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Modifying the Einstein equations off the constraint hypersurface
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A new technique is presented for modifying the Einstein evolution equations off the constraint
hypersurface. With this approach the evolution equations for the constraints can be specified freely.
The equations of motion for the gravitational field variables are modified by the addition of terms that are
linear and nonlocal in the constraints. These terms are obtained from solutions of the linearized Einstein

constraints.
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The Einstein equations separate into a set of evolution
equations and a set of constraints. The evolution equations
are partial differential equations (PDE’s) that determine
how the gravitational field variables g, (the spatial metric)
and K, (the extrinsic curvature) evolve forward in time.
The constraint equations are PDE’s that the field variables
must satisfy at each instant of time. From a Hamiltonian
point of view, the evolution equations define solution tra-
jectories in phase space with coordinates g,;, and momenta
K ;- Physical trajectories are those that lie in the constraint
hypersurface, or subspace, of the gravitational phase space.

Einstein’s theory of gravity is a ““first class” theory, that
is, the time derivatives of the constraints are linear combi-
nations of the constraints. This property implies that, ana-
lytically, the constraints will hold at each instant of time if
they hold at the initial time. However, for numerically
generated solutions of the theory the initial data will not
satisfy the constraints precisely and numerical errors will
kick the phase space trajectory away from the constraint
hypersurface. This is a critical problem for numerical
modeling because the FEinstein evolution equations, as
they are usually written, admit solutions that rapidly di-
verge away from the constraint hypersurface [1,2]. Any
numerical scheme that evolves the gravitational field data
using the evolution equations in one of their traditional
forms will eventually fail to produce physically meaning-
ful results. Inevitably the numerical solution will choose to
follow a trajectory that violates the constraints.

A number of strategies have been devised to address this
problem. One approach is to modify the theory off the
constraint hypersurface by adding linear combinations of
constraints to the evolution equations [1,3-7]. In this way,
one hopes to alter the solution trajectories so that they are
better behaved away from the constraint hypersurface. We
will use the terminology ‘‘off-shell” to refer to solution
trajectories that lie off the constraint hypersurface.

The strategy discussed in this paper is of this sort. We
add terms proportional to the constraints to the Einstein
evolution equations in such a way that the evolution equa-
tions for the constraints can be freely specified. In princi-
ple, we can eliminate all constraint violating modes by
demanding, for example, that the time derivatives of the
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constraints should vanish. The price we pay for this degree
of control over the unphysical, off-shell solutions is that the
terms added to the evolution equations are nonlocal. They
are determined through the solution of an elliptic system of
PDE’s.

Another strategy for keeping a numerically generated
solution from diverging away from the constraint hyper-
surface is constrained evolution. In this scheme the con-
straints are used in place of certain evolution equations to
update some of the gravitational field variables in time.
This approach has worked well for spherically and axi-
symmetric problems [8—12]. A closely related idea is con-
straint projection [5,13,14]. With constraint projection, one
evolves the full set of field variables using the evolution
equations, then periodically (perhaps every time step) sol-
ves the constraints to project the solution back to the
constraint hypersurface. Both constrained evolution and
constraint projection require the solution of the constraint
equations during the course of evolution. For these ap-
proaches to be viable, the constraints must be expressed
as an elliptic system of PDE’s. From a computational
perspective, our strategy is closely related to constraint
projection since we also solve an elliptic system of
PDE’s at every (or nearly every) time step. In fact, the
PDE’s that we solve are the linearized Einstein constraints.

It will be useful to give an overview of our procedure for
modifying the off-shell solutions in a formal, general con-
text. Consider a theory, like general relativity, described by
a set of first class constraints C4. Let ¢, denote the basic
field variables. These variables satisfy first order in time
differential equations of motion, ¢M = (¢M)old ths» Where
the “old right-hand sides” (&M)Old s are functions of ¢,
and their spatial derivatives. We have included the descrip-
tor “old” since we will soon create ‘“‘new’’ right-hand sides
by adding functions of the constraints. The evolution equa-
tions for the constraints are obtained from the evolution
equations for the ¢’s by differentiating the constraints in
time. This yields C4 = (C4)oams Where the right-hand
sides (rhs’s) are given by

5C,

(CA)old ths = %

(lvbp)oldrhs' (1)
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The expression 6C,/84,, is the Fréchet derivative of the
constraints with respect to the field variables [15]. It sat-
isfies C4(f + o) — Ca() = (6C4/ S, )0, in the limit as
the norm of o, goes to zero. (¢, and o, are defined as
vectors in a suitable Banach space.) If C, depends on
spatial derivatives of gl/M, then the Fréchet derivative is a
differential operator.

Now let us split the basic variables ¢, into two sets, ¢4
and y;. Note that there are as many ¢’s as there are
constraints. With this splitting, Eq. (1) becomes

(CA)old ths = gﬁ((i)B)old rhs + %()'(i)old rhs* (2)
b5 SXi
Next, we replace the old equations of motion for the ¢’s
with new equations of motion. This leads to new equations
of motion for the constraints,

. 8C, . 0Cy , .
(CA)new ths = Té (d)B)new rhs + 5—)(/: (/\/i)old rhs- (3)
By subtracting the previous two results, we find
dCy
A =T ¢ » 4
AT G, 4)

where ®, is the difference between the new and old rhs’s
for the variables ¢A’ cI>A = (d)A)newrhs - (d)A)oldrhsv and
A, is the difference between the new and old rhs’s for
the constraints, Ay = (Cq)newrhs — (Cadoldhs- In terms of
the original field variables ¢, the new equations of motion
are

(‘ﬁ/},)new ths = (‘/’M)old rhs + %(DA (5)
S,

Now we turn the reasoning around. We do not actually
choose new equations of motion for the ¢’s. Instead, we
specify new evolution equations for the constraints by
freely choosing the expressions (C4)yew mms- The functions
A, are then determined, and Egs. (4) are solved for ®,.
The new equations of motion for the original field variables
are given by Egs. (5).

Because the theory is first class, (Cy)gqrhs 1 @ linear
combination of constraints. Let us choose (Cy)pew s t0 be a
linear combination of constraints as well. Then A, is a
linear combination of constraints and, according to Eq. (4),
®, is a (possibly nonlocal) linear combination of con-
straints. It follows that the new equations of motion for
i, differ from the old equations by a linear combination of
constraints.

Equations (4) are the linearized constraints. To be pre-
cise, consider a field configuration ¢, that does not
satisfy the constraints and let ‘rl_/u =i, - W, If :,ZM sat-
isfies the constraints then to linear order, ¥ “ satisfiesC4, =
(6C4/84,)V,. Thisis Eq. (4) with W, = (6¢,/5h )P,
and C4 = Ay.
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With the procedure outlined above, we can freely spec-
ify the rhs’s of the constraint evolution equations, as long
as they are a linear combination of constraints. We then
solve Eq. (4) for ®, and modify the equations of motion
for the ¢’s to Eq. (5). In this way we leave the equations of
motion for the basic field variables unchanged on the
constraint hypersurface, but we can modify their off-shell
form to eliminate the constraint violating modes.

Let us apply this formalism to general relativity. The
basic field variables (the ¢/’s) are the spatial metric g,;, and
the extrinsic curvature K,,. The equations of motion as
written by York [16] are 0,2, = (01 &up)oldrms and
aJ_Kab = (aJ_Kab)old rhs» where

—2aK,, (6a)
a(KK,, — 2K, K5 + Ry,) — DDy
(6b)

(01 8ab)oldrhs =
(aJ.Kab)old ths =

Here, « is the lapse function, D, is the spatial covariant

derivative, and R, is the spatial Ricci tensor. The operator

d) = 90, — Lg is the difference between the time deriva-

tive and the Lie derivative along the shift vector 8¢. This

operator plays the role of the ““dot” in the formal analysis.
The constraints for general relativity are

H =K?—- K, K + R, (7a)
M, = D,K:— D,K. (7b)

With the equations of motion (6), we find

(0L H)ogrhs = 2aKH — 2aD, M — 4AMD,a, (8a)
(almu)oldrhs = aKlea - g{Dua - aDug-[/z (8b)

for the rhs’s of the constraint evolution equations.

In order to proceed, we must select a subset of the
variables g,,, K,, to play the role of the ¢’s. We will
use the conformal transverse-traceless decomposition de-
veloped by Lichnerowicz and York for solving the initial
value problem (see, for example, Ref. [17]). To begin, we
split the metric and extrinsic curvature into

8ab = ‘P4gab’ (93)
Kab = gD_ZAab + %§D4gab7-’ (9b)

where ¢ is the conformal factor, g, is the conformal
metric, 7 is the trace of the extrinsic curvature, and A,
is symmetric and trace free. Note that these definitions are
invariant under the conformal transformation [18,19]
gah - §4gah’ ®— §_1§03 Aab - §_2Aub’ T—T.

The tensor A,;, can be decomposed in terms of a sym-
metric, transverse, traceless tensor B, and a vector w,,

Agp = W)y + By (10)
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The operator L is defined by (Lw),, = D,w, + Dyw, —
28.,D.we /3. It follows that w, satisfies the elliptic equa-
tion D*(Lw),, = D’A,,. The conformal transformation
rule for B, is B, — & >B,;, and the rule for w, is defined
by the relation (Lw),, — £ 2(Lw),,.

Let ¢ and w,, play the role of the ¢’s in Egs. (4) and (5).
The Fréchet derivatives that appear in those equations are
somewhat tedious but straightforward to compute. If we let
® and W, denote the unknowns (the ®4’s) in Eq. (4), we
find the following results:

Ay = —8D*(®/p) — 2K (LW),/ @*
—[4K?* — 12K, K® + 4R]®/ ¢, (11a)
A, = D’[(LW),,/*] — 6(D*K,;, — D,K/3)®/e. (11b)

Here, Ay and A, are the differences between the new and
old rhs’s of the evolution equations for the constraints:

A0 = (alg-[)newrhs - (alg-[)oldrhs’
Aa = (alma)new ths — (aJ_Ma)oldrhs-

(12a)
(12b)

The unknowns in Egs. (11) are the differences between the
new and old rhs’s for the ¢ and w, equations of motion.
From the formal Eq. (5), we find the new equations of
motion:

(algab)new ths = (algab)oldrhs + 4gabq)/§0r (133)
(aJ_Kah)new ths = (aJ_Kub)old rhs + ([W)ah/¢2
= 2(Kap — Kgap)®/ @ (13b)

for the metric and extrinsic curvature.

Let us assume that the new equations of motion for ¢
and w,, like the old, are conformally invariant. Then we
see that @ and W, inherit the conformal transformation
properties ® — £7'® and (LW),, — £ 2(LW),,. It fol-
lows that Egs. (11) and (13) are invariant under conformal
transformations. In other words, these equations hold for
any choice of splitting of the physical metric g,;, into a
conformal factor ¢* and conformal metric g,,. For sim-
plicity, we can choose the conformal factor to be unity,
¢ =1, and the conformal metric to coincide with the
physical metric, &,, = g,,- Then Egs. (11) become

Ay = —8D*® — 2K (LW),, — [4K*> — 12K, K
+ 4R]D,
A, = D*(LW),, — 6(D*K,, — D,K/3)®D.

(14a)
(14b)

This is an elliptic system of linear PDE’s for @ and W,.
The new equations of motion (13) become

(aJ_gah)newrhs = (algab)oldrhs + 4gubq)’ (153)
(aJ.Kab)new ths = (aJ.Kab)old rhs + (H—W)ab
— 2(Kap — Kgup)®. (15b)

FIG. 1 (color online).
the Hamiltonian and momentum constraints, using the old and
new equations of motion.
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This is our main result. We can now specify new rhs’s for
the Hamiltonian and momentum constraint equations of
motion. The A’s are found from Egs. (12), and Egs. (14)
are solved for @ and W,,. These results are used in the new
equations of motion, Egs. (15). Note that these equations
contain only the physical metric and extrinsic curvature—
all references to the conformal transverse-traceless split-
ting have disappeared.

What follows is a numerical demonstration that
Egs. (14) and (15) allow us the freedom to prescribe the
evolution of the constraints by altering the Einstein equa-
tions off-shell. For this test we use periodic identification in
the x, y, and z coordinate directions with periods of 2.
Thus, for now, we intentionally avoid facing the very
important issue of boundary conditions. We use initial
data that violates the constraints. The spatial metric is
flat with Cartesian coordinates, g,, = 0,,.- The diagonal
components of the extrinsic curvature are given by K,, =
K,, = K,, = A/3. The off-diagonal component K, is

K

w = £1€08%(2) + &, cos(x) cos(y). (16)

The components K. and K, are obtained from K., by
cyclic permutations of x, y, and z. The initial data is
evolved with unit lapse @ = 1 and vanishing shift 8¢ =
0. For the test results shown here, we use the values A =
0.02, e, = 0.01, and &, = 0.0005.

Figure 1 shows the common logarithm of the L, norm of
the constraints as a function of time, with and without the
off-shell modification terms in Eqgs. (15). For the new
constraint equations we have chosen

(alj{)newrhs = —04H — £,Bj-[’
(alma)ncwrhs = _0'4~7Vla - £,8~7Vla’

(17a)
(17b)

so that at each point in space H and M, have time

' LyH (old

- -3
3
< -35 -
= Ly M (old)
e 4p -
=
S 45 Lo M (new)
<
S
=0
L 55

-6 I

time

Common logarithm of the L, norms of
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dependence ~ exp(—0.4¢). The L, norms are defined with-
out any factors of g, or \/g. That is, we define LyH =

\S H?/N? where the sum extends over the N3 grid

points. Similarly, we define L,M = /3 M, M, /N>

and include a sum over the index a. With these definitions,
the only time dependence that should appear in the L,
norms is the exponential decay ~ exp(—0.4¢). This is
precisely what we see in Fig. 1 with the new equations of
motion. For the old equations of motion, we see strong
oscillations on a short time scale and exponential growth
on a longer time scale.

Our numerical code uses pseudospectral collocation
[20] with a Fourier basis in each of the coordinate direc-
tions. Fourth-order Runge-Kutta is used for time stepping.
The elliptic equations (14) are solved with the iterative
method GMRES [21]. We use a left preconditioner con-
sisting of the inverse of the diagonal part of the elliptic
operator. One of the numerical issues that we face is
spectral blocking [20]. This is the phenomenon in which
aliasing causes an unphysical increase in power in the
highest wave number modes that can be supported on the
grid. Filtering can help alleviate this problem. For the
simulations shown in Fig. 1, we use N = 20 collocation
points in each dimension and a filter that sets the two
highest frequencies to zero at the end of each time step.
The time step is 0.04, compared to a light-crossing time of
approximately 2.

The results displayed in Fig. 1 show that we have indeed
modified the equations of motion off-shell in such a way
that unwanted growth in the constraints is eliminated.
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Ultimately, what we would like to show is the ability to
prevent constraint growth in the first place. Our prelimi-
nary attempts to demonstrate this ability have not been
completely successful, for reasons that we suspect are
purely numerical. Although we cannot rule out the possi-
bility that the combined system Egs. (14) and (15) is
mathematically ill-defined in some sense, the problems
that we have encountered appear to be caused by numerical
issues. One issue is spectral blocking, mentioned above.
Another issue is the failure of our elliptic solver to con-
verge to a solution under circumstances that we do not yet
understand. We suspect that a better preconditioner will
make our elliptic solver more robust and dependable.

For the simulation shown in Fig. 1, with the new equa-
tions of motion, the constraints continue to drop exponen-
tially until # = 15. Beyond this time the constraints begin
to suffer from high wave number variations whose growth
counteracts the exponential drop of the longer wavelength
modes. This breakdown is sensitive to the spatial resolution
and amount of filtering and appears to be related to spectral
blocking. With the old equations of motion, the Hamil-
tonian and momentum constraints continue to grow expo-
nentially until # =~ 45. At that time L, has a value of
~107! and the simulation breaks down. Again, this ap-
pears to be related to spectral blocking. We plan to study
these issues in more detail and present further numerical
tests in a future publication.
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