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We construct a class of charged rotating solutions in (n� 1)-dimensional Maxwell-Brans-Dicke theory
with flat horizon in the presence of a quadratic potential and investigate their properties. These solutions
are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can present black brane,
with inner and outer event horizons, an extreme black brane or a naked singularity provided the
parameters of the solutions are chosen suitably. We compute the finite Euclidean action through the
use of counterterm method, and obtain the conserved and thermodynamic quantities by using the relation
between the action and free energy in grand-canonical ensemble. We find that these quantities satisfy the
first law of thermodynamics, and the entropy does not follow the area law.
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I. INTRODUCTION

There has been much more interest in alternative theo-
ries of gravity in recent years. This is due to the fact that at
the present epoch the Universe expands with acceleration
instead of deceleration along the scheme of standard
Friedmann models [1]. One of the alternative theory of
gravity is the scalar-tensor gravity pioneered by Jordan,
Brans and Dicke (JBD) [2]. In recent years this theory has
attracted a great deal of attention, in particular, in the
strong field domains, as it arises naturally as the low energy
limit of many theories of quantum gravity such as the
supersymmetric string theory or the Kaluza-Klein theory.
It has been shown that the JBD theory seems to be better
than the Einstein gravity for solving the graceful exit
problem in the inflation model [3]. This is because the
scalar field in the BD theory provided a natural termination
of the inflationary era via bubble nucleation without the
need for finely tuned cosmological parameters. This theory
contains an adjustable parameter ! that represents the
strength of coupling between scalar field and the matter.

Because of highly nonlinear character of JBD theory, a
desirable prerequisite for studying strong field situation is
to have knowledge of exact explicit solutions of the field
equations. Four forms of static spherically symmetric vac-
uum solution of the BD theory in four dimensions are
available in the literature which are constructed by Brans
himself [4]. However, it has been shown that among these
four classes of the static spherically symmetric solutions of
the vacuum Brans-Dicke theory of gravity only two are
really independent [5], and only one of them is permitted
for all values of !. Although this class of solutions, in
general, gives rise to naked singularity, for some particular
choices of the solution’s parameters it represents a black
hole different from Schwarzschild one [6]. The other class
of solutions is valid only for !<�3=2 which implies

nonpositive contribution of matter to effective gravitational
constant and thus a violation of weak energy condition [4].
Static charged solutions of Brans-Dicke-Maxwell gravity
have been investigated in [7], and the nontrivial Kerr-
Newman type black hole solutions different from general
relativistic solutions have been constructed in JBD for
�5=2<!<�3=2 [8]. Black hole solutions with mini-
mally and conformally coupled self-interacting potential
have been found in three [9] and four [10] dimensions in
the presence of cosmological constant. Constructing new
exact solutions of JBD theory from the known solution has
been also considered in [11]. Till now, charged rotating
black hole solutions for an arbitrary value of ! has not
been constructed. In this paper, we want to construct exact
charged rotating black hole solutions in Brans-Dicke the-
ory for an arbitrary value of ! and investigate their
properties.

The outline of our paper is as follows. In Sec. II, we give
a brief review of the field equations of Brans-Dicke theory
in Jordan (or string) and Einstein frames. In Sec. III, we
obtain charge rotating solution in (n� 1)-dimensions with
k rotation parameters. In Sec. IV, we obtain the finite
action, and compute the conserved and thermodynamic
quantities of the (n� 1)-dimensional black brane solutions
with a complete set of rotational parameters. We also show
that these quantities satisfy the first law of thermodynam-
ics. We finish our paper with some concluding remarks.

II. FIELD EQUATION AND CONFORMAL
TRANSFORMATION

Long-range forces are known to be transmitted by the
tensor gravitational field g�� and the vector electromag-
netic field A�. It is natural then to suspect that other long-
range forces may be produced by scalar fields. Such theo-
ries have been suggested since before relativity. The sim-
plest theory in which a scalar field shares the stage with
gravitation is that of Brans-Dicke theory. In n dimensions,*Electronic address: mhd@shirazu.ac.ir
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the action of the Brans-Dicke-Maxwell theory with one
scalar field � and a self-interacting potential V��� can be
written as
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1

16�
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dn�1x

�������
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where R is the Ricci scalar, F�� � @�A� � @�A� is the
electromagnetic tensor field, A� is the vector potential, !
is the coupling constant, � denotes the BD scalar field and
V��� is a self-interacting potential for �. Varying the
action (1) with respect to the metric, scalar and vector
fields give the field equations as
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 r�F�� � 0; (4)

where G�� and r� are the Einstein tensor and covariant
differentiation corresponding to the metric g�� respec-
tively. Solving the field Eqs. (2)–(4) directly is a nontrivial
task because the right hand side of (2) includes the second
derivatives of the scalar. We can remove this difficulty by
the conformal transformation

 �g �� � �2=�n�1�g��; �� �
n� 3

4�
ln�; (5)

where

 � � �n� 3�=
����������������������������������
4�n� 1�!� 4n

p
(6)

One may note that � goes to zero as ! goes to infinity and
the BD theory reduces to Einstein theory. By this trans-
formation, the action (1) transforms to
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where �R and �r are the Ricci scalar and covariant differ-
entiation corresponding to the metric �g��, and �V� ��� is

 

�V� ��� � ���n�1�=�n�1�V���

Varying the action (7) with respect to �g��, �� and �F��, we
obtain equations of motion as
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Therefore, if � �g��; �F��; ��� is the solution of Eqs. (8)–(10)
with potential �V� ���, then
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is the solution of Eqs. (2)–(4) with potential V���.

III. CHARGED ROTATING SOLUTIONS IN n� 1
DIMENSIONS WITH k ROTATION PARAMETERS

Here we construct the (n� 1)-dimensional solutions of
BD theory with n 	 4 and the quadratic potential

 V��� � 2��2

Applying the conformal transformation (5), the potential
�V� ��� becomes

 

�V� ��� � 2� exp
�

4� ��

n� 1

�
; (12)

which is a Liouville-type potential. Thus, the problem of
solving Eqs. (2)–(4) with quadratic potential reduces to the
problem of solving Eqs. (8)–(10) with Liouville-type
potential.

The rotation group in n� 1 dimensions is SO�n� and
therefore the number of independent rotation parameters
for a localized object is equal to the number of Casimir
operators, which is �n=2� 
 k, where �n=2� is the integer
part of n=2. The solutions of the field Eqs. (8)–(10) with k
rotation parameter ai, and Liouville-type potential is [12]
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where dX2 is the Euclidean metric on �n� k�
1�-dimensional submanifold with volume !n�k�1. Here
f�r�, R�r� and ���r� are
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where c is an arbitrary constant and � � �2=��2 � 1�.
Using the conformal transformation (11), the (n� 1)-
dimensional rotating solutions of BD theory with k rotation
parameters can be obtained as
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where U�r�, V�r�, H�r� and ��r� are
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The electromagnetic field becomes:

 Ftr �
qc�3�n��

r�n�3��1����2
F’r � �

ai
�
Ftr: (22)

It is worth to note that the scalar field ��r� and electro-
magnetic field F�� become zero as r goes to infinity. These
solutions reduce to the charged rotating solutions of
Einstein gravity as ! goes to infinity (� vanishes)
[13,14]. It is also notable to mention that these solutions
are valid for all values of !.

Properties of the solutions

One can show that the Kretschmann scalar R���	R���	

diverges at r � 0, and therefore there is a curvature singu-
larity located at r � 0. Seeking possible black hole solu-
tions, we turn to look for the existence of horizons. As in
the case of rotating black hole solutions of the Einstein
gravity, the above metric given by (17)–(21) has both
Killing and event horizons. The Killing horizon is a null
surface whose null generators are tangent to a Killing field.
It is easy to see that the Killing vector

 
 � @t �
Xk
i�1

�i@�i
; (23)

is the null generator of the event horizon, where k denotes
the number of rotation parameters. Setting ai ! iai yields
the Euclidean section of (17), whose regularity at r � r�
requires that we should identify �i ��i � ���i, where
�� and �i’s are the inverse Hawking temperature and the
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angular velocities of the outer event horizon. One obtains:

 �i �
ai

�l2
: (24)

The temperature may be obtained through the use of
definition of surface gravity,
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where 
 is the Killing vector (23). One obtains
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which shows that the temperature of the solution is invari-
ant under the conformal transformation (5). This is due to
the fact that the conformal parameter is regular at the
horizon.

As one can see from Eq. (18), the solution is ill-defined
for �2 � n with a quadratic potential (� � 0). The cases
with �2 > n and �2 < n should be considered separately.
In the first case where �2 > n, as r goes to infinity the
dominant term in Eq. (18) is the second term, and therefore
the spacetime has a cosmological horizon for positive
values of the mass parameter, despite the sign of the
cosmological constant �. In the second case where �2 <
n, as r goes to infinity the dominant term is the first term,
and therefore there exist a cosmological horizon for �> 0,
while there is no cosmological horizons if �< 0. Indeed,
in the latter case (�2 < n and �< 0) the spacetimes
associated with the solution (18)–(21) exhibit a variety of
possible causal structures depending on the values of the
metric parameters �, m, q, and �. One can obtain the
causal structure by finding the roots of V�r� � 0.
Unfortunately, because of the nature of the exponents in
(19), it is not possible to find explicitly the location of
horizons for an arbitrary value of � (!). But, we can obtain
some information by considering the temperature of the
horizons.

Equation (26) shows that the temperature is negative for
the two cases of (i) �>

���
n
p

despite the sign of �, and
(ii) positive � despite the value of �. As we argued above
in these two cases we encounter with cosmological hori-
zons, and therefore the cosmological horizons have nega-
tive temperature. Numerical calculations show that the
temperature of the event horizon goes to zero as the black

brane approaches the extreme case. Thus, one can see from
Eq. (26) that there exists an extreme black brane only for
negative � and �<

���
n
p

, if

 r�3�n���n�2
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4q2�1� �2�2c�2�n�2��

mext�n� �2���2 � n� 2�
(27)

where mext is the extremal mass parameter of black brane.
If one substitutes this rext into the equation f�rext� � 0,
then one obtains the condition for extreme black brane as:

 mext �
4q2�1� �2�2c�2��n�2�

�n� �2���2 � n� 2�

�

�
��c2��n�1�

q2
ext

�
��3�n���n�2�=�2���1��1�n��

(28)

Indeed, the metric of Eqs. (17)–(21) has two inner and
outer horizons located at r� and r�, provided the mass
parameter m is greater thanmext, an extreme black brane in
the case of m � mext, and a naked singularity if m<mext.
Note that in the absence of scalar field (� � � � 0) mext

reduces to that obtained in [14].
Before going to the calculations of other thermodynamic

and conserved quantities, we draw the Penrose diagram to
show that the casual structure is asymptotically well be-
haved. For reason of economy, we draw the Penrose dia-
gram only for the solution that presents a black brane with
inner and outer horizons (negative � and �<

���
n
p

). The
causal structure can be constructed following the general
prescriptions indicated in [15]. The Penrose diagram is
shown in Figs. 1 and 2 for �< 1 and 1 � �<

���
n
p

respec-
tively. Also it is worth to write down the asymptotic
behavior of the Ricci scalar. Indeed, the form of the
Ricci scalar for large values of r is:
 

R � �
n2

�n� 3�2l2
�2�2 � n� 3��4�2 � �n� 1��n� 3��

n� �2

�

�
c
r

�
2��n�1�=�n�3�

(29)

which does not approach a nonzero constant as in the case
of asymptotically AdS spacetimes. It is worth to mention
that the Ricci scalar of the solution (17)–(20) goes to zero
as r goes to infinity, but with a slower rate than that of an
asymptotically flat spacetimes in the absence of the scalar
field.

Next, we calculate the electric charge of the solutions.
To determine the electric field we should consider the
projections of the electromagnetic field tensor on special
hypersurfaces. The normal to such hypersurfaces is

 u0 �
1

N
; ur � 0; ui � �

Vi

N
;

and the electric field is E� � g��F��u
�, where N and Vi

are the lapse and shift function. Denoting the volume of the
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hypersurface boundary at constant t and r by Vn�1 �
�2��k!n�k�1, the electric charge per unit volume Vn�1

can be found by calculating the flux of the electric field
at infinity, yielding

 Q �
�q

4�ln�2 (30)

Comparing the above charge with the charge of black brane
solutions of Einstein-Maxwell-dilaton gravity obtained in
[12], one finds that charge is invariant under the conformal
transformation (5). The electric potential U, measured at
infinity with respect to the horizon, is defined by [16]

 U � A�
�jr!1 � A�
�jr�r� ; (31)

where 
 is the null generators of the event horizon. One
can easily show that the vector potential A� corresponding

to electromagnetic tensor (22) can be written as

 A� �
qc�3�n��

�r�
��t� � ai

i
�� �no sum on i�; (32)

where � � ��3� n� � n� 2. Therefore the electric po-
tential is

 U �
qc�3�n��

��r�
�

(33)

IV. ACTION AND CONSERVED QUANTITIES

The action (1) does not have a well-defined variational
principle, since one encounters a total derivative that pro-
duces a surface integral involving the derivative of g��
normal to the boundary. These normal derivative terms do
not vanish by themselves, but are canceled by the variation
of the surface term

 Ib � �
1

8�

Z
@M

dnx
��������
��
p

K� (34)

where � and K are the determinant of the induced metric
and the trace of extrinsic curvature of boundary. In general
the action IG � Ib, is divergent when evaluated on the
solutions, as is the Hamiltonian and other associated con-

FIG. 2. Penrose diagram for negative � and 1 � �<
���
n
p

.

FIG. 1. Penrose diagram for negative � and �< 1.
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served quantities. Rather than eliminating these divergen-
ces by incorporating reference term, a counterterm Ict may
be added to the action which is functional only of the
boundary curvature invariants. For asymptotically (A)dS
solutions of Einstein gravity, the way that one deals with
these divergences is through the use of counterterm method
inspired by (A)dS/CFT correspondence [17]. However, in
the presence of a nontrivial BD scalar field with potential
V��� � 2��2, the spacetime may not behave as either dS
(�> 0) or AdS (�< 0). In fact, it has been shown that
with the exception of a pure cosmological constant poten-
tial, where � � 0, no AdS or dS static spherically sym-
metric solution exist for Liouville-type potential [18]. But,
as in the case of asymptotically AdS spacetimes, according
to the domain-wall/QFT (quantum field theory) correspon-
dence [19], there may be a suitable counterterm for the
action which removes the divergences. In this paper, we
deal with the spacetimes with zero curvature boundary, and
therefore all the counterterm containing the curvature in-
variants of the boundary are zero. Thus, the counterterm
reduces to a volume term as

 Ict � �
�n� 1�

8�leff

Z
@M

dnx
��������
��
p

; (35)

where leff is given by

 l2eff �
�n� 1���2 � n�

2��3 (36)

As � goes to zero, the effective l2eff of Eq. (36) reduces to
l2 � �n�n� 1�=2� of the (A)dS spacetimes. One may
note that the counterterm has the same form as in the case
of asymptotically AdS solutions with zero curvature
boundary, where l is replaced by leff . The total action, I,
can be written as

 I � IG � Ib � Ict: (37)

The Euclidean actions per unit volume Vn�1 can then be
obtained through the use of Eqs. (1), (34), and (35) as

 I � �
��4 � 1�

16�ln
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rn��n�1��
�

�
2q2l2c�3�n��

��2 � n� 2��n� 1�
r�n�3���n�2
�

�
(38)

It is a matter of calculation to obtain the action as a
function of the intensive quantities �, � and U by using
the expression for the temperature, the angular velocity and
the potential given in Eqs. (24), (26), and (33) as

 I �
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where r� is
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�
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(40)

Since the Euclidean action is related to the free energy in
the grand-canonical ensemble, the electric charge Q, the
angular momentum Ji, the entropy S and the mass M can
be found using the familiar thermodynamics relations:
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For ai � 0 (� � 1), the angular momentum per unit length
vanishes, and therefore ai is the ith rotational parameter of
the spacetime. One may note that the charge Q calculated
above coincides with Eq. (31) It is worth to note that the
area law is no longer valid in Brans-Dicke theory [9,20].

Nevertheless, the entropy remains unchanged under con-
formal transformations. Comparing the conserved and
thermodynamic quantities calculated in this section with
those obtained in Ref. [12], one finds that they are invariant
under the conformal transformation (11). Straightforward
calculations show that these quantities calculated satisfy
the first law of thermodynamics,

 dM � TdS�
Xk
i�1

�idJi �UdQ (41)

V. CLOSING REMARKS

Till now, no charged rotating black hole solutions has
been constructed for an arbitrary value of coupling con-
stant!. In this paper, we presented a class of exact charged
rotating black brane solutions in Brans-Dicke theory with a
quadratic scalar field potential for an arbitrary value of !
and investigated their properties. We found that these
solutions are neither asymptotically flat nor (A)dS. These
solutions which exist only for �2 � n have a cosmological
horizon for (i) �2 > n despite the sign of �, and
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(ii) positive values of �, despite the magnitude of �. For
�2 < n, the solutions present black branes with outer and
inner horizons if m>mext, an extreme black hole if m �
mext, and a naked singularity if m<mext. The Hawking
temperature is negative for inner and cosmological hori-
zons, and it is positive for outer horizons. We computed the
finite action through the use of counterterm method and
obtained the thermodynamic and conserved quantities of
the solutions by using the relation between the action and

free energy. We found that the entropy does not follow the
area law. We also found that the conserved and thermody-
namic quantities are invariant under the conformal trans-
formation (11) and satisfy the first law of thermodynamics.
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