk, so H may be
minimized using a conjugate gradient algorithm. Initial
conditions are specified by choosing each �ijk from a
uniform random distribution between 0 and �	 for the
material making up the pendulum and attractor disks.

In order to simplify the computation, we consider one
single hole (or wedge) on the attractor disk moving past
one hole (or wedge) on the pendulum disk at a time. Also,
in the case of the next-generation apparatus with 120
wedges, we replace the wedges by rectangular slabs, giving
the problem more symmetry and speeding up the compu-
tations. Contour plots of the field for the next-generation
apparatus, with the attractor at several different angles with
respect to the pendulum, are shown in Fig. 7.

From these computations, the force F�
� of one attractor
hole (or wedge) on one pendulum hole (or wedge) can be
computed as a function of angle. The next attractor hole is
at an angle 
0 relative to the first hole, and exerts a force in
the opposite direction. Neglecting any nonlinear effects
between these two holes, which are separated by many
times the length scalem�1

eff;	, the force on the pendulum due
to both holes is F�
� � F�
0 � 
�. Multiplying by the
radius, and by the number of pendulum holes, gives the
torque on the pendulum as a function of angle.

C. Approximations in the computation

Table I summarizes the errors introduced into the final
computed torque, in the next-generation Eöt-Wash appa-
ratus, by various computational approximations. The two
largest are the following:

(i) thin foil layer. The largest error comes from neglect-
ing the thin layer of BeCu foil between the pendulum
and attractor disks, which is necessary to isolate the
two disks electrically. Including this layer in the

 

FIG. 6. Sketches of the current (left) and next-generation
(right) Eöt-Wash disks (not to scale).
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FIG. 7 (color online). Contour plots of an attractor wedge
moving past a pendulum wedge. The coordinates x and z
represent the tangential and vertical directions, respectively,
and the coloring represents the value of ��x; z� in mm�1. The
four plots correspond to rotation angles of 
 � 0 (top left),

 � �=180 (top right), 
 � �=90 (bottom left), and

 � �=60 (bottom right).
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computation lowers the torque by about 4%.
(ii) decrease lattice spacing. Halving the lattice spacing

in each direction changes the computed torque by
approximately 1%.

All other approximations lead to errors of less than 1%:
(i) force from nearby wedges. Forces on the pendulum

wedge due to all but the two closest attractor wedges
were neglected. An estimate of the error introduced
is the force due to the third closest attractor wedge,
whose magnitude is just 0.4% of the combined force
due to the first two wedges.

(ii) wedges vs rectangular slabs. Our computation ap-
proximated each wedge in the next-generation ap-
paratus as a rectangular slab. This approximation
may be improved by using three slabs, with widths
corresponding to the inner, central, and outer radii
of the disk, as shown in Fig. 8. The error listed in
Table I is the difference between these two
approximations.

(iii) two attractor wedges (nonlinear contribution).
Since the field equation is nonlinear, one may
object to our approximation of the force from two
wedges, F2�
� � F�
� � F�
0 � 
�. However,
since the two are separated by a distance much
greater than m�1

eff;	, this approximation should in-
troduce only a tiny error; this expectation was
verified computationally.

(iv) spurious torques. We tested for the convergence of
the Hamiltonian minimization by computing the
residual torque at 
 � 0, and by measuring the
change in torque when initial conditions were

chosen using a new random number seed; both
spurious torques were negligible.

Combining all of the above errors in quadrature results in a
total error of 4%.

We note that the above error estimates apply to the
region of parameter space around �� 1 and �� 1.
Reference [8] points out that, for � a few orders of magni-
tude greater than unity, the length scale m�1

eff;	 becomes
smaller than the thickness of the foil layer between the
pendulum and attractor. This allows the field to reach its
maximum value inside the foil, so that the foil screens any
variations in the fifth force on the pendulum as the attractor
disk rotates. Therefore, the Eöt-Wash experiment will be
insensitive to chameleon scalars with � a few orders of
magnitude greater than unity.

D. Computed torques

Eöt-Wash will Fourier transform the measured torque,
N�
� �

P
Nn sin�n
�, and will report the first three Fourier

coefficients not required to be zero by symmetry, NJ, N2J,
andN3J. Here, J is the degree of rotational symmetry of the
pendulum and attractor disks; J � 21 for the current ap-
paratus, and J � 120 for the next-generation apparatus.
NJ sin�J
� is simply a sine wave with a period equal to

0 � 2�=J, the angular distance between adjacent
wedges. Adding N2J sin�2J
�, with N2J � NJ, shifts the
first peak of the sine curve to the left, and adding
N3J sin�3J
�, with N3J � N120, flattens the top of the
sine curve. Thus Eöt-Wash will be sensitive to two features
of the shape of the torque curve N�
�, in addition to its
amplitude.

The torque for the 42-hole apparatus is shown in Fig. 9
(left), for various values of the pendulum-attractor separa-
tion �z, and the couplings � and �. Eöt-Wash is expected
to probe separations as low as �z � 60 �m. Since the Eöt-
Wash uncertainty in torque at these values of �z is ap-
proximately 0.1 fNm, the chameleon with � � � � 1 will
be invisible to this apparatus. However, the primary Fourier
coefficient scales as N21 � 0:11�0:91��0:55 near � � � �
1. If � is larger than unity by a factor of a few, or if � �
1=10, then Eöt-Wash should be able to detect the
chameleon.

The next-generation Eöt-Wash apparatus, with 120
wedges, will be several times more sensitive to the
chameleon-mediated fifth force. This should allow the
detection of a chameleon with � � � � 1 at the 3� level,
as shown in Fig. 9 (right). It is evident from the plot ofN�
�
in Fig. 9 (right) that the torque is approximately a sine
wave sin�120
� with a flattened top. The three Fourier
coefficients are shown in Fig. 10 as functions of �z.
Note, first, that N120 falls off rapidly with increasing �z.
The chameleon will be detectable at the 2� level only
below �z � 0:1 mm. Also note that the ratio of N360 to
N120 drops with increasing �z. That is, the peak becomes

 vs.

FIG. 8 (color online). Two different approximations to the
wedge.

TABLE I. Summary of errors introduced due to approxima-
tions used in the computation.

approximation fractional error introduced

thin foil layer 0.039
decrease lattice spacing 0.013
force from nearby wedges 0.0042
wedges vs rectangular slabs 0.0011
two attractor wedges (nonlinear) 0.00021
spurious torque at 
 � 0 0.00002
change random number seed 0.00001

total 0.041

UNVEILING CHAMELEON FIELDS IN TESTS OF THE . . . PHYSICAL REVIEW D 74, 104024 (2006)

104024-7



less flattened with increasing separation. Unfortunately,
N360 is too small to be detectable for � � � � 1.
The two Fourier coefficients scale with the coupling con-
stants as N120 � 0:38�1:34��0:33 fNm and N360 �
0:031�1:68��0:16 fNm at �z � 0:05 mm, and N120 �
0:20�1:22��0:39 fNm and N360 � 0:0087�1:68��0:16 fNm
at �z � 0:1 mm, so there is some possibility that this
peak flattening will be seen for large �.

IV. CONCLUSION

We have shown that a chameleon field with a quartic
self-interaction mediates an attractive force, which falls off
rapidly with separation between two massive objects, and
is sensitive only to the outer shell of matter in a large
object. Given the size of its test masses and the length
scales that it probes, the Eöt-Wash experiment is a prom-
ising instrument for searching for this fifth force. For unit
values of the matter coupling constant � and the quartic
coupling constant �, the current Eöt-Wash apparatus is not
expected to find evidence for the chameleon fifth force.
However, the experiment is capable of constraining a very
interesting region of parameter space; the expected cha-
meleon signal N21 � 0:11�0:91��0:55 will be detectable for
certain values of � and � not much different from unity.

The next-generation Eöt-Wash experiment will be sev-
eral times more sensitive to chameleon-mediated fifth

forces. We expect Eöt-Wash to detect, or to rule out, a
chameleon force with unit couplings at the 3� level. If a
small-scale deviation from Newtonian gravity is observed,
this deviation may be compared to our predictions for � �
� � 1 in Fig. 10. The torque Fourier coefficients at other
values of the coupling constants, and at a pendulum-
attractor separation of �z � 0:05 mm, are N120 �
0:38�1:34��0:33 fNm and N360 � 0:031�1:68��0:16 fNm.
Thus, if � is large enough for the chameleon force to be
detected by the current Eöt-Wash experiment, then the
next-generation experiment should detect a peak flattening
N360 > 0.

If a short-range fifth force is observed by the Eöt-Wash
experiment, the next goal will be to distinguish between
chameleon and Yukawa fifth forces. Although unit-
strength Yukawa fifth forces have already been ruled out
by Eöt-Wash, a Yukawa force tuned to be a few orders of
magnitude smaller than gravity could conceivably fit the
observed fifth force. As argued in Sec. II B, chameleon and
Yukawa forces that are identical at small scales begin to
differ substantially at length scales of the order of m�1

eff;	.
Unfortunately, a chameleon force with � � � � 1 is only
visible over a range of pendulum-attractor separations
0:05 mm � �z � 0:1 mm, a range whose width is ap-
proximately equal to the length scale m�1

eff;	 � 0:047 mm

inside the pendulum and attractor wedges. Distinguishing
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FIG. 9 (color online). (left) Torque vs rotation angle for current (42 hole) Eöt-Wash apparatus. The torque is shown for several values
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between a chameleon force and a Yukawa force will be
challenging, and unless � is sufficiently greater than unity,
a more sensitive experiment will be necessary.
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