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Distorted black holes radiate gravitational waves. In the so-called ringdown phase radiation is emitted
as a discrete set of complex quasinormal frequencies, whose values depend only on the black hole’s mass
and angular momentum. Ringdown radiation could be detectable with large signal-to-noise ratio by the
Laser Interferometer Space Antenna (LISA). If more than one mode is detected, tests of the black hole
nature of the source become possible. The detectability of different modes depends on their relative
excitation, which in turn depends on the cause of the perturbation (i.e. on the initial data). A universal,
initial data-independent measure of the relative mode excitation is encoded in the poles of the Green’s
function that propagates small perturbations of the geometry (‘‘excitation factors’’). We compute the
excitation factors for general-spin perturbations of Kerr black holes. We find that for corotating modes
with l � m the excitation factors tend to zero in the extremal limit, and that the contribution of the
overtones should be more significant when the black hole is fast rotating. We also present the first
analytical calculation of the large-damping asymptotics of the excitation factors for static black holes,
including the Schwarzschild and Reissner-Nordström metrics. This is an important step to determine the
convergence properties of the quasinormal mode expansion.
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I. INTRODUCTION

Distorted black holes emit gravitational radiation as a
discrete sum of quasinormal modes (QNMs), damped os-
cillations whose frequencies and damping times depend
only on the black hole’s mass and angular momentum. The
QNM frequencies scale with the inverse of the black hole’s
mass. Therefore, the optimal sensitivity bandwidth of each
detector determines the mass range that can be detected.
The dominant QNM frequency for quadrupolar radiation
from a Schwarzschild black hole is f � 1:207�
10�2�106M�=M� Hz. As a consequence, the collapse of
Population-III stars with mass M * 260M� or 25M� &

M & 40M� forms massive black hole remnants that
could be detectable by ground-based, high-frequency
gravitational-wave interferometers such as advanced
Laser Interferometer Gravitational-Wave Observatory
(LIGO) [1] and Virgo [2]. The space-based Laser
Interferometer Space Antenna (LISA), being sensitive in
the frequency band�10�5–10�1 Hz, will detect the gravi-
tational radiation emitted by oscillating black holes of
mass 105M� & M & 108–109M� with large signal-to-
noise ratio (SNR) throughout the observable Universe
[3,4]. With large SNR come precise measurements of the
source parameters, and an extraordinary opportunity to
study the physics of massive black holes [5].

Since the LISA SNR can be very large, more than one
mode could be detected in the ringdown waveform. Such a
detection would allow an unprecedented test of the black
hole nature of the source. The basic idea is quite simple. In
general relativity the complex QNM frequencies form a
discrete set !lmn classified by three integers: the indices
�l;m� come from the separation of the angular dependence
of the perturbations, and the index n labels frequencies by
the magnitude of their imaginary part (large n means large
imaginary part and short damping time). Because of the
‘‘no-hair theorem,’’ QNM frequencies depend only on the
mass and angular momentum of a Kerr black hole.
Roughly speaking, the measurement of one complex fre-
quency (two observables) provides us with a determination
of the mass and angular momentum of the black hole, and
the measurement of the second frequency allows a consis-
tency check with the general relativistic predictions [4–7].

The detectability of different QNMs depends on the
relative QNM excitation, which in turn is determined by
the cause of the perturbation (i.e. by the initial data). Given
a detection, the resolvability of different modes depends on
the nature of the multimode ringdown waveform. Two
scenarios are possible [4]. If l � l0 or m � m0 (the modes
have different angular dependence) the angular scalar
product between the modes is zero to a good approxima-
tion [8], and the SNR can be expressed as a sum in quad-
rature of the single-mode SNRs. In [4] we called these
multimode ringdown waveforms quasiorthonormal. If in-
stead l � l0 and m � m0, but n � n0 (we look at different
overtones with the same angular dependence) the angular
scalar product is very close to unity, and mixed terms

*Electronic address: berti@wugrav.wustl.edu
†Electronic address: vcardoso@phy.olemiss.edu
‡Also at Centro de Fı́sica Computacional, Universidade de

Coimbra, P-3004-516 Coimbra, Portugal.

PHYSICAL REVIEW D 74, 104020 (2006)

1550-7998=2006=74(10)=104020(27) 104020-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.104020


appear in the SNR calculation and in calculations of pa-
rameter estimation accuracy. We may call these waveforms
quasiparallel.

A quantitative estimate of the relative QNM excitation
for quasiorthonormal waveforms will require numerical
relativistic simulations and realistic initial data for the
merger [9]. However, for quasiparallel waveforms pertur-
bation theory (combined with a good approximation to the
initial data for ringdown) can provide useful information
on the relative excitation of different overtones. In this
paper, using perturbation theory, we develop tools to esti-
mate the relative excitation of different overtones of Kerr
black holes for general classes of initial data. We also try to
gain some theoretical insight into the initial-data depen-
dence of the results for realistic mergers, considering sim-
ple classes of initial data (such as localized spikes and
Gaussians) as model problems.

Our work is the first application to gravitational pertur-
bations of Kerr black holes of a theoretical framework
developed over the years by different authors. Following
the pioneering numerical analysis by Vishveshwara [10],
who studied the scattering of Gaussian wave pulses on the
Schwarzschild background, a number of studies investi-
gated the analytical structure of the Green’s function that
propagates small perturbations in black hole geometries.
Our own analysis is based on the formalism developed
by Leaver in the eighties [11–13], but the Green’s function
in the Schwarzschild background has been studied by
many authors [14–18]. More recently Glampedakis and
Andersson extended the analysis to scalar perturbations of
Kerr black holes [19,20]. Here we carry out the first study
of general-spin perturbations of Kerr black holes, including
the physically most important case of gravitational
perturbations.

The main result emerging from [11–20] is that a ‘‘uni-
versal’’ (initial-data independent) measure of the relative
QNM excitation is encoded in the poles of the Green’s
function that propagates small perturbations of the geome-
try. These universal quasinormal excitation factors
(QNEFs) are defined in Eq. (3.8) below. They depend
only on the Kerr geometry, not on the details of the
perturbation. When combined with a knowledge of the
initial data they can be used to compute the so-called
quasinormal excitation coefficients defined in Eq. (3.9),
which are a concrete measure of the QNM content of a
waveform.

The paper is organized as follows. In Sec. II, to develop
some physical intuition, we consider a very simple physi-
cal system: a vibrating string with fixed ends. This part
provides a useful pedagogical introduction to the QNM
excitation problem, and may be skipped by readers familiar
with the topic. We consider the Green’s function solution
of the vibrating string equation for generic initial data,
identify the normal modes of the system as poles of the
Green’s function and show the importance of initial data to

determine the excitation of the modes. In Sec. III we show
that many features of the vibrating string problem carry
over to black hole perturbation theory, stressing the main
differences between normal mode expansions and QNM
expansions. We also anticipate some results on the con-
vergence of the QNEFs, which are presented in more detail
in Appendix A. In Sec. IV we outline our calculation of the
QNEFs, present the numerical results and compute the
response of a Kerr black hole to localized and Gaussian
initial data. Technical details, as well as a discussion of the
numerical accuracy of our calculations, are relegated to
Appendix B. Appendix C clarifies the relation between the
Teukolsky and Sasaki-Nakamura (SN) formulations of the
Kerr perturbation equations, and between the correspond-
ing QNEFs.

II. A PEDAGOGICAL EXAMPLE: A VIBRATING
STRING

Some key features of the black hole perturbation prob-
lem we address in this paper are exemplified by a very
simple system: a vibrating string with fixed ends. To sim-
plify the mathematics we pick units so that the velocity of
the waves in the string c � 1, and consider a string of
length �. Then any disturbance of the string obeys the
wave equation

 

@2u

@t2
�
@2u

@x2 on 0 � x � �; (2.1)

with u�t; 0� � u�t; �� � 0. The general solution of this
problem is easily verified to be

 u�t; x� �
X1
n�1

� �Cn cosnt	 �C0n sinnt� sin�nx�; (2.2)

where we used an overbar to avoid confusion with the
quasinormal excitation coefficients Cn, as defined in
Eq. (3.9) below. In Fourier language we say the general
solution is a superposition of normal modes with sinusoidal
dependence on x and t, labeled by an integer n. Each mode
has frequency ! � n.

For the general solution to be useful we must determine
the constants �Cn and �C0n, that is, we must determine the
contribution of each individual mode. This contribution
can easily be computed once we are given initial data,
namely, the initial configuration u�0; x� 
 u0�x� and veloc-
ity profile @tu�0; x� 
 v0�x� of the string. Indeed, consider
(2.2) and its first derivative, both evaluated at t � 0.
Multiplying both sides by sinnx and integrating on �0; ��
we get
 

�Cn �
2

�

Z �

0
u0�x� sinnxdx;

�C0n �
2

n�

Z �

0
v0�x� sinnxdx;

(2.3)

which completely specifies the solution.
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In more general situations it is not possible to find
closed-form elementary solutions satisfying some given
boundary conditions (in our vibrating string example, the
fixed ends condition). However, an elegant formal solution
can be obtained using Green’s functions. Let us consider a
slight generalization of Eq. (2.1):

 

@2u

@x2
�
@2u

@t2
� V�x�u � S; (2.4)

where we introduced a potential V�x� and a source S
representing, say, external forces acting on the system
(for a free vibrating string V�x� � S � 0). We define the
Laplace transform of u�t; x� as1

 L u�t; x� 
 û�!; x� �
Z 1
t0
u�t; x�ei!tdt: (2.5)

In terms of the Laplace transform, the original field can be
written as

 u�t; x� �
1

2�

Z 1	ic
�1	ic

û�!; x�e�i!td!: (2.6)

Using the elementary property L�@u�t;x�@t � � �i!Lu�
ei!t0u�x; t0�, the Laplace transformation of (2.4) leads to

 

@2û

@x2
	 �!2 � V�x��û � I�!; x�; (2.7)

where

 I�!; x� � ei!t0
�
i!u�t; x� �

@u�t; x�
@t

�
t�t0

	 Ŝ: (2.8)

This equation is formally solved with the use of a Green’s
function G�x; x0� such that

 

@2û

@x2
	 �!2 � V�x��G�x; x0� � ��x� x0�: (2.9)

In terms of the Green’s function the solution is simply
given by

 û �
Z
I�!; x0�G�x; x0�dx0: (2.10)

Suppose we know the Green’s function. Then the previous
equation shows that, given I�!; x0� (which means, in the
absence of external forces, given initial data) we can
determine, at least in principle, the solution.

There is a general prescription to construct the Green’s
function [21]. Find two linearly independent solutions of

the homogeneous equation, say û1�!; x� and û2�!; x�, each
satisfying one of the required boundary conditions: for the
vibrating string these solutions would be such that
û1�!; 0� � 0, û2�!;�� � 0. The Green’s function is then

 G�x; x0� �
1

W

�
û1�x�û2�x0� if x � x0;
û1�x

0�û2�x� if x0 � x;
(2.11)

where we defined the Wronskian between the two solutions

 W �
@û1

@x
û2 � û1

@û2

@x
; (2.12)

which for equations of the type (2.7) is a constant. For the
vibrating string the homogeneous solutions are elementary
functions: û1 � sin!x, û2 � sin!�x� ��, and the
Green’s function

 G�x; x0� �

(
� sin!x sin!�x0���

! sin!� if x � x0;

� sin!x0 sin!�x���
! sin!� if x0 � x:

(2.13)

Notice that the Wronskian W � �! sin!� is zero at
! � n with n integer, that is, at the normal frequencies
of the system. Near the poles ! � n we have W ’
��n� cos�n����!� n�. Corresponding to zeros of the
Wronskian (which are also poles of the Green’s function;
see below) the two solutions û1 and û2 are no longer
independent; they satisfy both boundary conditions simul-
taneously. In fact, setting ! � n in (2.13) we can see that
û1 and û2 coincide, and correspond to the normal modes of
the system. Using (2.6), (2.8), and (2.10), and setting for
simplicity t0 � S � 0 we get

 u�t; x� �
1

2�

Z
dx0d!�i!u0�x0� � v0�x0��G�x; x0�e�i!t:

(2.14)

The !-integral can be performed by closing the contour of
integration. We choose the contour depicted in Fig. 1.

 

xxxxxxx x x x x x x

Im(ω)

Re(ω)

FIG. 1. Integration contour for the vibrating string problem.
Crosses mark zeros of the Wronskian W, corresponding to the
normal frequencies of the system.

1The usual Laplace variable s � �i!. We prefer to use ! for
notational consistency with previous work by Leaver [13] and
Andersson [17]. Our transform is well defined as long as
Im�!� 
 c.
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If û1�x�; û2�x� are analytic and have no essential singu-
larities inside the contour,2 the poles of the Green’s func-
tion are all due to zeros of the Wronskian. In this way we
get for the integral in (2.14),
 

u�t; x� �
1

2�

Z
dx0d!�i!u0�x0� � v0�x0��G�x; x0�e�i!t

� �i
X
n

1

n�

�Z
dx0 sinnx0�inu0�x

0� � v0�x
0��

�

� e�int sinnx	
1

2�

Z
HC
d!

�
Z
dx0�i!u0�x

0� � v0�x
0��G�x; x0�e�i!t; (2.15)

where ‘‘HC’’ in the second term means that the integration
should be performed along the half-circle. Not surpris-
ingly, taking the real part of the right-hand side we recover
the result (2.2) with expansion coefficients given by (2.3).

The bottom line of this discussion is that the general
solution depends crucially on two elements: (i) the residues
of the Green’s function evaluated at the poles (that is, at the
normal frequencies) and (ii) the function I�!; x�, which (in
the absence of initial forces) is nothing but the initial data.
By inspection, the net result for the field can be expressed
as a sum of the form

 u�t; x� /
X
n

Jn�t; x�
@!W

un�!n; x�e
�i!nt; (2.16)

where !n � n is a normal frequency, Jn�t; x� �R
dx0I�!n; x0�un�!n; x0� and un�!n; x� � sinnx is a normal

mode wave function (that is, any of the homogeneous
solutions evaluated at the normal frequency !n � n). We
will see below that a similar result holds for the ringdown
of Kerr black holes.

Effect of initial data

In the previous section we pointed out that initial data
play a crucial role to determine the excitation of the normal
modes of a system. For illustration, below we consider
three simple examples that will be useful in the following
to understand, by analogy, the initial-data dependence of
the excitation of a Kerr black hole.

Suppose first that we have an (initially stationary)
plucked string; the string’s initial profile is a triangle of
height h with a vertex at xS, i.e. v0�x� � 0 and

 u0�x� �

(
xh
xS

if 0 � x � xS;
h���x�
��xS

if xS � x � �:
(2.17)

Stationarity of the initial data implies that �C0n � 0, so that

 u�t; x� �
X1
n�1

�Cn cosnt sinnx; �Cn �
2h

n2

sinnxS

xS��� xS�
:

(2.18)

Notice that modes having a node at xS, where the string is
plucked, are not excited � �Cn � 0�. Notice also that the
‘‘excitation factors’’ �Cn decrease as 1=n2.

As a second example take stationary, localized
‘‘�-function’’ initial data of the form

 u0�x� � ��x� xS�; v0�x� � 0: (2.19)

The excitation factors are trivially computed:

 

�C n �
2

�
sin�nxS�: (2.20)

It is apparent that all modes are excited to a comparable
amplitude except for modes with a node at the plucking
point, which are not excited at all.

Our third and last example are stationary, Gaussian
initial data:

 u0�x� � e�b�x�x
S�2 ; v0�x� � 0: (2.21)

For large b the Gaussian is strongly peaked at x � xS, in
which case the contribution to the integral outside of �0; ��
can be ignored and we have
 

�Cn �
2

�

Z �

0
u0�x� sinnxdx ’

2

�

Z 1
�1

e�b�x�x
S�2 sinnxdx

�
2 sin�nxS��������

�b
p e�n

2=�4b�: (2.22)

Therefore a mode with given n is maximally excited when
the width of the Gaussian satisfies the condition b � n2=2.
A similar result will be seen to hold for Gaussians exciting
Kerr black holes.

The basic lesson we learn from these examples is that
the excitation of a system is very sensitive to the initial
data. More specifically, whether a given mode is excited or
not depends strongly on the point where we excite the
system (‘‘pluck the string’’).

III. OSCILLATING BLACK HOLES

In the SN formalism [22,23,25,24], perturbations of a
Kerr black hole induced by a spin-s field are described by a
single function X�s��t; r� whose Laplace transform satisfies

 

d2X̂�s��!; r�

dr2
�

	 VSNX̂
�s��!; r� � I�!; r�; (3.1)

where the effective potential VSN depends both on the
radial coordinate and on the frequency. The function
I�!; r� is a linear combination of the SN function
X�s��t0; r� and its time derivative _X�s��t0; r� at time t0 (see
below for the explicit expression for scalar perturbations).

2Both conditions are met in the case of a vibrating string, but
both are violated when we deal with black hole QNMs. For black
holes, the Green’s function essential singularity at the origin
gives rise to tails, and the integral over the half-circle at infinity
is responsible for the early-time response of the black hole. See
the discussion after Eq. (3.6).
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The tortoise coordinate r� is defined by the condition

 

dr�
dr
�
r2 	 a2

�
; (3.2)

ranging from �1 (the location of the event horizon) to
	1 (spatial infinity). We use Boyer-Lindquist coordinates
and follow Leaver’s choice of units, setting G � c �
2M � 1. In Leaver’s units the angular momentum per
unit mass a is such that 0 � a � M � 1=2, and the hori-
zon function � � r2 � r	 a2. Sometimes we will present
our results in terms of the more familiar dimensionless
angular momentum j � 2a, such that 0 � j � 1. The class
of problems that fit in this description include any massless
field in the Kerr geometry, including gravitational, electro-
magnetic, and scalar fields [26].

The main difference with the vibrating string example is
that our system is not conservative: waves can escape to
infinity. For this reason an expansion in normal modes is
not possible (see [13,15,27] for extensive discussions of
this point). Wave propagation is also complicated by back-
scattering off the background curvature, which is respon-
sible for tail effects [28]. Despite these complications it can
be shown that the poles of the Green’s function (now
located at complex frequencies corresponding to the
QNMs) still play an important role in the evolution.

The QNM contribution can be isolated from other fea-
tures of the signal, such as the late-time tail, using the
Green’s function technique [13,17]. First one defines a
solution of the homogeneous equation having the correct
behavior at the horizon (only ingoing waves),

 lim
r!r	

X̂�s�r	 � e
�i�!�m��r� ; (3.3)

 lim
r!1

X̂�s�r	 � Ain�!�e
�i!r� 	 Aout�!�e

i!r� ; (3.4)

where r� � �1� �1� 4a2�1=2�=2, and a second solution
X̂�s�1	 behaving as ei!r� for large values of r. Since the
Wronskian W � 2i!Ain we can express the general solu-
tion as [17]

 X̂ �s��!; r� � X̂�s�1	
Z r�

�1

I�!; r�X̂�s�r	
2i!Ain

dr0�

	 X̂�s�r	
Z 1
r�

I�!; r�X̂�s�1	
2i!Ain

dr0�: (3.5)

To proceed we make the astrophysically reasonable as-
sumption that the observer is located far away from the
black hole. If the initial data have compact support and this
support is entirely located closer to the black hole with
respect to the observer (this is basically a ‘‘no-incoming
radiation from infinity’’ condition), a good approximation
will be

 X̂ �s��!; r� ’
ei!r�

2i!Ain

Z 1
�1

I�!; r�X̂�s�r	dr
0
�: (3.6)

As explained in [13,17,29], when we invert this expression
to get the solution in the time domain we get (as in the
vibrating string case) a contribution from the poles of the
Green’s function. This contribution can again be isolated
by closing the path of integration, as was done in
Eq. (2.15). An important difference that distinguishes black
hole spacetimes is that there is now an essential singularity
at! � 0 and a branch cut extending from the singularity to
�i1 [29–31]. To prevent the essential singularity from
lying inside the integration contour we must modify
slightly the contour of Fig. 1. We place a branch cut along
the negative imaginary ! axis and split the half-circle at
j!j ! 1 into two quarter circles. The new contour is
shown in Fig. 2. The poles in the complex frequency plane
are the zeros of Ain; they correspond to perturbations
satisfying both ingoing wave conditions at the horizon
and outgoing wave conditions at infinity, that is (by defi-
nition) to QNMs. QNM frequencies have negative imagi-
nary part. Since we assume a Fourier dependence of the
form X�s��t; r� � e�i!t this means that there are no expo-
nentially growing modes. There is an infinity of QNMs,
which are usually sorted by the magnitude of their imagi-
nary part and labeled by an integer n.

Extracting the QNM contribution3 to the radiated wave
we get

 

x x

xx

xx

xx

Im(ω)

Re(ω)

FIG. 2. Integration contour to invert Eq. (3.6). The shaded area
is the branch cut and crosses mark zeros of the WronskianW (the
QNM frequencies).

3There are also other contributions to the signal. The essential
singularity at the origin (! � 0) gives rise to the tail of the time
evolved wave function; the integral over the quarter circles at
infinite frequency produces the early-time response of the black
hole. Since our main focus is the QNM contribution we discard
these two terms in the integral. For more details we refer the
reader to [13,29,31].
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X�s��t; r� � �Re
�X
n

Bne�i!n�t�r��
Z 1
�1

I�!; r�X̂�s�r	
Aout

dr0�

�
(3.7a)

� �Re
�X
n

Cne�i!n�t�r��
�
; (3.7b)

where the sum is over all poles in the complex plane and
the QNEFs Bn are defined as

 Bn �
Aout

2!�n


Aout

2!

�
dAin

d!

�
�1
��������!�!n

: (3.8)

Here �n is a commonly used notation for the derivative of
Ain at the QNM frequency. The quasinormal excitation
coefficients Cn can be computed as

 Cn � Bn
Z 1
�1

I�!; r�X̂�s�r	
Aout

dr0� (3.9)

whenever the integral on the right-hand side, which must
be evaluated at the QNM frequency ! � !n, is conver-
gent. In general the QNM frequencies!n, the Bn’s, and the
Cn’s (as well as the wave function) depend on �l;m� and the
spin of the perturbing field s, but to simplify the notation
we will omit this dependence whenever there is no risk of
confusion.

By definition of the QNM frequencies, X̂�s�r	 � Aoute
i!r�

as r� ! 1 at ! � !n; in this sense the above integral is
‘‘normalized.’’ For source terms I�!; r� that are zero out-
side some finite range of r, or have sufficiently rapid
exponential decay as jr�j ! 1, the integral is also con-
vergent. For other classes of initial data the integral as
evaluated on the real line is, in general, divergent. This is
a major difference with respect to ordinary normal mode
expansions. The normal modes of closed mechanical sys-
tems are Sturm-Liouville eigenfunctions of the wave equa-
tion, and their excitation coefficients are weighted integrals
of the source term over the mode. Since the Sturm-
Liouville eigenfunctions are always bounded, the integrals
always converge. For QNM expansions a meaningful defi-
nition of the integral for general source terms requires
more care, and the introduction of an analytical continu-
ation procedure [13,14].

Equation (3.7) is one of the main results we will use
throughout the rest of the paper. Once we specify initial
data, the QNEFs allow the determination of the QNM
content of a signal. QNEFs have long been known for
scalar, electromagnetic, and gravitational perturbations of
Schwarzschild black holes [13,14,17]. More recently there
have been attempts to extend those calculations to scalar
perturbations of Kerr black holes [19,20]. Electromagnetic
and (most importantly for gravitational-wave phenomenol-
ogy) gravitational perturbations of Kerr black holes have
not been dealt with so far. One purpose of the present work

is to fill this gap. Before turning to an explicit calculation
of the Bn’s we will provide the explicit form of the function
I�!; r� for s � 0. We will also address two important
conceptual issues: the time-shift problem and the conver-
gence of the QNM expansion.

A. Initial data for scalar perturbations

For a scalar field [19] the function I�!; r� is given by
 

I�!; r� � ei!t0
�
i
�
!�

2amr	!a2��lm
�r2 	 a2�2

�
X�0��t0; r�

�

�
1�

a2��lm
�r2 	 a2�2

�
_X�0��t0; r�

�
; (3.10)

where �lm is a number depending on the multipole of the
field under study:

 �lm � 2�
Z �

0
S�lm�a!; ��Slm�a!; ��sin3�d�: (3.11)

Here the Slm’s are scalar (s � 0) spin-weighted spheroidal
harmonics [8]. We require them to satisfy the normaliza-
tion condition 2�

R
�
0 S
�
lm�a!; ��Slm�a!; �� sin�d� � 1

(notice that this normalization differs by a factor 2�
from that adopted in [19]). Even though these functions
depend on a!, in [4] we showed that in some cases (for
example, when we are dealing with slowly damped QNMs)
this dependence can safely be neglected. When a! � 0
scalar spheroidal harmonics reduce to the usual spherical
harmonics, and the integral can be computed analytically
with the result

 �lm �
2�l2 	 l� 1	m2�

�2l� 1��3	 2l�
: (3.12)

For the calculations in this paper, the analytic formula is
extremely accurate even when a! � 0. For example, for a
near-extremal black hole with j � 0:98 a numerical
evaluation of the integral at the fundamental scalar QNM
frequency yields �22 � 0:854 139, in excellent agreement
with the analytic prediction �22 � 6=7 ’ 0:857 143.
Results for other slowly damped modes are similar.

In the following of the paper we will focus, for simplic-
ity, on static initial data. For large r Eq. (3.10) reduces to

 I�!; r� � i!ei!t0X�0��t0; r�; (3.13)

whereas for r very near the horizon we get

 I�!; r� � iei!t0�!� 2m��X�0��t0; r�; (3.14)

where � � a=r	 is the angular velocity of the horizon.

B. The time-shift problem

Taken at face value Eq. (3.7) is troublesome, because the
response diverges (exponentially) for early times. The
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well-known fact that ringdown waveforms only make
sense for certain values of t is usually referred to as the
‘‘time-shift problem’’ [14,16,18]. For illustration, consider
Eq. (3.7) for a Schwarzschild black hole with static initial
data:
 

X�s��t; r� � �Re
�X1
n�0

Bne�i!n�t�r��t0�

�
Z 1
�1

i!nX
�s��t0; r�X̂

�s�
r	

Aout
dr0�

�
: (3.15)

The wave field X�s��t; r� at some observation point r and
time t depends exponentially on the (arbitrary) choice of t0,
which does not make much physical sense. Suppose in
addition that the initial data consist of a narrow pulse,
say for simplicity a �-function: X�s��t0; r� � ��r� rS�.
Far away from the black hole X̂�s�r	 � Aoute

i!nr� , and the
response of the black hole increases exponentially with rS.
This is against physical intuition. According to our Fourier
convention stable oscillations have Im�!�< 0, so a small
bump in initial data far from the black hole seems to excite
much more ringing than a huge bump in the strong-field
region around the horizon.

The way out of this problem [14,18] is to realize that
ringdown only starts after the initial data (that for simplic-
ity are usually assumed to have compact support and be
located in the far zone, rS � 1) reach the potential barrier,
where ringdown originates [10], and the perturbation trav-
els back to the observer. Suppose the observer is sitting at
some large r� and an impulse localized at r� � rS� falls into
the black hole at time t0. The Regge-Wheeler ‘‘potential
barrier’’ has a location depending on the mode under
consideration, and the very notion of potential barrier
becomes fuzzy for Kerr black holes. A reasonable estimate
is to assume that the ‘‘barrier’’ is located close to r� � 0,
and to avoid complications we will take this estimate as our
fiducial value. In geometrical units, based on the above
discussion, the starting time for the ringdown signal will be
approximately

 tstart � jrS�j 	 r� 	 t0: (3.16)

For the QNM expansion to make sense, the observation
time t must always be chosen so that t 
 tstart. This choice
partially gets rid of the time-shift problem, in the sense that
t0 and rS� do not appear explicitly in the waveform.

A more rigorous approach should also take into account
the contribution of the prompt response (the analogous of
light cone propagation in flat space) and the matching
between these two phases. Reference [18] explores some
aspects of this problem, computing the large-frequency
contribution to the Green’s function (large frequency is
roughly equivalent to early times). The final result does not
significantly alter our ‘‘simple-minded’’ scenario. We
should also mention that our prescription to solve the

time-shift problem works reasonably well only for sharply
localized initial data, like narrow Gaussians. If the initial
data have a significant spread in the radial direction, the
starting time tstart is ill defined and we must resort to a more
detailed analysis, based perhaps on time-dependent exci-
tation coefficients [18]. This problem deserves further
investigation.

C. Convergence of the QNM expansion

The convergence of the QNM series has been studied in
some special important cases by Leaver [13]. In particular
he pointed out that the sum can only be expected to
converge at times t such that ringdown dominates (see
the above discussion of the time-shift problem), and that
the ultimate convergence of the series depends on the
large-n asymptotics of the QNEFs. The convergence prob-
lem was revisited numerically by Andersson [18] comput-
ing the Bn’s up to n� 200 for scalar perturbations. His
calculation shows that their magnitude decreases
monotonically for large n. From (3.15) it follows that,
if the initial data are localized at r� � rS� � 1, the
ratio of two consecutive terms behaves like
�Bn	1=Bn�e

�i�!n	1�!n��t�r��rS� �. Asymptotically, !n	1 ’
!n � i=2 for large n. In Appendix A we determine analyti-
cally, for the first time, the asymptotic behavior of the
QNEFs for a number of static black hole spacetimes. Our
most interesting result is that the large-n behavior of scalar
and gravitational perturbations of a Schwarzschild black
hole is

 B�0�n � B��2�
n � �

i
3�� log3� �2n	 1��i�

;

�n! 1�;

(3.17)

in good agreement with numerical calculations (cf. Fig. 2
in Ref. [18]). This implies that jBn	1=Bnj ! 1 in the same
limit, so the ratio of consecutive terms is of order
exp���t� r� � rS��=2� and the sum will converge for �t�
r� � rS�� � 0. This is precisely the kind of convergence we
should expect from a QNM expansion.

To prove more rigorously the convergence of the expan-
sion (3.7) we still need two ingredients. The first is the
convergence of the integral in (3.9). For generic initial data
this integral diverges on the real line. The divergence can
be cured by analytic continuation, evaluating the integral
as a contour integral (for details see [13,14]). Second, the
fact that the QNEFs Bn � 1=n for large n does not imply
convergence of the corresponding quasinormal excitation
coefficients Cn. A proof of convergence would require the
calculation of the integral over initial data and a knowledge
(or an estimate of) its n-dependence for large n.

Having discussed these basic properties of QNM expan-
sions, in the following of the paper we turn to an explicit
calculation of the j-dependence of the QNEFs for different
QNMs and for different spins of the perturbing field.
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IV. QUASINORMAL EXCITATION FACTORS IN
THE KERR BACKGROUND

A. Formalism

Perturbations in the Kerr geometry can be studied using
both the Teukolsky [32] and SN [23] formalisms. There are
two main advantages in using the SN formalism: (i) the
potential and source in the SN wave equation are short
ranged and (ii) in the limit a! 0 the SN wave equation
reduces to the Regge-Wheeler equation, describing axial
perturbations of a Schwarzschild black hole.

The QNEFs Bn depend, by their own definition (3.8), on
the amplitude of ingoing and outgoing waves at infinity.
Even in the Schwarzschild limit, despite the isospectrality
between axial and polar perturbations, the Regge-Wheeler
and Zerilli QNEFs differ by a proportionality constant.
Denoting quantities in the Zerilli equation by a plus (mean-
ing even-parity), the two are related in a simple way [13]:
 

A	out �
�l� 1�l�l	 1��l	 2� 	 6i!
�l� 1�l�l	 1��l	 2� � 6i!

Aout;

B	n �
�l� 1�l�l	 1��l	 2� 	 6i!
�l� 1�l�l	 1��l	 2� � 6i!

Bn:

(4.1)

Similarly, the SN QNEFs for spin-s perturbations B�s�

will differ from the Teukolsky QNEFs (that we will denote
by a subscript T, B�s�T ) by a proportionality constant. In
Appendix C we derive the following relations:
 

B�0�T � B�0�; B��1�
T � �

4!2

2am!� Alm � a
2!2 B

��1�;

B��2�
T �

16!4

���	 2� � 6i!� 12a!�a!�m�
B��2� (4.2)

with � 
 Alm 	 �a!�2 � 2am!.
Our calculations in this paper rely heavily on the formal-

ism developed by Leaver [11–13], which refers to the
Teukolsky formulation of the Kerr perturbation equations.
In this section we only outline the basic steps of the
calculation, relegating details to Appendix B. Expanding
a spin-s field  �t; r; �; �� as

  �t; r; �; �� �
1

2�

Z
e�i!t

X1
l�jsj

Xl
m��l

eim�Slm���Rlm�r�d!;

(4.3)

we get ordinary differential equations for Slm and Rlm [32]:
 

@u��1� u2�@uSlm� 	
�
a2!2u2 � 2a!su	 s	 Alm

�
�m	 su�2

1� u2

�
Slm � 0; (4.4)

 �@2
rRlm 	 �s	 1��2r� 1�@rRlm 	 VRlm � 0; (4.5)

where u 
 cos� and

 

V � 2is!r� a2!2 � Alm 	
1

�
��r2 	 a2�2!2 � 2am!r

	 a2m2 	 is�am�2r� 1� �!�r2 � a2���: (4.6)

The field spin s � 0, �1, �2 for scalar, electromagnetic,
and gravitational perturbations, respectively. The separa-
tion constant Alm reduces to l�l	 1� � s�s	 1� in the
Schwarzschild limit. The general series solution of the
angular equation with appropriate boundary conditions is
given in Appendix A 1.

Let us consider the radial equation (4.5). For brevity, in
the rest of the paper we drop the dependence of the
Teukolsky function Rlm on the angular indices �l; m�.
Following Leaver (see Appendix B for details) we intro-
duce three different solutions of the homogeneous equa-
tion (4.5): Rr	 , R1	 , R1� , with asymptotic behavior [13]
 

lim
r!r	

Rr	 � �r	 � r��
�1�s	i!	i�	ei!r	�r� r	�

�s�i�	 ;

(4.7a)

lim
r!1

Rr	 � A
T
in�!�r

�1�i!e�i!r 	 ATout�!�r
�1�2s	i!ei!r;

(4.7b)

 

lim
r!1

R1	 � r
�1�2s	i!ei!r; (4.8a)

lim
r!1

R1� � r
�1�i!e�i!r: (4.8b)

In these relations �	 � �!r	 � am�=b and b ������������������
1� 4a2
p

.
By definition, QNM frequencies !n are such that

ATin�!n� � 0. We compute them following the procedure
in [11,33] and verifying that ATin � 0 to some required
numerical accuracy (typically better than one part in
106). From (4.7b) and (4.8b) it follows that
 

Rr	 � ATinR1� 	 A
T
outR1	 ; (4.9a)

R0r	 � ATinR
0
1�
	 AToutR

0
1	
: (4.9b)

From these relations it is clear that computing the QNEFs
requires accurate representations of the solutions both
close to the horizon and at infinity. Close to the horizon,
an accurate representation is provided by a series solution
first found by Jaffé. At infinity we must resort to a different
expansion in terms of Coulomb wave functions. Properties
of these representations which are important for the calcu-
lation of the three solutions (Rr	 , R1	 , and R1�) are given
in Appendices B 2 and B 3, respectively. We performed a
number of consistency checks on the solutions, some of
which are described in Appendix B 4. More details can be
found in the original papers by Leaver [11–13]. Notice that
the outgoing-wave amplitude Aout is unambiguously de-
fined once we fix the normalization according to Eq. (4.7).
The corresponding normalization for the SN wave func-
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tions is derived in Appendix C; see, in particular, Eqs. (C7),
(C13), and (C16).

To compute the QNEFs (4.2) as functions of the rotation
rate j � 2a, we first obtain the amplitudes ATin and ATout by
matching the three solutions and their derivatives at some
point (usually r � 5–7). Then we compute the derivative
�n introduced in (3.8). Close to a QNM frequency we can
perform a Taylor expansion of the ingoing amplitude:
ATin ’ �n�!, with �! a small complex number. For each
value of s and a we evaluate ATin at a discrete set of points
! � !n 	 k�! (typically we pick �! � 10�4 and the
integer k � �2; . . . ; 2). Then we obtain �n from a linear
fit of ATin as a function of �!, and verify that the resulting
derivatives satisfy the Cauchy-Riemann conditions.

In the rest of this paper we present our results for the
QNEFs using both the Teukolsky and SN formalisms, and
discuss some of their implications for gravitational-wave
phenomenology.

B. Numerical results

The QNEFs of Schwarzschild black holes were first
introduced and computed by Leaver in his seminal analysis
of the radiative Green’s function. Table I of [13] lists the
QNEFs for the first four overtones of electromagnetic
perturbations with l � 1, the first seven overtones of gravi-
tational perturbations with l � 2, and the first four over-
tones of gravitational perturbations with l � 3 and l � 4.

Building on Leaver’s analysis, Sun and Price [14] studied
the initial data dependence of the Schwarzschild quasinor-
mal excitation coefficients. Andersson [17] computed the
QNEFs for scalar and gravitational perturbations using the
approximate phase-integral method, finding good quanti-
tative agreement with Leaver for s � �2 and pointing out
a few sign errors in Leaver’s results. Later, using the same
technique he was able to compute the (scalar) QNEFs up to
overtone numbers n� 200 [18]. Glampedakis and
Andersson [20] tried to extend the methods of Ref. [17]
to scalar perturbations of Kerr black holes. The QNEFs
listed in their Table III do not reduce to the correct
Schwarzschild limit [34], and the ‘‘effective amplitude’’
results in Fig. 5 of their paper are only qualitatively correct.

We computed QNEFs using both Mathematica and a
Fortran code. In the limit a! 0 the Fortran code repro-
duces Table I of [13], once we correct for Leaver’s sign
mistakes, to all (five) significant digits. Given the complex-
ity of the algorithm described in Appendix B it is hard to
quantify our numerical error for a � 0, but results should
be accurate to the same level. The numerical accuracy
depends on many factors, including the number of terms
included in the Coulomb wave function expansion (B39),
the matching radius chosen to solve the linear system (4.9),
and the value of �! used to compute �n by a linear fit. In
general, the number of digits to which Ain � 0 at the QNM
frequency and the level to which the Cauchy-Riemann
conditions are satisfied in the calculation of �n are good

TABLE I. QNM frequencies of the first two overtones with s � 0 and l � 2, for several values of rotation parameter, and for some
values of m. For consistency with [4], with Table 3 of [20] and with most of the QNM literature, here we depart from Leaver’s unit
convention (but not from his Fourier transform convention) listing the dimensionless frequencies !M.

s � 0, n � 0

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 0:483 64� 0:096 76i 0:483 64� 0:096 76i 0:483 64� 0:096 76i 0:483 64� 0:096 76i 0:483 64� 0:096 76i
0.20 0:456 20� 0:096 55i 0:470 15� 0:096 50i 0:484 91� 0:096 46i 0:500 55� 0:096 41i 0:517 12� 0:096 38i
0.40 0:433 06� 0:095 99i 0:459 32� 0:095 77i 0:488 86� 0:095 47i 0:522 14� 0:095 15i 0:559 64� 0:094 93i
0.50 0:422 75� 0:095 62i 0:454 77� 0:095 23i 0:491 96� 0:094 63i 0:535 36� 0:093 97i 0:585 99� 0:093 49i
0.60 0:413 15� 0:095 20i 0:450 73� 0:094 57i 0:495 94� 0:093 48i 0:550 80� 0:092 19i 0:617 37� 0:091 25i
0.80 0:395 73� 0:094 29i 0:444 07� 0:092 80i 0:507 13� 0:089 67i 0:592 02� 0:085 13i 0:706 83� 0:081 52i
0.90 0:387 80� 0:093 79i 0:441 41� 0:091 65i 0:514 78� 0:086 41i 0:621 83� 0:077 18i 0:781 64� 0:069 29i
0.98 0:381 77� 0:093 38i 0:439 57� 0:090 57i 0:522 12� 0:082 54i 0:654 70� 0:062 90i 0:898 02� 0:040 90i

s � 0, n � 1

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 0:463 85� 0:295 60i 0:463 85� 0:295 60i 0:463 85� 0:295 60i 0:463 85� 0:295 60i 0:463 85� 0:295 60i
0.20 0:434 18� 0:295 76i 0:449 40� 0:295 18i 0:465 39� 0:294 60i 0:482 21� 0:294 05i 0:499 89� 0:293 58i
0.40 0:409 07� 0:294 77i 0:438 05� 0:293 14i 0:470 13� 0:291 32i 0:505 78� 0:289 55i 0:545 41� 0:288 21i
0.50 0:397 87� 0:293 98i 0:433 37� 0:291 53i 0:473 81� 0:288 56i 0:520 20� 0:285 55i 0:573 44� 0:283 34i
0.60 0:387 40� 0:293 04i 0:429 27� 0:289 50i 0:478 43� 0:284 76i 0:536 97� 0:279 69i 0:606 67� 0:275 99i
0.80 0:368 39� 0:290 81i 0:422 53� 0:283 95i 0:490 60� 0:272 24i 0:580 67� 0:256 88i 0:700 42� 0:245 48i
0.90 0:359 71� 0:289 56i 0:419 69� 0:280 29i 0:497 59� 0:261 77i 0:609 84� 0:231 50i 0:777 68� 0:208 01i
0.98 0:353 10� 0:288 51i 0:417 54� 0:276 87i 0:502 30� 0:250 24i 0:629 82� 0:187 39i 0:896 22� 0:122 14i
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TABLE III. QNEFs B�0� of the first two overtones with s � 0 and l � 2, for several values of rotation parameter, and for some values
of m.

s � 0, n � 0

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 0:119 36	 0:013 43i 0:119 36	 0:013 43i 0:119 36	 0:013 43i 0:119 36	 0:013 43i 0:119 36	 0:013 43i
0.20 0:120 28� 0:002 81i 0:120 13	 0:006 95i 0:119 07	 0:017 46i 0:116 87	 0:028 68i 0:113 32	 0:040 50i
0.40 0:120 79� 0:010 47i 0:120 90	 0:008 28i 0:117 14	 0:030 12i 0:107 69	 0:054 42i 0:090 45	 0:079 51i
0.50 0:121 56� 0:011 46i 0:121 30	 0:011 97i 0:114 47	 0:040 16i 0:097 15	 0:071 41i 0:065 18	 0:100 76i
0.60 0:122 83� 0:010 49i 0:121 49	 0:017 94i 0:109 45	 0:052 96i 0:079 19	 0:090 11i 0:024 41	 0:116 21i
0.80 0:127 20� 0:000 92i 0:119 39	 0:038 99i 0:084 59	 0:086 50i 0:003 72	 0:113 79i �0:095 56	 0:051 69i
0.90 0:130 27	 0:010 75i 0:114 56	 0:057 09i 0:056 91	 0:104 67i �0:056 09	 0:085 85i �0:057 39� 0:070 09i
0.98 0:132 53	 0:031 51i 0:103 13	 0:082 51i 0:016 44	 0:115 42i �0:075 90	 0:010 89i 0:030 15	 0:032 47i

s � 0, n � 1

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 0:035 52� 0:264 27i 0:035 52� 0:264 27i 0:035 52� 0:264 27i 0:035 52� 0:264 27i 0:035 52� 0:264 27i
0.20 0:000 31� 0:238 79i 0:020 62� 0:253 61i 0:045 36� 0:267 60i 0:075 08� 0:279 98i 0:110 26� 0:289 69i
0.40 �0:013 05� 0:221 94i 0:023 73� 0:250 63i 0:078 30� 0:275 35i 0:154 82� 0:288 23i 0:255 02� 0:276 56i
0.50 �0:014 18� 0:217 35i 0:031 86� 0:251 95i 0:106 51� 0:278 17i 0:216 94� 0:277 60i 0:360 21� 0:218 56i
0.60 �0:012 04� 0:215 52i 0:045 20� 0:254 82i 0:145 19� 0:276 68i 0:296 10� 0:241 32i 0:469 44� 0:080 37i
0.80 0:004 33� 0:221 75i 0:094 87� 0:262 60i 0:260 97� 0:232 85i 0:441 82	 0:015 97i 0:244 18	 0:548 78i
0.90 0:024 30� 0:232 58i 0:141 56� 0:264 09i 0:333 34� 0:161 03i 0:337 15	 0:266 54i �0:501 93	 0:313 83i
0.98 0:062 91� 0:251 69i 0:215 30� 0:256 51i 0:391 47� 0:044 18i 0:064 35	 0:292 30i 0:237 52� 0:127 29i

TABLE II. Angular separation constants Alm of the first two overtones with s � 0 and l � 2, for several values of rotation parameter,
and for some values of m.

s � 0, n � 0

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 6:0000	 0:000 00i 6:0000	 0:000 00i 6:0000	 0:000 00i 6:0000	 0:000 00i 6:0000	 0:000 00i
0.20 5:9989	 0:000 50i 5:9964	 0:001 56i 5:9953	 0:001 96i 5:9959	 0:001 66i 5:9985	 0:000 57i
0.40 5:9959	 0:001 90i 5:9862	 0:006 04i 5:9807	 0:007 81i 5:9819	 0:006 82i 5:9930	 0:002 43i
0.50 5:9939	 0:002 89i 5:9788	 0:009 29i 5:9695	 0:012 17i 5:9702	 0:010 80i 5:9880	 0:003 92i
0.60 5:9917	 0:004 05i 5:9700	 0:013 17i 5:9553	 0:017 43i 5:9544	 0:015 70i 5:9808	 0:005 82i
0.80 5:9865	 0:006 84i 5:9482	 0:02266i 5:9167	 0:030 30i 5:9056	 0:027 76i 5:9547	 0:010 63i
0.90 5:9836	 0:008 45i 5:9352	 0:028 17i 5:8911	 0:037 44i 5:8674	 0:033 51i 5:9294	 0:012 71i
0.98 5:9812	 0:009 82i 5:9237	 0:032 89i 5:8668	 0:042 93i 5:8245	 0:034 16i 5:8884	 0:010 30i

s � 0, n � 1

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 6:0000	 0:000 00i 6:0000	 0:000 00i 6:0000	 0:000 00i 6:0000	 0:000 00i 6:0000	 0:000 00i
0.20 5:9994	 0:001 47i 5:9980	 0:004 55i 5:9973	 0:005 75i 5:9975	 0:004 86i 5:9991	 0:001 68i
0.40 5:9982	 0:005 52i 5:9927	 0:017 62i 5:9886	 0:022 94i 5:9882	 0:020 10i 5:9951	 0:007 19i
0.50 5:9974	 0:008 36i 5:9890	 0:027 09i 5:9815	 0:035 77i 5:9797	 0:031 86i 5:9911	 0:011 63i
0.60 5:9967	 0:011 69i 5:9845	 0:038 38i 5:9720	 0:051 29i 5:9676	 0:046 41i 5:9850	 0:017 27i
0.80 5:9954	 0:019 61i 5:9732	 0:065 91i 5:9439	 0:089 20i 5:9256	 0:082 10i 5:9606	 0:031 68i
0.90 5:9948	 0:024 14i 5:9662	 0:081 81i 5:9237	 0:109 93i 5:8894	 0:098 50i 5:9347	 0:037 91i
0.98 5:9944	 0:027 99i 5:9599	 0:095 35i 5:9043	 0:125 59i 5:8509	 0:097 78i 5:8908	 0:030 67i
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accuracy indicators. We decided to list the QNEFs with a
five-digit accuracy, but in some cases (especially for coro-
tating modes with l � m and large rotation rates) the
number of significant digits may be smaller.

1. Scalar perturbations

In Tables I and II we provide the QNM frequencies and
damping times for scalar perturbations with l � 2, all
values of m and selected values of the angular momentum
j � 2a. In Table III we list the corresponding QNEFs, and

in Table IV the outgoing-wave amplitudes Aout. In the
Schwarzschild limit, our QNEFs can be compared with
Andersson’s [17,18]. His result for the fundamental scalar
mode with l � 2 agrees with ours to a five-digit accuracy
[35]. This agreement is quite impressive, given the ap-
proximate nature of the phase-integral method. For l � 0

his result for the fundamental mode (B�0�0 ’ 0:197�
0:046i) is within �7% (� 23%) of the real (imaginary)
part of our result: B�0�0 ’ 0:212� 0:059i. The agreement is
still very good, considering that the phase-integral method

TABLE IV. Amplitudes Aout of the first two overtones with s � 0 and l � 2, for several values of rotation parameter, and for some
values of �l; m�.

s � 0, n � 0

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 1:1472� 1:1426i 1:1472� 1:1426i 1:1472� 1:1426i 1:1472� 1:1426i 1:1472� 1:1426i
0.20 1:1068� 1:2514i 1:1252� 1:2067i 1:1455� 1:1601i 1:1677� 1:1115i 1:1915� 1:0608i
0.40 1:0516� 1:4122i 1:0888� 1:3208i 1:1353� 1:2211i 1:1904� 1:1119i 1:2522� 0:9921i
0.50 1:0057� 1:5269i 1:0547� 1:4093i 1:1203� 1:2776i 1:2013� 1:1287i 1:2930� 0:9595i
0.60 0:9311� 1:6802i 0:9955� 1:5331i 1:0886� 1:3636i 1:2085� 1:1641i 1:3444� 0:9272i
0.80 0:5060� 2:2157i 0:6304� 1:9952i 0:8437� 1:7289i 1:1526� 1:3741i 1:5014� 0:8727i
0.90 �0:3226� 2:7081i �0:1229� 2:4419i 0:2580� 2:1461i 0:8860� 1:7127i 1:6345� 0:9057i
0.98 �3:8026� 2:0011i �3:3378� 1:6360i �2:6005� 1:6232i �1:1381� 2:0428i 1:7179� 1:4791i

s � 0, n � 1

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 �2:9403	 3:1839i �2:9403	 3:1839i �2:9403	 3:1839i �2:9403	 3:1839i �2:9403	 3:1839i
0.20 �2:3498	 2:9311i �2:6009	 3:0411i �2:8990	 3:1573i �3:2543	 3:2790i �3:6792	 3:4045i
0.40 �1:8312	 2:6818i �2:2132	 2:8695i �2:7542	 3:0781i �3:5300	 3:2999i �4:6593	 3:5080i
0.50 �1:5742	 2:5630i �1:9831	 2:7773i �2:6206	 3:0195i �3:6326	 3:2719i �5:2745	 3:4588i
0.60 �1:3002	 2:4481i �1:7093	 2:6818i �2:4198	 2:9493i �3:6819	 3:2125i �5:9898	 3:2826i
0.80 �0:5767	 2:2022i �0:8741	 2:4579i �1:5934	 2:7666i �3:3396	 2:9990i �7:6627	 2:1745i
0.90 0:0721	 1:9681i �0:0536	 2:2109i �0:5925	 2:5617i �2:4246	 2:8572i �8:3413	 0:9505i
0.98 1:2103	 0:9694i 1:3828	 0:9603i 1:4079	 1:1980i 0:4182	 1:9828i �8:0724	 0:3919i

 

FIG. 3 (color online). Real part (left) and imaginary part (right) of the scalar QNEFs for the fundamental mode with l � 2. Solid
lines correspond to jmj � 2, dashed lines to jmj � 1, and the dotted line to m � 0. The lines displaying oscillations for large j have
m> 0.
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FIG. 4 (color online). Path of the scalar QNEFs for the fundamental mode (left) and first overtone (right) with l � 2 as j varies in the
range 0 � j � 0:996. Line styles are the same as in Fig. 3.

 

FIG. 5 (color online). Path of the electromagnetic QNEFs for the fundamental mode (left) and first overtone (right) with l � 1 as j
varies in the range 0 � j � 0:996. The top panels refer to the SN formalism, the bottom panels to the Teukolsky formalism. Line styles
are the same as in Fig. 3.
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is based on a WKB-type approximation and should only be
accurate in the ‘‘eikonal’’ (large l) limit.

Some physical insight can be obtained by plotting the
real and imaginary parts of the scalar QNEFs for the
fundamental mode with l � 2 as functions of j (Fig. 3).
The excitation of modes with m � 0 is a slowly varying

function of the rotation rate. On the contrary, as j! 1 the
real and imaginary parts of B�0� for corotating modes
become rapidly oscillating functions of j. Our calculation
is in remarkable agreement with a classic result by Ferrari
and Mashhoon [36]: when l � m the QNM excitation tends
to zero as j! 1, and this is an indication (if not a proof,

TABLE V. QNEFs B��2� of the first two overtones with s � �2 and l � 2, for several values of the rotation parameter, and all values
of m.

Sasaki-Nakamura, s � �2, n � 0

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 0:126 90	 0:020 32i 0:126 90	 0:020 32i 0:126 90	 0:020 32i 0:126 90	 0:020 32i 0:126 90	 0:020 32i
0.20 0:133 84	 0:003 80i 0:130 66	 0:013 98i 0:126 44	 0:024 31i 0:121 14	 0:034 60i 0:114 81	 0:044 65i
0.40 0:139 51� 0:005 75i 0:134 09	 0:015 09i 0:123 99	 0:036 94i 0:108 73	 0:058 10i 0:089 192	 0:076 810i
0.50 0:142 55� 0:007 98i 0:135 74	 0:018 64i 0:120 88	 0:047 02i 0:096 848	 0:073 395i 0:066 032	 0:094 125i
0.60 0:145 98� 0:008 38i 0:137 16	 0:024 54i 0:115 23	 0:059 98i 0:077 845	 0:090 076i 0:030 74	 0:108 17i
0.80 0:154 73� 0:001 79i 0:137 53	 0:045 81i 0:087 43	 0:094 24i 0:000 70	 0:108 41i �0:091 113	 0:061 347i
0.90 0:160 55	 0:008 21i 0:134 13	 0:064 26i 0:056 03	 0:111 83i �0:059 511	 0:072 290i �0:061 104� 0:089 943i
0.98 0:166 52	 0:027 31i 0:124 87	 0:089 94i 0:012 00	 0:118 09i �0:056 299� 0:016 701i �0:042 248	 0:067 331i

Teukolsky, s � �2, n � 0

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 0:025 587� 0:016 876i 0:025 587� 0:016 876i 0:025 587� 0:016 876i 0:025 587� 0:016 876i 0:025 587� 0:016 876i
0.20 0:015 858� 0:015 534i 0:020 659� 0:016 165i 0:026 663� 0:016 183i 0:034 089� 0:015 199i 0:043 137� 0:012 654i
0.40 0:010 593� 0:013 107i 0:018 158� 0:014 516i 0:029 957� 0:013 582i 0:047 365� 0:006 739i 0:070 428	 0:012 901i
0.50 0:008 973� 0:011 907i 0:017 585� 0:013 461i 0:032 435� 0:011 025i 0:055 380	 0:003 377i 0:081 892	 0:046 677i
0.60 0:007 817� 0:010 778i 0:017 385� 0:012 229i 0:035 338� 0:007 035i 0:062 135	 0:021 050i 0:073 01	 0:106 19i
0.80 0:006 570� 0:008 740i 0:017 957� 0:008 866i 0:040 011	 0:008 791i 0:034 721	 0:091 829i �0:240 81	 0:150 10i
0.90 0:006 467� 0:007 753i 0:018 690� 0:006 243i 0:037 266	 0:023 214i �0:058 01	 0:106 86i �0:133 15� 0:453 94i
0.98 0:006 929� 0:006 758i 0:019 607� 0:002 616i 0:025 180	 0:038 227i �0:108 00� 0:041 437i �0:606 10	 0:262 15i

Sasaki-Nakamura, s � �2, n � 1

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 0:047 69� 0:223 79i 0:047 69� 0:223 79i 0:047 69� 0:223 79i 0:047 69� 0:223 79i 0:047 69� 0:223 79i
0.20 0:012 75� 0:212 22i 0:032 86� 0:220 75i 0:055 88� 0:227 00i 0:081 49� 0:230 24i 0:108 88� 0:229 95i
0.40 �0:005 72� 0:204 20i 0:032 29� 0:224 15i 0:083 89� 0:234 96i 0:146 21� 0:229 61i 0:209 47� 0:203 86i
0.50 �0:010 64� 0:202 81i 0:037 52� 0:228 59i 0:108 52� 0:238 64i 0:196 04� 0:216 80i 0:275 71� 0:158 75i
0.60 �0:013 02� 0:203 59i 0:047 16� 0:234 82i 0:143 39� 0:238 86i 0:259 27� 0:182 19i 0:344 91� 0:070 25i
0.80 �0:009 04� 0:214 82i 0:087 13� 0:251 54i 0:252 86� 0:199 67i 0:369 45	 0:053 88i 0:299 93	 0:404 90i
0.90 0:000 93� 0:229 25i 0:126 56� 0:260 18i 0:320 55� 0:125 32i 0:233 28	 0:285 98i �0:553 84	 0:462 77i
0.98 0:023 90� 0:254 95i 0:188 72� 0:264 43i 0:357 32� 0:009 15i �0:085 78	 0:180 65i 0:581 39	 0:379 49i

Teukolsky, s � �2, n � 1

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 �0:081 135	 0:067 726i �0:081 135	 0:067 726i �0:081 135	 0:067 726i �0:081 135	 0:067 726i �0:081 135	 0:067 726i
0.20 �0:042 052	 0:057 934i �0:061 317	 0:063 041i �0:086 857	 0:065 808i �0:120 23	 0:064 13i �0:163 06	 0:054 88i
0.40 �0:023 703	 0:046 853i �0:053 312	 0:056 703i �0:105 14	 0:056 97i �0:189 37	 0:027 18i �0:309 08� 0:077 67i
0.50 �0:018 645	 0:042 289i �0:052 550	 0:053 249i �0:119 59	 0:046 61i �0:234 24� 0:025 92i �0:367 54� 0:282 06i
0.60 �0:015 312	 0:038 467i �0:053 615	 0:049 396i �0:137 14	 0:028 23i �0:270 23� 0:127 99i �0:260 75� 0:664 20i
0.80 �0:012 449	 0:033 074i �0:061 191	 0:038 443i �0:163 17� 0:055 96i �0:009 12� 0:527 99i 2:1447� 0:0490i
0.90 �0:012 978	 0:031 609i �0:068 071	 0:029 129i �0:136 59� 0:130 81i 0:601 14� 0:328 96i �2:2114	 3:6692i
0.98 �0:015 950	 0:031 612i �0:077 430	 0:015 783i �0:059 76� 0:185 80i 0:143 97	 0:428 35i 3:7992	 4:8108i
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given the incompleteness of QNMs) that extremal Kerr
black holes are not marginally unstable.

More features can be seen in Fig. 4, where we plot the
path followed by the real and imaginary parts of B�0�n ,
thought of as parametric functions of j, for 0 � j �
0:996. The oscillations of the real and imaginary parts of
B�0� for the corotating mode with l � m � 2 produce a

spiral in the complex plane. For small j, the QNEFs of
corotating and counterrotating modes with the same jmj
move in opposite directions, approaching the
Schwarzschild limit with the same tangent. Corotating
and counterrotating QNM frequencies tend to their
Schwarzschild limit in a similar way [33,37]. Another
noteworthy feature of Fig. 4 is the scale of the real and

TABLE VI. Amplitudes Aout of the first two overtones with s � �2 and l � 2, for several values of the rotation parameter, and all
values of m.

Sasaki-Nakamura, s � �2, n � 0

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 �4:7608	 2:3771i �4:7608	 2:3771i �4:7608	 2:3771i �4:7608	 2:3771i �4:7608	 2:3771i
0.20 �6:2957	 3:7664i �5:4365	 3:0202i �4:6676	 2:3909i �3:9841	 1:8690i �3:3819	 1:4446i
0.40 �7:8741	 5:8832i �5:9349	 3:8929i �4:3699	 2:4414i �3:1373	 1:4490i �2:2068	 0:8273i
0.50 �8:5905	 7:3807i �6:0631	 4:4740i �4:1247	 2:4901i �2:6907	 1:2641i �1:7053	 0:6084i
0.60 �9:1362	 9:3469i �6:0428	 5:2133i �3:7910	 2:5653i �2:2271	 1:0932i �1:2657	 0:4363i
0.80 �8:311	 16:035i �4:8599	 7:6211i �2:6288	 2:8690i �1:2248	 0:7843i �0:580 15	 0:187 62i
0.90 �3:399	 22:656i �2:0780	 9:8297i �1:3270	 3:1477i �0:636 87	 0:626 42i �0:320 78	 0:077 21i
0.98 23:657	 28:208i 9:6770	 9:8318i 2:1270	 2:4156i 0:032 81	 0:344 46i �0:094 92� 0:121 74i

Teukolsky, s � �2, n � 0

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 0:39 793� 0:361 49i 0:397 93� 0:361 49i 0:397 93� 0:361 49i 0:397 93� 0:361 49i 0:397 93� 0:361 49i
0.20 0:384 59� 0:433 42i 0:388 83� 0:397 77i 0:393 00� 0:362 07i 0:396 96� 0:326 33i 0:400 50� 0:290 56i
0.40 0:354 98� 0:515 46i 0:365 39� 0:440 15i 0:375 98� 0:364 62i 0:385 28� 0:288 88i 0:391 52� 0:213 08i
0.50 0:329 15� 0:564 60i 0:344 51� 0:466 21i 0:360 44� 0:367 48i 0:373 80� 0:268 37i 0:380 51� 0:169 34i
0.60 0:289 65� 0:623 09i 0:312 68� 0:497 97i 0:337 04� 0:372 41i 0:356 45� 0:246 26i 0:362 32� 0:120 71i
0.80 0:104 72� 0:792 07i 0:167 69� 0:592 91i 0:236 13� 0:395 39i 0:286 46� 0:197 15i 0:281 91� 0:005 89i
0.90 �0:186 16� 0:916 52i �0:051 25� 0:659 40i 0:095 57� 0:415 18i 0:204 34� 0:172 02i 0:190 03	 0:052 15i
0.98 �1:2247� 0:7046i �0:770 25� 0:434 94i �0:319 55� 0:276 07i 0:021 88� 0:130 92i 0:049 47	 0:053 37i

Sasaki-Nakamura, s � �2, n � 1

j m � �2 m � �1 m � 0 m � 1 m � 2

0.00 2:2945� 7:1873i 2:2945� 7:1873i 2:2945� 7:1873i 2:2945� 7:1873i 2:2945� 7:1873i
0.20 2:5658� 9:0390i 2:3970� 8:0165i 2:2247� 7:0665i 2:0424� 6:1893i 1:8441� 5:3859i
0.40 2:543� 10:849i 2:2599� 8:6166i 1:9888� 6:6818i 1:6731� 5:0445i 1:2672� 3:7148i
0.50 2:344� 11:695i 2:0427� 8:7930i 1:7817� 6:3679i 1:4444� 4:4156i 0:9446� 2:9579i
0.60 1:933� 12:458i 1:6641� 8:8477i 1:4852� 5:9476i 1:1812� 3:7433i 0:6120� 2:2745i
0.80 �0:205� 13:360i �3:1529� 8:2731i 0:4135� 4:5896i 0:5162� 2:2182i 0:0351� 1:2045i
0.90 �3:006� 12:697i �1:9831� 7:0189i �0:6196� 3:3073i 0:0900� 1:2838i �0:049 65� 0:796 65i
0.98 �8:7106� 7:3992i �5:0880� 2:5636i �1:8011� 0:6338i �0:195 32� 0:230 25i 0:073 33� 0:278 76i

Teukolsky, s � �2, n � 1

0.00 0:823 22	 0:752 84i 0:823 22	 0:752 84i 0:823 22	 0:752 84i 0:823 22	 0:752 84i 0:823 22	 0:752 84i
0.20 0:849 11	 0:707 54i 0:829 47	 0:724 53i 0:809 91	 0:745 33i 0:790 38	 0:769 96i 0:770 73	 0:798 38i
0.40 0:858 14	 0:652 92i 0:813 37	 0:677 02i 0:768 18	 0:717 34i 0:722 13	 0:774 14i 0:673 46	 0:846 88i
0.50 0:858 43	 0:616 54i 0:797 66	 0:640 04i 0:735 12	 0:689 91i 0:669 83	 0:766 96i 0:597 31	 0:869 54i
0.60 0:856 85	 0:568 52i 0:777 13	 0:587 86i 0:692 65	 0:646 79i 0:601 21	 0:747 43i 0:492 54	 0:885 00i
0.80 0:848 73	 0:393 92i 0:720 54	 0:390 27i 0:573 93	 0:462 34i 0:396 31	 0:617 95i 0:144 57	 0:817 85i
0.90 0:829 22	 0:192 49i 0:669 18	 0:170 74i 0:486 66	 0:247 33i 0:252 29	 0:429 40i �0:106 21	 0:602 68i
0.98 0:651 27� 0:273 05i 0:441 18� 0:274 37i 0:270 60� 0:149 13i 0:106 17	 0:078 62i �0:173 82	 0:149 48i
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imaginary axes: for corotating modes with l � m and large
rotation, jB�0�1 j is roughly 5 times larger than jB�0�0 j. In other
words, for perturbations with l � m the contribution of the
overtones should be more significant for rapidly rotating
black holes. In the following we will see that many of these
considerations are still valid when we consider perturba-
tions of spin s � 0.

2. Electromagnetic perturbations

It is widely believed that astrophysical black holes
should possess very little charge (if any). For this reason
electromagnetic perturbations of a Kerr black hole (s �
�1) are not considered of great astrophysical relevance.
Nonetheless, electromagnetic perturbations are of more
than academic interest. For example, they could find useful
applications in models of elementary particles based on the
Kerr-Newman metric (see [38] and references therein).

Results for the lowest radiative multipole l � 1 are
presented in Fig. 5. Compared with the scalar case, the

main new feature is that QNEFs differ (both analytically
and numerically) depending on whether we use the SN or
Teukolsky formalisms: see Eq. (4.2) and Appendix C. Of
course, both formalisms are equally legitimate, and the use
of one or the other depends on the physical problem at
hand. By construction the SN QNEFs reduce to the Regge-
Wheeler QNEFs in the Schwarzschild limit, and in this
sense they have a more direct physical interpretation. As
j! 0 the (Bardeen-Press-)Teukolsky quantities can be
transformed to the corresponding metric quantities in the
Zerilli (Regge-Wheeler) formalism using the differential
transformations derived by Chandrasekhar [39].

Apart from this distinction, the qualitative features of
Fig. 5 are similar to the scalar case of Fig. 4. For small j,
the QNEFs of corotating and counterrotating modes with
the same jmj approach the Schwarzschild limit with the
same tangent. For corotating modes with l � m � 1 and
large rotation rates, jB��1�

1 j is significantly larger than
jB��1�

0 j. This is another indication that, independently of

 

FIG. 6 (color online). Real part (left) and imaginary part (right) of the gravitational QNEFs with l � 2 and different values of the
overtone index n, indicated in the inset. All plots refer to the SN formalism. Line styles are the same as in Fig. 3.
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the value of s, the high-overtone contribution should be
more significant for l � m modes and rapidly rotating
black holes.

3. Gravitational perturbations

Gravitational QNEFs in the Teukolsky and SN formal-
isms are listed in Tables Vand VI for the first two overtones
with l � 2, and selected values of the black hole’s angular
momentum. The corresponding QNM frequencies and an-
gular separation constants can be found in Tables II and V
of [4], respectively (there we list the imaginary parts with
the opposite sign). As j! 0 our numbers agree to all digits
with Table I of [13], except for the relative sign of a few
modes with l � 3 and l � 4. These minor sign errors in
Leaver’s paper were first pointed out in [17].

In Fig. 6 we plot the real and imaginary parts of the
gravitational QNEFs for the first two overtones with l � 2
in the SN formalism as functions of j. The qualitative

behavior is remarkably similar to the scalar case
(cf. Fig. 3). For fast rotation, the maximum excitation of
the first gravitational overtone (as compared to the maxi-
mum excitation of the fundamental mode) is larger by a
factor �8.

In Fig. 7 we plot the path followed by the real and
imaginary parts of B��2�

n , thought of as parametric func-
tions of j, in the range 0 � j � 0:996. There is a remark-
able similarity between the plot for n � 0 in the SN
formalism and the scalar case of Fig. 4. Even though it is
hard to accurately compute the QNEFs when j is very close
to 1, our numerics show clear evidence that in both cases
the excitation of l � m modes is zero in this limit; the
center of the spiral is located at the origin of the complex
plane. Our calculation provides further evidence that
extremal Kerr black holes are stable, and that QNMs of a
fast rotating Kerr black hole are very hard to excite
[19,20,36].

 

FIG. 7 (color online). Path of the gravitational QNEFs for the fundamental mode (left) and first overtone (right) with l � 2 as j varies
in the range 0 � j � 0:996. The top panels refer to the SN formalism, the bottom panels to the Teukolsky formalism. Line styles are
the same as in Fig. 3.
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In Fig. 8 we plot the modulus of gravitational and scalar
QNEFs for the fundamental mode and first overtone with
l � m � 2. This plot is useful to visualize the effect of
rotation on the excitation of different overtones, at least for
radially localized initial data (for Gaussian initial data the
response is exponentially modulated by the QNM frequen-
cies, see below). For gravitational perturbations the first
overtone is maximally excited (with a relative amplifica-
tion of a factor �8 with respect to the fundamental
mode) for j ’ 0:95. For scalar perturbations the effect is
similar, but the relative amplification of the first overtone is
smaller (roughly a factor 6) and the maximum occurs at
j ’ 0:85.

C. A simple application: localized and Gaussian
initial data

As an application of our calculation of the QNEFs, we
study the response of a Kerr black hole to initial data in
simple situations amenable to an analytic treatment. The
relevance of these model problems to realistic perturba-
tions of astrophysical black holes is questionable, but our
analysis could provide some insight into the black hole’s
response to more generic initial data. For simplicity in the
following discussion we focus on scalar perturbations, so
that Eq. (3.10) applies. We start by considering static,
localized initial data of the form

 X�0��t0; r� � ��r� � r
S
��; _X�0��t0; r� � 0: (4.10)

Combining Eq. (3.7) with the definition (3.16) yields
 

X�0��t; r� � �Re
�X1
n�0

iBne�i!n�t�tstart�
X̂�0�r	 �r

S
��e
�i!njrS� j

Aout

�

�
!n �

2amr	!na
2�lm�

�r2 	 a2�2

���������r�rS

�
: (4.11)

For initial data in the far zone this is further simplified to

 X�0��t; r� ’ �Re
�X1
n�0

i!nBne�i!n�t�tstart�

�
; rS� ! 	1:

(4.12)

For initial data localized near the horizon, using (3.3) we
get
 

X�0��t; r� ’ �Re
�X1
n�0

i�!n� 2m��
Bn
Aout

e�i!n�t�tstart�eim�rS�

�
;

rS� !�1: (4.13)

 

FIG. 8 (color online). Modulus of the SN QNEFs for the
fundamental mode and first overtone with l � m � 2. Solid
lines are for gravitational perturbations, dashed lines for scalar
perturbations.

 

FIG. 9 (color online). Time-domain single-mode waveforms for scalar perturbations of a Kerr black hole with j � 0:98. Each panel
shows results for different values of �l; m; n�. Dotted lines correspond to initial data located extremely close to the horizon, at rS � 0:6.
Solid lines are obtained for initial data localized relatively far away from the black hole, at rS � 2. Dashed lines show the response for
initial data localized at the point of minimal excitation, that we determined to be: rS ’ 0:86 (l � m � 2, n � 0); rS ’ 0:87 �l � m �
2; n � 1�.
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Rotational effects appear (in the form of the usual Lense-
Thirring frame dragging) only when the �-like disturbance
is located near the horizon. Equation (3.17) shows that in
the Schwarzschild case Bn � 1=n for large n. Since we
expect the same leading-order behavior to hold for Kerr
black holes, and we know that Kerr QNM frequencies scale
as !n ��in for large n [33], a �-like source excites all
modes to comparable amplitude. This is reminiscent of the
analogous result (2.20) for the vibrating string.

The vibrating string analogy suggests that we may be
able to associate nodes to the QNM eigenfunctions. In
other words, there could be special locations of the initial
data rS� for which the black hole’s response is zero (or at
least very small). We expect it should be easier to find these
‘‘nodes,’’ if they exist at all, for QNM eigenfunctions
which are as close as possible to ordinary normal mode
eigenfunctions. This happens when Re�!n� � Im�!n�,
that is, for corotating modes with l � m and near-extremal
(j ’ 1) black holes [37]. For this reason below we focus on
scalar perturbations of Kerr black holes with j � 0:98 and
consider only modes with l � m � 1 or l � m � 2.

In Fig. 9 we plot the response of a Kerr black hole with
j � 0:98 (so that the horizon radius r	 � 0:5994) to initial
data localized at different values of rS, using Eq. (4.11). We
compute the QNM frequency !n and the angular eigen-
value Alm in (4.11) using Leaver’s method [11]. The ei-
genfunction X̂�0�r	 �r

S
�� can be obtained combining Eqs. (B8)

and (C3). The values of Bn and Aout can be read off
Tables III and IV, respectively. For increased accuracy
we evaluate the �lm’s numerically from their definition
(3.11), integrating the (complex) angular QNM eigenfunc-
tions (see Appendix B 1), but the numerical results differ
only marginally from the simple analytic approximation
(3.12).

For fixed �l; m� and n � 0 the black hole’s response has
a relative maximum when the initial data are located very
close to the horizon. As rS increases the wave amplitude
decreases monotonically, reaching a minimum at rS ’ 0:86
(the exact location is only weakly sensitive to the particular
mode we consider). This radial location can be seen as
corresponding to a ‘‘node’’ of the QNM eigenfunction. We
also show wave amplitudes for initial data located rela-
tively far from the horizon, at rS � 2. These amplitudes are
already quite close to the amplitudes for initial data ‘‘fall-
ing from infinity.’’

The association of nodes with the eigenfunctions is more
problematic and ambiguous for larger damping. For ex-
ample, if we consider the fundamental mode of a
Schwarzschild black hole (for which Re�!n� and Im�!n�
are comparable) the wave amplitude turns out to be only
weakly sensitive to the location rS of initial data. The same
happens when we consider counterrotating modes of
(slowly or rapidly rotating) Kerr black holes.

A natural next step is to study nonlocalized initial data.
We consider static initial data given by a Gaussian wave

packet

 X�0��t0; r� � ke�b�r��r
S
� �

2
; (4.14)

where k and b are arbitrary constants. For Schwarzschild
black holes, the scattering of Gaussian initial data was first
studied numerically in the time domain by Vishveshwara
[10]. An interpretation of the results in terms of QNM
expansions for initial data in the far zone was later pro-
vided by Andersson [17]. Following [17], for initial data in
the far zone (large rS�) we get
 

X�0��t; r� ’ �Re
�X1
n�0

i!nBne
�i!n�t�tstart�e�i!nrS�

�
Z 	1
�1

ei!nr�ke�b�r��r
S
� �

2
dr�

�

� �Re
�X1
n�0

i!nkBn

����
�
b

r
e��!

2
n=4b�e�i!n�t�tstart�

�
:

(4.15)

If the Gaussian is centered very close to the black hole
(rS� � 0) we have
 

X�0��t; r� ’ �Re
�X1
n�0

i�!n � 2m��kBn
Aout

eim�rS�

����
�
b

r

� e���!n�m��2=4b�e�i!n�t�tstart�

�
: (4.16)

Once again, frame dragging effects show up only for
Gaussians located near the horizon. The absolute value of
each term in the sum is proportional to exp��Re�w�=4b�,
with w � !2

n or w � �!n �m��2 depending on the loca-
tion of the initial data. Minimizing with respect to bwe see
that the maximal excitation corresponds to b � Re�w�=2;
we found a similar result in the vibrating string example
[recall the discussion below Eq. (2.22)].

In the limit of narrow Gaussians we expect to recover the
results for localized initial data. Indeed, if we use the
�-function representation setting k � �2

�������
�	
p

��1 and b �
1=�4	�,

 ��r� � r
S
�� �

1

2
�������
�	
p e���r��r

S
��

2=4	�; (4.17)

by taking the limit 	! 0 we recover (4.12) and (4.13).

D. Effective amplitude and initial data

The present calculation of the QNEFs is only a first step
towards the determination of the QNM content of a wave-
form. The degree to which a given QNM is excited depends
crucially, through the integral appearing in (3.9), on the
initial data I�!; r�. Can we identify some physical quantity
which is only weakly dependent on the initial data, and
therefore useful to discuss the detectability of QNMs?

Andersson and Glampedakis proposed to use a QNM
‘‘effective amplitude’’ defined as follows [19,20]. Consider
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a typical ringdown waveform �. Matched filtering in-
creases the gravitational-wave amplitude by

����
N
p

, N /
Re�!n�=Im�!n� being the number of cycles, yielding an
effective amplitude �eff �

����
N
p

�. For a single mode � /
Cn, so that �eff �

����
N
p

Cn. Now, if we happen to know that
the convolution of the initial data with the homogeneous
solution is reasonably independent of !n, we could write

 �eff �
����������������������������������
Re�!n�=Im �!n�

q
Bn; (4.18)

which would be the sought criterion for detectability of a
given mode. In [19,20] the real part of (4.18) was referred
to as the ‘‘effective gravitational-wave amplitude,’’ and
used to discuss QNM detectability.

The derivation of Eq. (4.18) relies upon the assumption
that the proportionality factor between the Cn’s and the
Bn’s is weakly dependent on !n, for only in this case is the
previous expression valid. Equations (4.12) and (4.13)
show that such an assumption is reasonable for localized
initial data. Unfortunately this will not be true in more
general situations. A simple counterexample is provided by
Gaussian initial data. According to (4.18) QNM detectabil-
ity should be weakly dependent on !n (at least for low-
lying modes), but we know for a fact that the correct
answer for Gaussian initial data, Eq. (4.15), has an expo-
nential dependence on !n. Any notion of detectability
based on the naive argument leading to (4.18) is therefore
dangerous, and a case-by-case analysis of the initial data is
mandatory. A study of the black hole’s response to physi-
cally reasonable initial data will be the subject of future
work.

V. CONCLUSIONS AND OUTLOOK

Motivated by the prospect to test the Kerr nature of
astrophysical black holes by gravitational-wave observa-
tions, in this paper we compute QNEFs for general-spin
perturbations of Kerr black holes. For corotating modes
with l � mwe find that QNEFs tend to zero in the extremal
limit, and that the overtone contribution is more significant
when the black hole is fast rotating. This result is con-
firmed by numerical time evolutions of scalar perturbations
of Kerr black holes [40]. In Appendix Awe also present the
first analytical calculation of the large-n QNEFs for static
black holes, including the Schwarzschild and Reissner-
Nordström metrics.

QNEFs are universal properties of the Kerr metric; they
do not depend on the physical nature of the perturbation.
Suppose that a distorted Kerr black hole is formed as a
result of a binary merger. The detailed physics of the
merger, depending on parameters such as the masses,
spin magnitude, and inclination of the binary members,
will affect the relative overtone excitation through the
initial-data function I�!; r� appearing in the definition
(3.9) of the excitation coefficients. Therefore the problem

of determining the relative overtone excitation in ringdown
waveforms reduces to the determination of the function
I�!; r� from numerical simulations.

Of course the present formalism relies on the possibility
to use linear perturbation theory to extract ringdown wave-
forms from numerical simulations. In the nonlinear regime
the total mass and angular momentum of the dynamical
spacetime could deviate significantly from their values for
the final Kerr black hole, introducing systematic (and
perhaps time-dependent) redshifts in the QNM spectrum
[41]. An invariant criterion to monitor the applicability of
linear perturbation theory is to use the Petrov classification,
looking at the relative deviation of the background space-
time from Type D. The Petrov type of the background can
be determined, for example, using a wave-extraction for-
malism based on the quasi-Kinnersley tetrad and looking at
deviations of the scalar invariant S from the value (S � 1)
that it would have for a Kerr black hole [42].

A significant technical challenge in the calculation of the
excitation coefficients Cn is the renormalization of the
divergent integral (3.9) for generic initial data. We will
address this problem in future publications. As a testbed we
plan to study simple models amenable to perturbation
theory (e.g. the old problem of particles plunging into
Kerr black holes). Then we wish to explore the nonlinear
regime in relatively symmetric situations, such as head-on
collisions or nonlinear simulations of single, distorted
black holes. Finally we will consider the harder, astro-
physically realistic problem of determining the relative
overtone excitation from nonlinear simulations of merging
black holes, using Newman-Penrose based wave extraction
of the ringdown waveform from full numerical relativity
simulations.

An accurate determination of the relative QNM excita-
tion in realistic binary mergers would have interesting
astrophysical applications. For example it could be used
to assess the feasibility of tests of the no-hair theorem with
Earth-based and space-based gravitational-wave interfer-
ometers, and to improve present estimates of the ‘‘ring-
down braking’’ phase observed in numerical and analytical
calculations of gravitational-wave recoil [43,44].
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APPENDIX A: ASYMPTOTIC QUASINORMAL
EXCITATION FACTORS OF STATIC BLACK

HOLES

One of the fundamental prerequisites in order to have a
well-defined QNM expansion is that the QNEFs Bn ‘‘con-
verge’’ in some sense. So far this problem has not received
much attention. A numerical study of the scalar QNEFs for
large n and nonrotating black holes can be found in [18]. In
this appendix we study analytically the large-n behavior of
the QNEFs for Schwarzschild black holes and other static
geometries. We explicitly compute the dependence of the
QNEFs on n (including subleading effects) in three im-
portant cases, including the Schwarzschild and Reissner-
Nordström spacetimes and the widely used Pöschl-Teller
approximation of the Regge-Wheeler potential. We also
show that for a general class of static spacetimes the
leading behavior of the QNEFs for large n is �1=n, and
we conjecture that the same asymptotic behavior should
apply to Kerr black holes. It should be easy to generalize
our technique to compute subleading effects. Finally, as a
simple counterexample to the generality of this behavior,
we show that the QNEFs for a potential barrier scale as
1=n3 for large n.

1. Schwarzschild black holes

Our general method relies on the monodromy argument
by Motl and Neitzke [45], devised to compute highly
damped (i.e. large-n) QNM frequencies (see [37,46] for
reviews). Using this method Neitzke computed the reflec-
tion and transmission coefficients R and T for large n [47].
From his calculation we can simply read off the ingoing
and outgoing wave amplitudes for the Regge-Wheeler
equation

 Ain �
1

T
�
e
! 	 1	 2 cos��s�

e
! � 1
; (A1)

 Aout �
R
T
�

2i cos��s=2�

e
! � 1
; (A2)

where in our units (G � c � 2M � 1) 
 � 4� is the
inverse of the black hole’s Hawking temperature. This
result is valid for large n and for any angular quantum
number l. QNM frequencies, being poles of the reflection
and transmission coefficients, satisfy

 e
!n 	 1	 2 cos��s� � 0: (A3)

The calculation of the QNEFs Bn for large n is now
straightforward. Denoting the large-n limit of the QNEFs
for spin-s perturbations by B�s�n we find

 B�s�n 

�

Aout

2!@!Ain

�
!�!n

�
i cos��s=2�


!ne
!n
: (A4)

This leads to the result anticipated in the main text,
Eq. (3.17),

 

B�0�n � B��2�
n � �

i
3�� log3� �2n	 1��i�

; �n! 1�:

(A5)

This is our main result for the Schwarzschild QNEFs in the
large-damping limit. The analytic prediction agrees very
well with Fig. 2 in [18], where the QNEFs are plotted for
the first �200 scalar modes. The calculation of Ref. [18]
shows that for large nQNEFs are independent of l and drop
linearly with n, in agreement with our prediction. Notice
also that for electromagnetic perturbations the asymptotic
QNEFsB��1�

n would be zero; higher-order corrections must
be taken into account to obtain a nontrivial result.

2. Reissner-Nordström black holes

The monodromy technique is easily adapted to other
black hole backgrounds [48], allowing the computation
of the asymptotic QNEFs for a wide class of geometries.
Take for instance the Reissner-Nordström metric, describ-
ing a black hole with mass M and charge Q. We follow
Motl and Neitzke [45] and fix units such that M � �k	
1�=2 and Q2 � k. With this choice the outer horizon is
located at r � 1, and we get [47]

 Ain �
1

T
�
e
! 	 2	 3e�
I!

e
! � 1
; (A6)

 Aout �
R
T
� �i

���
3
p 1	 e�
I!

e
! � 1
; (A7)

for any massless integer-spin field (at odds with the
Schwarzschild case, where this symmetry is broken for
electromagnetic perturbations). Here 
 � 4�=�1� k�
and 
I � �k2
 denote the Hawking temperatures of the
outer and inner horizons, respectively. For large n the
QNM frequencies !n are solutions of

 e
! 	 2	 3e�
I! � 0: (A8)

An elementary calculation similar to the Schwarzschild
case yields

 B�s�n �
�i

���
3
p

2!n

1	 e�
I!n


e
!n � 3
Ie�
I!n
; �n! 1�: (A9)

In (A7) and (A9) the plus sign refers to electromagnetic-
gravitational perturbations, and the minus sign refers to
scalar perturbations. The fact that in the large-n limit the
predictions for charged black holes do not reduce to the
Schwarzschild predictions as Q! 0 is known, and agrees
with numerical results [33]. In general, the transcendental
equation (A8) must be solved numerically to obtain the
QNM frequencies. As in the Schwarzschild case, one can
verify that the QNEFs Bn � 1=n.
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3. The Pöschl-Teller potential

The Pöschl-Teller potential has been used in many stud-
ies of black hole perturbation theory as a useful approxi-
mation of the Regge-Wheeler potential. The idea is to
replace the ‘‘true’’ potential barrier by an analytic expres-
sion of the form V � VPT 
 V0cosh�2��x� x0�, which
has the advantage that many calculations can be carried out
in closed form [36,49]. From the analytic expression of the
reflection and transmission coefficients given in [36] we
get

 Aout �
��1	 i!=�����i!=��

��1	 
����
�
; (A10)

 Ain �
��1	 i!=����i!=��

��1	 
	 i!=�����
	 i!=��
; (A11)

where 
 � �1=2	
����������������������������
1=4� V0=�2

p
. As usual, the QNM

frequencies are poles of Ain. They can be obtained impos-
ing (say) ���
	 i!=���1 � 0 (or equivalently �
	
i!=� � �n). Since Bn � �@!Ain�

�1, the only nonzero
contribution to Bn must come from the term ���1	
i!=����i!=��=��1	
	 i!=���@!�1=���
	 i!=���.
Introducing the polygamma function  0, such that �0�x� �
��x� 0�x�, the derivative we need is

 

d
d!

�
1

���
	 i!=��

�
� �

i 0��n�
����n�

�
��1�nin!

�
;

(A12)

and the final result for the asymptotic QNEFs of the
Pöschl-Teller potential reads

 BPT
n �

i���1�n	1

2!n��1	 
����
�
��n� 
���1	 2
� n�

n!��
� n�
:

(A13)

Once again, asymptotically BPT
n � 1=n.

4. Generic static black hole spacetimes and other
possible extensions

An investigation of generic spacetimes with the present
technique should be carried out case by case [48].
However, if we are only interested in the leading-order
behavior for large nwe can content ourselves with a simple
Born approximation to the scattering amplitude (see for
instance [50]) to deduce that !��in, so that generically
the QNEFs Bn � 1=n for large n.

The generalization of the present results to Kerr black
holes is more difficult. Previous numerical calculations of
the asymptotic QNM frequencies [33,37] show that the
imaginary part is still proportional to n, so we expect that
(to leading order) the Kerr QNEFs should still scale as
BKerr
n � 1=n.

5. A potential barrier

As a last example we consider the QNEFs for a potential
barrier of height V0 and width �x, i.e. the wave equation is
@2
x�	 �!

2 � V�x��� � 0, with potential

 V�x� �
�
V0 for 0< x< �x
0 for x < 0 and x > �x:

(A14)

Defining k �
������������������
!2 � V2

0

q
, the solution in each of the three

different regions is

 � � e�i!x; x < 0; (A15)

 � � Aeikx 	 Be�ikx; 0< x< �x; (A16)

 � � Cei!x 	De�i!x; 0< x< �x: (A17)

The constants A, B, C, D are obtained by imposing con-
tinuity of the field and its derivative at x � 0 and x � �x, so
that A	 B � 1 and �! � k�A� B�=�A	 B�. QNM fre-
quencies are such that D�!� � 0. This problem was con-
sidered by Chandrasekhar and Detweiler [51], who showed
that for large mode number n the QNM frequencies behave
as (n�� i!i), with !i a solution to the transcendental
equation

������
V0

p
� �2!ie!i=2. We have solved the differen-

tial equation numerically, and our results agree very well
with this prediction. For large overtone n we find the
analytical result

 C�
V0

4k!
e�i �x�!	k��1� e2i �xk�; (A18)

 D��
ei �x�!�k�

16k!3 �V
2
0e

2i �x! � 16!4�: (A19)

We also get

 

dD
d!
��

ei �x�!�k�

16k!3 �2i �xe
2i �x!V2

0 � 64!3�: (A20)

At the QNM frequencies V2
0e

2i �x! � 16!4 � 0, and we get
the following QNEFs

 Bbarrier
n �

C

2!dD
d!

�
V0

32i �x!3 ; (A21)

where we used the fact that in this regime Im�!� ! �1
and e�i �x�!	k� � 0. The result (A21) is in good agreement
with numerical results and shows that the 1=n behavior,
although very general, is not universal, for in this case the
QNEFs scale as 1=n3.

APPENDIX B: DETAILS ON THE CALCULATION
OF THE QUASINORMAL EXCITATION FACTORS

This appendix provides details on the calculation of
QNEFs for general-spin perturbations of Kerr black holes.
Most of the material can be found in the original papers by
Leaver [11–13] (see also [8,33,37]), but we find it conve-
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nient to summarize here the equations which are necessary
to implement the computational procedure.

1. Expansion of the angular wave function

If we express the angular wave function Slm as
 

Slm�u� � e
a!u�1	u��jm�sj�=2�1�u��jm	sj�=2

X1
n�0

a�n�1	u�
n;

(B1)

the coefficients a�n must satisfy the following recurrence
relation

 ��0a
�
1 	 


�
0a

�
0 � 0; (B2)

 ��na
�
n	1 	 


�
na�n 	 ��na

�
n�1 � 0; (B3)

where

 ��n � �2�n	 1��n	 2k1 	 1�; (B4)

 


�n � n�n� 1� 	 2n�k1 	 k2 	 1� 2a!�

� �2a!�2k1 	 s	 1� � �k1 	 k2��k1 	 k2 	 1��

� a2!2 � s�s	 1� � Alm; (B5)

 ��n � 2a!�n	 k1 	 k2 	 s�: (B6)

Regularity of the solution at the boundaries implies that the
sequence of expansion coefficients must be minimal, and
that the separation constant Alm must be a root of the
continued fraction

 0 � 
�0 �
��0�

�
1


�1�

��1�
�
2


�2�

��2�
�
3


�3�
� � � (B7)

or any of its inversions.

2. Jaffé expansion of the radial wave function

As discussed below Eq. (4.9), to compute the Kerr
QNEFs we need an accurate representation of the solutions
of the radial equation. A convenient series solution close to
the horizon can be found by methods due to Jaffé (see
[11]),

 Rr	 � ei!r�r� r���1�s	i!	i�	�r� r	��s�i�	

�
X1
n�0

arn

�
r� r	
r� r�

�
n
; (B8)

where the notation is the same as in Sec. IVA. The coef-
ficients arn are normalized so that ar0 � 1, consistently with
Eq. (4.7a). They can be obtained from the recurrence
relation

 �r0a
r
1 	 


r
0a

r
0 � 0; (B9)

 �rnarn	1 	 

r
narn 	 �rnarn�1 � 0; (B10)

where

 �rn � n2 	 �c0 	 1�n	 c0; (B11)

 
rn � �2n2 	 �c1 	 2�n	 c3; (B12)

 �rn � n2 	 �c2 � 3�n	 c4 � c2 	 2; (B13)

and

 c0 � 1� s� i!�
2i
b

�
!
2
� am

�
; (B14)

 c1 � �4	 2i!�2	 b� 	
4i
b

�
!
2
� am

�
; (B15)

 c2 � s	 3� 3i!�
2i
b

�
!
2
� am

�
; (B16)

 

c3 � !2�4	 2b� a2� � 2am!� s� 1	 �2	 b�i!

� Alm 	
4!	 2i

b

�
!
2
� am

�
; (B17)

 c4 � s	 1� 2!2 � �2s	 3�i!�
4!	 2i

b

�
!
2
� am

�
:

(B18)

QNM frequencies satisfy a continued-fraction relation
analogous to (B7), with the superscript � replaced by a
superscript r. Given the QNM frequencies and the corre-
sponding angular eigenvalues Alm it is a simple matter to
compute Rr	 for any finite, not very large value of r.
Unfortunately, the convergence of the Jaffé expansion
gets worse for large values of r. This is precisely the region
where the wave function can be expressed as a sum of
ingoing and outgoing components, a necessary procedure
to evaluate ATin and ATout and their derivatives. For this
reason we must resort to the Coulomb wave function
representation first introduced by Leaver [12,13], and sum-
marized below.

3. Coulomb wave function expansion of the radial wave
function

Let us first introduce a new wave function h, related to
the Teukolsky wave function R by

 R � �r� r��
�1	i�	�r� r	�

�s�i�	h�z�; (B19)

where z 
 !�r� r��. The wave function h satisfies the
generalized spheroidal wave equation
 

z�z�!x0��@2
zh	 �1� 2�=z�h� 	 C1!@zh

	 �C2 	 C3!=z�h � 0; (B20)

with
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 x0 � b; � � �is�!; (B21)

 C1 � b�1� s� 2i�	�; (B22)

 C2 � �Alm � s�s	 1� 	 ibs!	 2!2 � a2!2 	 b!2;

(B23)

 C3 � b��1	 s	 i!��1	 i!� 2i�	�: (B24)

We next expand h as

 h�z� �
X1

L��1

aLUL	���; z�; (B25)

where UL	���; z� is any combination of the special func-
tions FL	���; z� and GL	���; z�, known as Coulomb wave
functions (see [12,52] for more details on these functions).
We are interested in two particular combinations of
Coulomb wave functions:

 U	
L	���; z� 
 GL	���; z� 	 iFL	���; z�; (B26)

 U�
L	���; z� 
 GL	���; z� � iFL	���; z�: (B27)

As z! 1 these functions have a simple asymptotic be-
havior [52]
 

U�
L	���; z� �

�
1�
�i�� L��i�	 L	 1�

2iz

�
� e�i�z�� log2z�L�=2	�L�; (B28)

with

 �L � �
i
2

log
��L	 �	 1	 i��
��L	 �	 1� i��

: (B29)

Other properties of these functions are given in
Appendix B 4. The coefficients aL in (B25) are determined
by

 �LaL	1 	 
LaL 	 �LaL�1 � 0; (B30)

where
 

�L � �
!

���������������������������������������
�L	 1	 ��2 	 �2

p
�L	 1	 ���2L	 2�	 3�

� ��L	 �	 1��L	 �	 2�x0

� C1�L	 �	 2� � C3�; (B31)

 


L � �L	 ���L	 �	 1� 	 C2 	
!�

�L	 ���L	 �	 1�

� ��L	 ���L	 �	 1�x0 � C1 � C3�; (B32)

 

�L � �
!

������������������������������
�L	 ��2 	 �2

p
�L	 ���2L	 2�� 1�

� ��L	 ���L	 �� 1�x0 � C1�L	 �� 1� � C3�:

(B33)

It is convenient to define the quantities [53]

 RL 

aL
aL�1

; LL 

aL
aL	1

: (B34)

From these definitions it follows that

 RL � �
�L


L 	 �LRL	1
; LL � �

�L

L 	 �LLL�1

:

(B35)

For a minimal solution of the recurrence relation the (as yet
undetermined) parameter � must be a root of [12]

 
0 �
��1�0


�1�

��2��1


�2�

��3��2


�3�
� � � 	

�0�1


1�

�1�2


2�

�
�2�3


3�
� � � : (B36)

The parameter � can also be determined as a solution of the
equation [53]

 RLLL�1 � 1: (B37)

However, as suggested in [54], the most convenient nu-
merical choice is to solve for

 
L 	 �LRL	1 	 �LLL�1 � 0: (B38)

We are interested only in the solutions that map to the
correct asymptotic value � � l as !! 0 (corrections of
order !2 can be found in [53]). Roots � that are integer
multiples of 1=2 are usually spurious and must be dis-
carded [12]. For slowly damped modes, physically mean-
ingful roots are most easily obtained setting L � 0 or
L � �1 in (B38). We verified that different numerical
procedures yield excellent agreement on the resulting val-
ues of �. For reference, we list some of these values along
with the corresponding QNM frequencies (for a � 0) in
Table VII.

The procedure to compute the functions R1	 and R1� is
now straightforward, at least in principle. Compute the
parameter � solving (B36) and (B37) or (B38). Then
compute the coefficients aL for positive and negative L
from (B34), setting for instance a0 � 1 (the final results are
of course unaffected by this or other normalization
choices). Finally, the general solution follows from (B19)
and (B25). Imposing the normalization condition (4.8b) we
get

 R1� �
�r� r���1	i�	�r� r	��s�i�	

K�

X1
L��1

aLU
�
L	�;

(B39)
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where from (B28) the normalization constants read

 K� �
X1

L��1

aLe���i� log�2!��i�L	���=2	i�L�: (B40)

The nontrivial step in the calculation of (B39) is the
evaluation of the Coulomb wave functions U�

L	� for com-
plex arguments. Computing these functions is particularly
tricky for large values of jLj, which must be included for
(B39) to converge with acceptable accuracy. Typically a
good precision (of the order of 5 or more significant digits)
is achieved summing terms up to jLj ’ 15.

We verified our results in a number of ways. We first
computed the functions U�

L	���; z� using their relation
with the confluent hypergeometric function U, Eq. (125)
in [12]. Then we checked their values using a similar
representation in terms of the confluent hypergeometric
function M, that can be derived from the integral repre-
sentation (111) of [12]. The reason for switching to U and
M is that confluent hypergeometric functions (unlike
Coulomb wave functions) are implemented in the present
version of Mathematica. Our Mathematica calculations
agree very well with a Fortran subroutine to compute
Coulomb wave functions for complex arguments [55],
that was eventually used to obtain the results in this paper.
Further checks on our numerical results are discussed in
the following section.

4. Numerical checks of the solutions:
some useful identities

Here we describe a number of consistency checks we
performed on our numerical solutions. We performed the
calculations using both Mathematica and a Fortran code.
Our final results on the QNEFs typically agree to one part
in 104 or better.

The convergence of the series expansion (B8) was
checked via a direct high-precision integration of the
Teukolsky equation. When evaluated in the matching re-
gion (typically we use r� 5–7) the two methods agree to
one part in 107 or better.

Besides checking the validity of the asymptotic expan-
sion (B28), the following equalities proved useful to de-
termine the accuracy of the functions UL	�

� :

 

d2U�
L	�

dz2
	

�
1�

2�
z
�
�L	 ���L	 �	 1�

z2

�
U�

L	� � 0;

(B41)

 U	
L	��1U

�
L	� �U	

L	�U
�
L	��1 �

2i�L	 ��������������������������������
�L	 ��2 	 �2

p ;

(B42)

 

�L	 ��
���������������������������������������
�L	 �	 1�2 	 �2

q
U�

L	�	1

�

�
2�L	 �� 	 1���	

�L	 ���L	 �	 1�

z

�

�U�
L	� � �L	 �	 1�

������������������������������
�L	 ��2 	 �2

q
U�

L	��1;

(B43)

 

dU	
L	�

dz
U�

L	� �U	
L	�

dU�
L	��1

dz
� 2i; (B44)

 

�L	 ��
dU�

L	�

dz
�

������������������������������
�L	 ��2 	 �2

q
U�

L	��1

�

�
�L	 ��2

z
	 �

�
U�

L	�; (B45)

 �L	 �	 1�
dU�

L	�

dz
�

�
�L	 �	 1�2

z
	 �

�
U�

L	�

�
���������������������������������������
�L	 �	 1�2 	 �2

q
U�

L	�	1:

(B46)

Numerical calculations of UL	�
� usually fail for large jLj.

This is true both when we use their representation in terms
of confluent hypergeometrics and when we use the Fortran
routines of Ref. [55]. In the sum (B39) we included only

TABLE VII. Values of the QNM frequencies and of the angular momentum parameter � in the
Schwarzschild limit.

�

n s � 0, l � 2 s � �1, l � 1 s � �2, l � 2

0 1:640 72	 0:247 70i 1:853 64	 0:203 71i 1:728 37	 0:233 96i
1 �1:910 21� 0:444 83i �1:179 74� 0:290 72i �2:003 10� 0:375 93i

M!

n s � 0, l � 2 s � �1, l � 1 s � �2, l � 2

0 0:483 64� 0:096 76i 0:248 26� 0:092 49i 0:373 67� 0:088 96i
1 0:463 85� 0:295 60i 0:214 52� 0:293 67i 0:346 71� 0:273 92i
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those values of L for which the identity (B42) is satisfied
(in modulus) to better than one part in 104.

An important test on the linear combinations R1� is
based on the calculation of their Wronskian. One can prove
easily that the Wronskian W between any two solutions of
the Teukolsky equation satisfies

 W�r� � W�r0� exp
�
�
Z r

r0

�s	 1��2x� 1�

�x� r	��x� r��
dx
�
; (B47)

where r0 is any fixed point. Considering the two solutions
R1	 and R1� we can evaluate the constant W�r0� by
computing the Wronskian at infinity from their asymptotic
behavior (4.8b), with the result

 W�r0� � 2i!��r0 � r	��r0 � r�����s	1�: (B48)

Our wave functions satisfy this relation at different se-
lected values of r0. A final test consists in evaluating Aout

by a direct integration of the Teukolsky equation and
comparing the results with the method described in the
main text; the agreement is at the level of 1% or better.

APPENDIX C: TRANSFORMATION BETWEEN
THE TEUKOLSKY AND SASAKI-NAKAMURA

WAVE FUNCTIONS

In the main text we computed the QNEFs using the
Teukolsky formalism. Quite often it is computationally
convenient to use the equivalent formalism developed for
s � �2 by Sasaki and Nakamura [22–24] and its general-
ization for other spins [25]. In general, switching between
the two formalisms is not trivial. Fortunately, deriving the
asymptotic behavior of the respective wave functions and
the relation between the QNEFs is quite simple, as we
show below.

We follow Sasaki and Tagoshi [24] and denote the SN
function byX�s�. At infinity, the asymptotic behavior ofX�s�

is the same for all s:

 lim
r!1

X�s� � Aine
�i!r� 	 Aoute

i!r� : (C1)

The normalization at the horizon is fixed by our choice for
the Teukolsky function, Eqs. (4.7a) and (B8). We will
define the QNEFs in the SN formalism in the usual way:

 B�s� �
Aout

2!

�
dAin

d!

�
�1
��������!�!n

: (C2)

Below we establish the relation between B�s� and the
QNEFs B�s�T in the Teukolsky formalism, as computed in
the main text.

1. Scalar perturbations

In the scalar case, the generalized SN function is related
to the Teukolsky radial function R by [25]

 X�0� � �r2 	 a2�1=2R; (C3)

and satisfies

 

d2

dr2
�

X�0� �U�0�X�0� � 0; (C4)

where

 U �0� � �
K2 � �Alm � 2am!	 a2!2��

�r2 	 a2�2
	G2 	

d
dr�

G;

(C5)

with K � �r2 	 a2�!� am and G � r��r2 	 a2��2.
From Eq. (C3) we have immediately

 B�0�T � B�0�: (C6)

The normalization of the Teukolsky function, Eq. (4.7a),
implies that at the horizon
 

lim
r!r	

X�0� � �r2
	 	 a

2�1=2�r	 � r���1	i!	i�	

� ei!r	�r� r	�
�i�	 : (C7)

2. Electromagnetic perturbations

For the electromagnetic case, the generalized SN trans-
formation is

 X��1� �

����������������
r2 	 a2

�

s
��R��1� 	 
@rR

��1��; (C8)

where we can choose [25]

 � � �
r2 	 a2

r2

����
�
p �

r

r2 	 a2 	
iK
�

�
;


 �
r2 	 a2

r2

����
�
p

:

(C9)

From the asymptotic behavior of the Teukolsky function
 

lim
r!1

R��1� � AT
inr
�1e�i!r� �1	
1=r�

	 AT
outre

i!r� �1	
2=r�; (C10)

with 
1 � ��2!	 i�2� Alm � a2!2��=�2!� and 
2 �
�i�Alm 	 a

2!2��=�2!� we get
 

AT
in � �

1

2i!
Ain;

AT
out � �

2i!

2am!� Alm � a2!2 Aout;

(C11)

and finally

 B��1�
T � �

4!2

2am!� Alm � a
2!2 B

��1�: (C12)

Similarly, from the asymptotic behavior of the Teukolsky
function at the horizon (4.7a) we find
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lim
r!r	

X��1� � �1� 2i�	�r
�1=2
	 �r	 � r��

i!	i�	

� ei!r	�r� r	��i�	 : (C13)

3. Gravitational perturbations

For the gravitational case the transformation between
the SN and Teukolsky wave functions is more complex, but
here we only need the asymptotic behavior (for more de-
tails we refer to the original papers [22,23] and to the
review in [24]). One can show, e.g. from Eqs. (65)–(69)
in [24], that asymptotically the Teukolsky and SN ampli-
tudes satisfy
 

AT
in � �

1

4!2 Ain;

AT
out � �

4!2

���	 2� � 6i!� 12a!�a!�m�
Aout;

(C14)

so that

 B��2�
T �

16!4

���	 2� � 6i!� 12a!�a!�m�
B��2� (C15)

with � 
 Alm 	 �a!�
2 � 2am!. Expressing Eqs. (65) and

(68) in [24] in Leaver’s units and combining them with
Eq. (4.7a), the normalization at the horizon is

 lim
r!r	

X��2� � d�r	 � r���1	i!	i�	ei!r	�r� r	��i�	 ;

(C16)

where d 
 r1=2
	 ��8� 12i!� 4!2�r2

	 	 �12iam� 8	
8am!	 6i!�r	 � 4a2m2 � 6iam	 2�.
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