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Spacetimes with horizons show a resemblance to thermodynamic systems and one can associate the
notions of temperature and entropy with them. In the case of Einstein-Hilbert gravity, it is possible to
interpret Einstein’s equations as the thermodynamic identity TdS � dE� PdV for a spherically sym-
metric spacetime and thus provide a thermodynamic route to understand the dynamics of gravity. We
study this approach further and show that the field equations for the Lanczos-Lovelock action in a
spherically symmetric spacetime can also be expressed as TdS � dE� PdV with S and E given by
expressions previously derived in the literature by other approaches. The Lanczos-Lovelock Lagrangians
are of the form L � Qa

bcdRabcd with rbQa
bcd � 0. In such models, the expansion of Qa

bcd in terms of
the derivatives of the metric tensor determines the structure of the theory and higher order terms can be
interpreted as quantum corrections to Einstein gravity. Our result indicates a deep connection between the
thermodynamics of horizons and the allowed quantum corrections to standard Einstein gravity, and shows
that the relation TdS � dE� PdV has a greater domain of validity than Einstein’s field equations.
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I. INTRODUCTION

There is an intriguing analogy between the gravitational
dynamics of horizons and thermodynamics, which is not
yet understood at a deeper level [1]. One possible way of
interpreting these results is to assume that spacetime is
analogous to an elastic solid and equations describing its
dynamics are similar to those of elasticity (the ‘‘Sakharov
paradigm’’; see, e.g., Ref. [2]). The unknown, microscopic
degrees of freedom of spacetime (which should be analo-
gous to the atoms in the case of solids) will play a role only
when spacetime is probed at Planck scales (which would
be analogous to the lattice spacing of a solid). The excep-
tion to this general rule arises when we consider horizons
[3] which have finite temperature and block information
from a family of observers. In a manner which is not fully
understood, the horizons link certain aspects of micro-
scopic physics with the bulk dynamics just as thermody-
namics can provide a link between statistical mechanics
and (zero temperature) dynamics of a solid. If this picture
is correct, then one should be able to link the equations
describing bulk spacetime dynamics with horizon thermo-
dynamics. There have been several approaches which have
attempted to do this with different levels of success [1,2,4].
The most explicit example occurs [5] in the case of spheri-
cally symmetric horizons in 4-D. In this case, Einstein’s
equations can be interpreted as a thermodynamic relation
TdS � dE� PdV arising out of virtual displacements of
the horizon.

This result was derived in the context of Einstein-Hilbert
gravity arising from the Lagrangian LEH / R

�������
�g
p

. But if
gravity is a long wavelength, emergent phenomenon, then
the Einstein-Hilbert action is just the first term in the
expansion for the low energy effective action. It is natural
to expect quantum corrections to the Einstein-Hilbert ac-
tion functional, which will, of course, depend on the nature
of the microscopic theory but will generally involve higher
derivative correction terms in the Einstein-Hilbert action
[6]. In particular, such terms also arise in the effective low
energy actions of string theories [7]. One such higher
derivative term which has attracted a fair amount of atten-
tion is Lanczos-Lovelock gravity [8] of which the lowest
order correction appears as a Gauss-Bonnet term in D�>4�
dimensions. We study the structure of a general Lanczos-
Lovelock–type Lagrangian and the resulting equation of
motion for a static and spherically symmetric spacetime,
near a Killing horizon. We find that the equivalence of the
equation of motion and the thermodynamic identity TdS �
dE� PdV transcends Einstein gravity and is applicable
even in this more general case. This remarkable result
indicates that there is a deep connection between the
thermodynamics of gravitational horizons and the structure
of the quantum corrections to Einstein gravity.

Our result requires fairly involved combinatorial argu-
ments and detailed algebra. In order not to lose the physical
picture, we have structured the paper as follows: in the next
section, we will briefly review the case of Einstein-Hilbert
gravity to set the stage [5]. In Sec. III we will display an
explicit calculation relating the equation of motion for
gravity with a Gauss-Bonnet correction term (the simplest
nontrivial example of Lanczos-Lovelock gravity) with
thermodynamic quantities. In Sec. IV we will generalize
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the result to Lanczos-Lovelock actions with all the terms
allowed for a given number of dimensions D, and discuss
the implications in Sec. V.

II. THE EINSTEIN-HILBERT CASE

Consider a static, spherically symmetric spacetime with
a horizon, described by the metric

 ds2 � �f�r�c2dt2 �
1

f�r�
dr2 � r2d�2: (1)

We will assume that the function f�r� has a simple zero at
r � a and that f0�a� is finite, so that spacetime has a
horizon at r � a with nonvanishing surface gravity � �
f0�a�=2. Periodicity in Euclidean time allows us to asso-
ciate a temperature with the horizon as kBT � @c�=2� �
@cf0�a�=4�, where we have introduced normal units.
(Even for spacetimes with multihorizons, this prescription
is locally valid for each horizon surface.) Einstein’s equa-
tion for this metric, rf0�r� � �1� f� � �8�G=c4�Pr2

(where P is the radial pressure), evaluated at r � a gives

 

c4

G

�
1

2
f0�a�a�

1

2

�
� 4�Pa2: (2)

If we now consider two solutions with two different radii a
and a� da for the horizon, then multiplying Eq. (2) by da,
and introducing a @ factor by hand into an otherwise
classical equation, we can rewrite it as

 

@cf0�a�
4�|���{z���}
kBT

c3

G@
d
�
1

4
4�a2

�
|����������{z����������}

dS

�
1

2

c4da
G|�����{z�����}

�dE

� Pd
�

4�
3
a3

�
|�������{z�������}

PdV

(3)

and read off the expressions:

 S �
1

4L2
P

�4�a2� �
1

4

AH
L2
P

; E �
c4

2G
a �

c4

G

�
AH
16�

�
1=2
;

(4)

where AH is the horizon area and L2
P � G@=c3. Thus

Einstein’s equations can be cast as a thermodynamic iden-
tity. Three comments are relevant regarding this result,
especially since these comments are valid for our general-
ization discussed in the rest of the paper as well:

(a) The combination TdS is completely classical and is
independent of @, but T / @ and S / 1=@. This is
analogous to the situation in classical thermodynam-
ics when compared to statistical mechanics. The
TdS in thermodynamics is independent of
Boltzmann’s constant while statistical mechanics
will lead to S / kB and T / 1=kB.

(b) In spite of superficial similarity, Eq. (3) is different
from the conventional first law of black hole ther-
modynamics (as well as some previous attempts to
relate thermodynamics and gravity, like e.g. the
second paper in Ref. [2]), due to the presence of
the PdV term. This relation is more in tune with the

membrane paradigm [9] for the black holes. This is
easily seen, for example, in the case of Reissner-
Nordstrom black holes for which P � 0. If a
chargeless particle of mass dM is dropped into a
Reissner-Nordstrom black hole, then an elementary
calculation shows that the energy defined above as
E � a=2 changes by dE � �da=2� � �1=2��a=�a�
M��dM � dM, while it is dE� PdV which is pre-
cisely equal to dM, making sure that TdS � dM. So
we need the PdV term to get TdS � dM when a
chargeless particle is dropped into a Reissner-
Nordstrom black hole. More generally, if da arises
due to changes dM and dQ, it is easy to show that
Eq. (3) gives TdS � dM� �Q=a�dQ, where the
second term arises from the electrostatic contribu-
tion from the horizon surface charge as expected in
the membrane paradigm.

(c) In standard thermodynamics, we consider two equi-
librium states of a system differing infinitesimally in
the extensive variables like entropy, energy, and
volume by dS, dE, and dV, while having the same
values for the intensive variables like temperature
(T) and pressure (P). Then, the first law of thermo-
dynamics asserts that TdS � PdV � dE for these
states. In a similar way, Eq. (3) can be interpreted as
a connection between two quasistatic equilibrium
states, where both of them are spherically symmetric
solutions of Einstein equations with the radius of
horizon differing by da while having the same
source Tij and temperature T � �=2�. This formal-
ism does not depend upon what causes the change of
the horizon radius and is therefore very generally
applicable. Note that the structure of Eq. (3) itself
allows us to ‘‘read off’’ the expressions for entropy
and energy. The validity of this approach as well as
the uniqueness of the resulting expressions for S and
E are discussed at length in Ref. [5] and will not be
repeated here.

III. A FIRST CORRECTION: GAUSS-BONNET
GRAVITY

We shall now turn our attention to the more general case.
(Hereafter, we shall adopt natural units, in which @ � c �
G � 1.) A natural generalization of the Einstein-Hilbert
Lagrangian is provided by the Lanczos-Lovelock
Lagrangian, which is the sum of dimensionally extended
Euler densities,

 L �D� �
XK
m�1

cmL
�D�
m ; (5)

where the cm are arbitrary constants and L�D�m is the mth
order Lanczos-Lovelock term given by

 L �D�
m �

1

16�
2�m�a1b1...ambm

c1d1...cmdm
Rc1d1
a1b1

. . .Rcmdmambm
; (6)
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where Rabcd is the D-dimensional Riemann tensor, and the
generalized alternating (‘‘determinant’’) tensor �						 is to-
tally antisymmetric in both sets of indices. For D � 2m,
16�L�2m�m is the Euler density of the 2m-dimensional
manifold. We set L0 � 1=16�, and hence c0 is propor-
tional to the cosmological constant. The Einstein-Hilbert
Lagrangian is a special case of Eq. (5) when only c1 is
nonzero. These Lagrangians are free from ghosts and are
quasilinear in nature (see the first reference in [7]).

In this section we will concentrate on the first correction
term, namely L2, which is the Gauss-Bonnet Lagrangian.
In four dimensions, this term is a total derivative, while
higher order interactions are simply zero; we will work
with spacetimes for which D> 4. Then the relevant action
functional of the theory is given by

 A �
Z
dDx

�������
�g
p

�
1

16�
�R� �LGB�

�
�Amatter; (7)

where R is the D-dimensional Ricci scalar, and LGB is the
Gauss-Bonnet Lagrangian which has the form

 L GB � R2 � 4RabR
ab � RabcdR

abcd: (8)

This type of action can be derived from superstring theory
in the low energy limit. In that case, � is regarded as the
inverse string tension and is positive definite. At least in
this context, it makes sense to think of the second term as a
correction to Einstein gravity. (We have not added a cos-
mological constant to the action for simplicity; all our
results below trivially generalize in the presence of a
bulk cosmological constant.) The equation of motion for
this semiclassical action in Eq. (7) is given by

 Gab � �Hab � 8�Tab; (9)

where
 

Gab � Rab �
1
2gabR; (10)

 

Hab � 2�RRab � 2RajRjb � 2RijRaibj � RaijkRbijk�

� 1
2gabLGB: (11)

Consider again a static spherically symmetric solution of
the form [10]

 ds2 � �f�r�dt2 � f�1�r�dr2 � r2d�2
D�2; (12)

where d�2
D�2 is the metric of the (D� 2)-dimensional

space of constant curvature k. Here and below, we will
work with the case of spherical geometry with k � 1, but
all the results can easily be generalized for k � 1.
Spherical symmetry allows us to write, in the energy
momentum tensor [11], Ttt � Trr � ��r�=8�. Then the
equation of motion which determines the only nontrivial
metric component f�r� is given by [12]

 

rf0 � �D� 3��1� f� �
��

r2 �1� f�


 �2rf0 � �D� 5��1� f�� �
2��r�
D� 2

r2; (13)

where �� � �D� 3��D� 4��. Note that D � 4 and � � 0
refer to Einstein-Hilbert gravity, and in this limit one can
recover Eq. (3). The horizon is obtained from the location
of zeros of the function f�r�. In general, f�r� may have
several zeros but we will concentrate locally on any one of
them. Let r � a be a horizon for this spacetime with f�r �
a� � 0, the temperature associated with this horizon being
T � �=2� � f0�a�=4�. As before, we evaluate Eq. (13) at
r � a to obtain

 f0�a�
�
a�

2 ��
a

�
� �D� 3� �

���D� 5�

a2 �
2��a�
D� 2

a2:

(14)

Our aim is to introduce in this equation a factor dV and see
whether one can read off entropy S and energy E from an
equation of the form TdS � dE� PdV. Knowing the
volume element in the D-dimensional space, we multiply
both sides of the above equation by the factor
�D�2�AD�2a

D�4da=16�, where AD�1 � 2�D=2=��D=2� is
the area of a unit �D� 1� sphere. Identifying the pressure
P � Trr and the relevant volume V � AD�2aD�1=�D� 1�,
we can rewrite this equation (after some straightforward
algebra) in the form
 

�
2�

d
�
AD�2

4
aD�2

�
1�

�
D� 2

D� 4

�
2 ��

a2

��

� d
�
�D� 2�AD�2aD�3

16�

�
1�

��

a2

��
� PdV: (15)

The first term in the left-hand side is in the form TdS and
our analysis allows us to read off the expression of entropy
S for the horizon as

 S �
AD�2

4
aD�2

�
1�

�
D� 2

D� 4

�
2 ��

a2

�
: (16)

This is precisely the expression for the entropy in Gauss-
Bonnet gravity calculated by several authors [13] by more
sophisticated methods. Further, we can interpret the second
term on the left-hand side of Eq. (15) as dE, where E is the
energy of the system defined as

 E �
�D� 2�AD�2aD�3

16�

�
1�

��

a2

�
; (17)

which also matches with the correct expression of energy E
for Gauss-Bonnet gravity without a cosmological constant
[13,14].

This shows that our result for the Einstein-Hilbert action
generalizes to the Gauss-Bonnet case as well, and precisely
reproduces the expressions for entropy and energy (ob-
tained in the literature by other methods). It is clear that,
at least in this context, the thermodynamic relation tran-
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scends the Einstein field equations. We will now show that
the same result holds for the general Lanczos-Lovelock
action.

IV. GRAVITY WITH THE COMPLETE LANCZOS-
LOVELOCK ACTION

We now turn to the more general case of Lanczos-
Lovelock gravity inD dimensions with a Lagrangian given
by L�D� �

PK
m�1 cmL

�D�
m , where

 L �D�
m �

1

16�
2�m�a1a2...a2m

b1b2...b2m
Rb1b2
a1a2

. . .Rb2m�1b2m
a2m�1a2m: (18)

We assume that D � 2K � 1 and ignore the cosmological
constant for simplicity. These Lagrangians have the pecu-
liar property [15] that their variation leads to equations of
motion that are equivalent to the ordinary partial deriva-
tives of the Lagrangian density with respect to the metric
components gab,

 Eab �
XK
m�1

cmE
a
b�m� �

1

2
Tab ;

Eab�m� �
1�������
�g
p gai

@

@gib
�L�D�m

�������
�g
p

�:

(19)

The factor 1=2 with Tab appears since we have normalized
L�D�m to contain a factor of 1=�16��.

We are interested in the near-horizon structure of the Ett
equation, for a spherically symmetric metric of the form
Eq. (12), and will demonstrate that this structure can (also)
be represented as the thermodynamic identity TdS �
dE� PdV. To this end, we will consider the Rindler limit
(see the first reference in [1]) of such a metric, by which we
mean that we will study the metric (12) near the horizon at
r � a and bring it to the Rindler form

 ds2 � �N2dt2 �
dN2

�2 �O�N�
� �ABdyAdyB: (20)

This form essentially arises by using a coordinate system in
which the level surfaces of the metric component g00

(which vanishes on the horizon) define the spatial coordi-
nate N. The constant � appearing in the g11 term above can
be shown to coincide with the surface gravity of the
horizon. In this section, capitalized Latin indices corre-
spond to the transverse coordinates on the t � constant,
N � constant surfaces of dimension D� 2, and �AB is the
metric on these surfaces. Denoting the extrinsic curvature
of these �D� 2� surfaces by KAB, it is easy to show that,
for the metric (12), the Rindler limit gives

 

�AB � ��1�AB �
N2

�a
��1�AB �O�N4�; (21a)

�AB � �AB
�1� �

N2

�a
�AB
�1� �O�N4�; (21b)

KAB � �
N
a
��1�AB �O�N2�; (21c)

where ��1�AB � a2 ~��1�AB, ~��1�AB being the metric on a unit
�D� 2� sphere, and �AC

�1���1�CB � �AB.
Next we display the (near-horizon) structure of the

D-dimensional Riemann tensor. We will drop the super-
script D when considering D-dimensional quantities, but
retain the superscript for �D� 2�-dimensional quantities.
It will turn out, for reasons that will become apparent
shortly, that the Riemann tensor components of the form
Rtijk and Rjkti will not contribute to the Ett equation of

motion. The remaining components of Rijkl are
 

RNANB � �@NKA
B �O�N2� � �

�
a
�AB �O�N2�; (22a)

RNABC � KA
C:B � K

A
B:C � O�N�; (22b)

RBCNA � gNN�KC:B
A � KB:C

A � � O�N�; (22c)

RABCD �
�D�2�RABCD �O�N2�; (22d)

where the colon denotes a covariant derivative using the
�D� 2�-dimensional metric �AB. Also, since the �D�
2�-dimensional hypersurfaces are maximally symmetric,
their Riemann tensor �D�2�RABCD takes on the particularly
simple form

 

�D�2�RABCD �
1

a2 ��
A
C�

B
D � �

B
C�

A
D�: (23)

With these results, we can begin analyzing the near-
horizon structure of the Ett equation in Lanczos-Lovelock
gravity. Since the equation depends linearly on the terms
Ett�m�, it is sufficient to analyze these terms individually,

 Ett�m� �
1�������
�g
p gtt

@
@gtt
�L�D�m

�������
�g
p

�: (24)

On writing Rijkl � gjaRiakl, the derivative with respect to gtt

can be performed. Using the symmetries of the alternating
tensor, together with the relation �@

�������
�g
p

�=�@gtt� �
��1=2�

�������
�g
p

gtt and the fact that g0N � g0A � 0 for the
static Rindler metric, we find

 Ett�m� �
1

16�
m
2m
�a1a2...a2m
tb2...b2m

Rtb2
a1a2

. . .Rb2m�1b2m
a2m�1a2m �

1

2
L�D�m :

(25)

We will now show that the summations involved in the first
term of Eq. (25) are cancelled by terms in L�D�m . Let us
categorize the terms that appear in L�D�m into those in which
the index value t appears at least once, which we denote by
fTg, and those in which t does not appear, which we denote
by f �Tg. Symbolically then, L�D�m � fTg � f �Tg. In the case
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of standard Einstein gravity, we have 16�L�D�1 � R �

2Rtt � R
��
�� and one clearly recognizes 2Rtt as fTg. Since

the Einstein tensor isGt
t � Rtt � �1=2�R, the terms fTg in R

are precisely cancelled in Gt
t. We will now show that

exactly the same feature occurs in the mth Lanczos-
Lovelock case. To see this, we construct the set fTg as
follows. Focusing on the lower row of the alternating
tensor in the expression (18) for L�D�m , we have 2m choices
for the location of the index value t. Because of the
symmetries of the alternating tensor and the Riemann
tensor, each choice results in the same term, and we can
write

 fTg �
2

16�
m
2m
�a1a2...a2m
tb2...b2m

Rtb2
a1a2

. . .Rb2m�1b2m
a2m�1a2m : (26)

A comparison with Eq. (25) shows that the first term in that
equation is simply �1=2�fTg, and we are left with

 Ett�m� � �
1
2f

�Tg: (27)

Note that the set f �Tg is not a priori a null set since we have
assumed D � 2m� 1. To simplify the contribution of f �Tg,
we further split this set as follows. This set contains terms
with exactly one occurrence of the index value N, denoted
f �T; 1Ng, terms with two occurrences ofN, denoted f �T; 2Ng,
and terms with no occurrences of N, denoted f �T; �Ng. (The
total antisymmetry of the alternating tensor forbids more
than one occurrence of N in any row.) Each term in the set
f �T; 1Ng contains one factor of the type RBCNA or RNABC , and
Eq. (22) shows that these terms are O�N� and do not
contribute on the horizon. (In fact, these terms can be
shown to vanish.) Similarly, the set f �T; 2Ng contains one
type of term in which the two N’s appear in different
factors of R���	 . These terms contain two factors each of
RBCNA or RNABC , rendering these terms O�N2�. The contribu-
tion from f �T; 2Ng reduces to the 4m identical terms in
which both the N’s appear in the same factor of R���	 , and
is given by

 f �T; 2Ng �
4

16�
m
2m
�NA2...A2m
NB2...B2m

RNB2
NA2

. . .RB2m�1B2m
A2m�1A2m

�O�N2�;

(28)

where A2; B2; . . . � yA. The set f �T; �Ngwill not be a priori a
null set whenever D � 2m� 2, and its contribution is

 f �T; �Ng �
1

16�
1

2m
�A1A2...A2m
B1B2...B2m

RB1B2
A1A2

. . .RB2m�1B2m
A2m�1A2m

� L�D�2�
m �O�N2�; (29)

where we have used Eq. (22d) and recognized the structure
of L�D�2�

m in the resulting term. Finally, using Eqs. (28) and
(29), substituting for the near-horizon structure of RNBNA
from Eq. (22) and relabeling some indices, we find

 Ett�m� �
�m
16�

1

2m�1

�
1

a
�B1
A1

�
�NA1...A2m�1
NB1...B2m�1

�D�2�RB2B3
A2A3

. . .

�
1

2
L�D�2�
m �O�N�; (30)

where L�D�2�
m will contribute only when D � 2m� 2. The

first term of Eq. (30) can be simplified by noting the
following. The alternating tensor �NA1...A2m�1

NB1...B2m�1
can be re-

placed by �A1A2...A2m�1
B1B2...B2m�1

since �NN � 1 and �NA � 0. Further,
due to the total antisymmetry of the alternating tensor, each
factor of �D�2�RABCD can be replaced by �2=a2��AC�

B
D, and

there are �m� 1� such factors. Putting everything together,
we find

 Ett�m� �
�m
16�

1

a2m�1 ��
A1A2...A2m�1
B1B2...B2m�1

��B1
A1
�B2
A2

. . .�B2m�1
A2m�1

�
1

2
L�D�2�
m �O�N�: (31)

We can further perform the summations over A1 andB1 and
rearrange terms to obtain

 

�m
8�

D� 2m

a2m�1 ��
A2A3...A2m�1
B2B3...B2m�1

��B2
A2
�B3
A3

. . .�B2m�1
A2m�1

� 2Ett�m� �L�D�2�
m �O�N�: (32)

We have relegated the proof of Eq. (32) to the Appendix,
since it involves combinatorial arguments and is rather
involved.

We are now ready to make the connection with the
thermodynamic identity by a procedure which is identical
to that used in the Einstein-Hilbert and Gauss-Bonnet
cases. We wish to multiply the Ett equation of motion Ett �
�1=2�Ttt evaluated on the horizon by the volume differential
dV � AD�2aD�2da and try to ‘‘read off’’ expressions for
the entropy, energy, etc. We note that multiplying Eq. (32)
by the coupling constant cm and summing over m will give
2Ett as the first term on the right-hand side, which we can
replace by Ttt . We also know that in the spherically sym-
metric case we have Ttt � Trr � TNN � P with P the radial
pressure. The equation obtained after these replacements
will be equivalent to the equation of motion, and multi-
plying it with dV will result in the following,
 

�
2�

d
�XK
m�1

m
4
cmAD�2a

D�2m��A2...:A2m�1
B2...:B2m�1

��B2
A2

. . .�B2m�1
A2m�1

�

� PdV �
XK
m�1

cmAD�2aD�2L�D�2�
m da: (33)

Recognizing �=2� as the temperature T, we are forced to
identify the quantity inside parentheses on the left-hand
side above as the entropy S. Noting that the alternating
tensor that appears here contains 2m� 2 indices per row,
and recalling the simple structure of the �D�
2�-dimensional Riemann tensor from Eq. (23), we can
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rewrite our entropy as S �
PK
m�1 S

�m�, with S�m� given by

 S�m� � 4�mcmAD�2aD�2L�D�2�
m�1

� 4�mcm
Z
H

L�D�2�
m�1

����
�
p

dD�2y: (34)

Note that, in our approach, which is identical to what we
followed in the Einstein-Hilbert and Gauss-Bonnet cases,
we have no choice in the expression for S. Remarkably
enough, this is precisely the entropy of the horizon in
Lanczos-Lovelock gravity which has been computed by
several authors (see, e.g., the first reference in [13]).

Having identified the TdS and PdV terms in Eq. (33),
we ask whether the remaining quantity can be interpreted
as the differential of some function. We find that this is
indeed the case and we have

 

XK
m�1

cmAD�2aD�2L�D�2�
m da � d

�XK
m�1

cmE�m�

�
; (35)

 E�m� �
1

16�
AD�2aD��2m�1�

Y2m
j�2

�D� j�: (36)

The proof of Eq. (35) can be found in the Appendix. This
requires us (again we have no choice in the matter) to
interpret the quantity E �

PK
m�1 cmE�m� as the energy

associated with the horizon; incredibly enough, we find
that this expression exactly has been computed by other
authors [16] as the energy of the horizon in spherically
symmetric Lanczos-Lovelock gravity.

Incidentally, the expression for the differential of the
energy dE in all the cases presented here shows that this
contribution arises from the term L�D�2�

m (which, for the
Einstein-Hilbert case in D � 4 for example, is simply
�2�R). Thus the energy associated with the horizon origi-
nates in the transverse geometry of the horizon.

We have therefore proved that, for the spherically sym-
metric case, the equation of motion Ett � �1=2�Ttt can be
recast in the form

 

�
�

2�

�
dS � dE� PdV; (37)

with the differentials being interpreted as arising due to a
change in the radius of the horizon. In principle, the
corrections to the entropy and the energy coming from
the higher order Lanczos-Lovelock terms need not have
preserved the structure of the first law of thermodynamics
apparent above in the gravitational field equations.

We find it rather far-fetched to believe that this precise
analogy of the field equations with the first law of thermo-
dynamics (albeit for the spherically symmetric case) is a
mere coincidence. This feature of the field equations seems
to point towards a deeper principle which is yet to be
understood.

V. DISCUSSION

The fact that the expression for entropy (S) and energy
(E) obtained from this approach, by casting the equation in
the form TdS � dE� PdV, matches exactly with the
standard quantum field theory calculations, as in the case
of Einstein-Hilbert gravity, is nontrivial and intriguing.
However, it resonates well with an alternative perspective
on gravity which was developed in a series of recent papers
[15,17]. This alternative paradigm views semiclassical
gravity as based on a generic Lagrangian of the form L �
Qa

bcdRabcd with rbQa
bcd � 0. The expansion of Qa

bcd in
terms of the derivatives of the metric tensor determines the
structure of the theory uniquely. The zeroth order term
gives the Einstein-Hilbert action, and the first order cor-
rection is given by the Gauss-Bonnet action. More impor-
tantly, any such Lagrangian can be decomposed into
surface and bulk terms as

�������
�g
p

L �
�������
�g
p

Lbulk � Lsur,
where

 Lbulk � 2Qa
bcd�adk�

k
bc; Lsur � @c�

�������
�g
p

Vc�;

Vc � 2Qa
bcd�abd:

(38)

Obviously, both Lsur and Lbulk contain the same informa-
tion in terms of Qa

bcd and hence can always be related to
each other [15,18]. It is easy to verify, for example [19],
that

 L �
1

2
Rabcd

�
@Vc

@�abd

�
; Lbulk �

�������
�g
p

�
@Vc

@�abd

�
�adk�

k
bc:

(39)

Thus the knowledge of the functional form of Lsur or—
equivalently—Vc allows us to determine Lbulk and even L.
(The first relation also shows that �@Vc=@�abd� is generally
covariant in spite of the appearance.) These relations make
the actions based on L � Qa

bcdRabcd with rbQa
bcd � 0

intrinsically ‘‘holographic,’’ with the surface term contain-
ing equivalent information to the bulk. What is more, one
can show that the surface term leads to the Wald entropy in
spacetimes with horizon [4,18]. Since Lanczos-Lovelock
Lagrangians have this structure, it is quite understandable
that the semiclassical equations of motion have a thermo-
dynamic interpretation.

We can summarize the broader picture as follows: Any
geometrical description of gravity that obeys the principle
of equivalence and is based on a nontrivial metric will
allow for the propagation of light rays to be affected by
gravity. This, in turn, leads to regions of spacetime which
are causally inaccessible to classes of observers. (These
two features are reasonably independent of the precise field
equations which determine the metric.) The inaccessibility
of regions of spacetime leads to association of entropy with
spacetime horizons. Such a point of view suggests that
there will exist a thermodynamic route to the description
of gravitational dynamics in any metric theory which
satisfies the principle of equivalence. So, the thermody-
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namic interpretation of gravity, encoded in the identity
TdS � PdV � dE, should be fairly generic and the semi-
classical corrections to gravity—arising from the correct
microscopic theory—should preserve the form of this
identity (with only the expressions for S and E getting
quantum corrections). We have shown that this is indeed
the case for spherically symmetric horizons in the
Lanczos-Lovelock Lagrangian. Such an interpretation of-
fers a new outlook towards the dynamics of gravity and
might provide valuable clues regarding the nature of quan-
tum gravity.
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APPENDIX

In this appendix we shall prove Eqs. (32) and (35). In
order to prove Eq. (32), it is sufficient to show that

 ��k� � ��
T1T2...Tk
B1B2...Bk

��B1
T1
�B2
T2

. . .�BkTk

� �D� �k� 1����T2T3...Tk
B2B3...Bk

��B2
T2
�B3
T3

. . .�BkTk

� �D� �k� 1����k�1�; (A1)

with k � 2m� 1, and the indices T1; B1, etc. ranging over
the �D� 2� values 2; 3 . . . �D� 1�. Having proved this, a
simple rearrangement of terms in Eq. (31) leads to Eq. (32).
We will prove this result for a general k since it will come
in handy when proving Eq. (35). To simplify notation, we
introduce the following symbol for a single product of
Kronecker deltas,

 D
T1T2 . . .Tk
B1B2 . . .Bk

� �
� �T1

B1
�T2
B2

. . .�TkBk : (A2)

The alternating tensor is normalized to take values 0, 1, and
�1. In practice, this can be done by antisymmetrizing only
the upper row of indices, and we can write

 �T1T2...Tk
B1B2...Bk

�
X

�2S�k�

sgn���D
��T1���T2� . . .��Tk�

B1B2 . . .Bk

� �
;

(A3)

where S�k� is the set of permutations of k objects and
sgn��� denotes the signature of the permutation �. Our
goal is to perform the summations over the indices T1 and
B1 in the quantity ��k� defined in (A1). To simplify this
computation, we can split up the set S�k� as the union of sets
Sj
�k� with 1 � j � k, where Sj

�k� is the set of permutations �
which map Tj to T1, i.e.,

 Sj
�k� � f� 2 S�k� j ��Tj� � T1g: (A4)

Noting that for � 2 S1
�k�, ��T1� � T1, we can write

 

��k� � �T1
B1
��T2...:Tk

B2...:Bk
�D

B1B2 . . .Bk
T1T2 . . .Tk

" #

�
Xk
j�2

X
�2Sj

�k�

sgn���D
��T1���T2� . . .��Tk�

B1B2 . . .Bk

 !


D
B1B2 . . .Bk
T1T2 . . .Tk

" #

� �D� 2���k�1� �
Xk
j�2

Mj
�k�; (A5)

where the last line defines the quantities Mj
�k� for 2 � j �

k. For a particular value of j, we get

 

Mj
�k� �

X
�2Sj

�k�

sgn���D
��T1� . . .T1��Tj�1� . . .��Tk�

B1 . . .BjBj�1 . . .Bk

" #


D
B1B2 . . .Bk
T1T2 . . .Tk

" #
; (A6)

where we have set ��Tj� � T1. We now have a simple
product of Kronecker deltas for each � 2 Sj

�k�, with T1 and
B1 appearing explicitly. Performing the summations over
T1 and B1 reduces this to

 

Mj
�k� �

X
�2Sj

�k�

sgn���D
��T1� . . .��Tj�1���Tj�1� . . .��Tk�

Bj . . .Bj�1Bj�1 . . .Bk

" #


D
B2 .. .Bk
T2 .. .Tk

" #
: (A7)

From the definition of Sj
�k�, for each � 2 Sj

�k�, the ordered
set P� � f��T1�; ��T2�; . . . ; ��Tj�1�; ��Tj�1�; . . . ; ��Tk�g
is simply a rearrangement of the ordered set P �
fT2; T3; . . . ; Tj; . . . ; Tkg. Hence there exists a one-to-one
mapping between Sj

�k� and the set S�k�1� of permutations
of �k� 1� objects. We would like to replace the summationP
�2Sj

�k�
by the summation

P
~�2S�k�1�

. To ensure that each

term in the summation retains its correct signature after
this replacement, we must introduce an overall factor of
sgn�Cj�, which is the signature of the permutation Cj 2

Sj
�k� that is mapped to the identity of S�k�1�. It is easy to see

that this permutation is the semicyclic rearrangement given
by fT1;T2; . . . ;Tj; . . . ;Tkg!fT2;T3; . . . ;Tj;T1;Tj�1; . . . ;Tkg,
which has signature ��1�j�1. We can write
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Mj
�k� � ��1�j�1 


X
~�2S�k�1�

sgn� ~��


D
~��T2� . . . ~��Tj� ~��Tj�1� . . . ~��Tk�

Bj . . .Bj�1Bj�1 . . .Bk

" #


D
B2 . . .Bk
T2 . . .Tk

" #
: (A8)

The order of the first j indices in the lower row of the first
factor of D in (A8) is not in the standard form. To get B2

below ~��T2� and so on, we simply perform the cyclic
permutation fBj; B2; . . . ; Bj�1g ! fB2; B3; . . . ; Bj�1; Bjg,
with the other indices left untouched. This can be done
since permutations of the upper indices in the alternating
tensor are equivalent to those of the lower indices [20]. The
permutation introduces a factor of ��1�j, which combines
with the ��1�j�1 in (A8) to give an overall factor of ��1�.

We now find that
 

Mj
�k� ��

X
~�2S�k�1�

sgn�~��D
~��T2� . . . ~��Tk�

B2 . . .Bk

" #
D

B2 . . .Bk
T2 . . .Tk

" #

����k�1� (A9)

independent of j. Since there are �k� 1� such terms, (A5)
gives us the required result, namely,

 ��k� � �D� �k� 1����k�1�: (A10)

Setting k � 2m� 1 completes the proof of Eq. (32). The
result in (A10) also allows us to prove Eq. (35) in the
following way. Using arguments similar to those presented
below Eq. (30) and evaluating all quantities on the horizon,
the left-hand side of Eq. (35) for a single value of m can be
expanded to give

 

cmAD�2aD�2L�D�2�
m �

cmAD�2

16�
aD�2

2m
��A1A2...A2m

B1B2...B2m
��D�2�RB1B2

A1A2
. . .

�
cm

16�
AD�2aD��2m�2���A1A2...A2m

B1B2...B2m
�D

B1B2 . . .B2m

A1A2 . . .A2m

" #

�
cm

16�
AD�2a

D��2m�2���2m�

�
cm

16�
AD�2a

D��2m�2��D� �2m� 1����2m�1�

�
cm

16�
AD�2aD��2m�2��D� �2m� 1��

Y2m
j�2

�D� j� �
dE�m�
da

; (A11)

where we have recursively used (A10) to obtain the fourth equality, and used Eq. (36) to write the last equality. This
completes the proof of Eq. (35), and consequently of the result in Eq. (37).
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