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Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form,
encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is
a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain
generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular
momentum of a general black hole in terms of angular momentum densities of matter and gravitational
radiation. This identifies the transverse-normal block of an effective gravitational-radiation energy tensor,
whose normal-normal block was recently identified in a corresponding energy conservation law. Angular
momentum and energy are dual, respectively, to the axial vector and a previously identified vector, the
conservation equations taking the same form. Including charge conservation, the three conserved
quantities yield definitions of an effective energy, electric potential, angular velocity and surface gravity,
satisfying a dynamical version of the so-called first law of black-hole mechanics. A corresponding zeroth
law holds for null trapping horizons, resolving an ambiguity in taking the null limit.
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I. INTRODUCTION

The theory of black holes appears finally to be reaching
a stage of maturity in which it can be applied in the most
interesting, distorted, dynamic situations, with appropriate
definitions of relevant physical quantities. This article
mainly concerns angular momentum and its conservation,
which is the last major piece of what seems to be an
essentially complete new paradigm for black holes. It
therefore seems timely to review below the key ideas and
results of what might be called the heroic, classical and
modern eras.

The first solution which would nowadays be called a
black hole was discovered by Schwarzschild [1] within a
few weeks of the final formulation of the field equations of
general relativity by Einstein [2], as the external gravita-
tional field of a point with mass M. Charge Q was soon
added by Reissner [3] and Nordström [4], but even the
Schwarzschild solution was not properly understood for
decades. Schwarzschild described the mass point as lo-
cated at what is now understood as the horizon, despite its
nonzero area A. Einstein & Rosen [5] realized that the
spatial geometry had a wormhole structure, extending
through a minimal surface. Oppenheimer & Snyder [6]
constructed a model of stellar collapse in which the star
collapses through the horizon. Finally Kruskal [7], as
reported in a paper actually written by Wheeler [8], de-
scribed the entire space-time, whence it became clear that
there was a trapped region inside the horizon, from which
nothing could escape to the exterior. Angular momentum J
was added by Kerr [9] and, including Q, by Newman et al.
[10]. Uniqueness theorems identify these as the only black
holes which are stationary, asymptotically flat, electrovac
solutions.

Wheeler [11] is credited with coining the term ‘‘black
hole’’ and Penrose [12] with defining event horizons,

which became the accepted definition of black holes.
Hawking [13] showed that the area of an event horizon
was nondecreasing, A0 � 0. The result became known as a
‘‘second law’’, due to inaccurate analogies with the laws of
thermodynamics and the results summarized by Bardeen
et al. [14]: a ‘‘zeroth law’’ that surface gravity � is constant
on a stationary black hole; a ‘‘first law’’

 �E � ��A=8����J ���Q (1)

for perturbations of stationary black holes, where � is the
angular speed and � the electric potential of the horizon,
and the ADM energy E measures the total mass of the
space-time; and a ‘‘third law’’ that � =! 0 by positive-
energy perturbations of stationary black holes. This sum-
marizes the classical theory of black holes as described in
textbooks [15–17].

The last results above are perhaps best described as
black-hole statics, being properties of stationary black
holes, specifically of Killing horizons, rather than of gen-
eral event horizons. While adequate in some astrophysical
situations, this classical theory is inapplicable to general
dynamical processes, for instance black-hole formation,
rapid evolution and binary mergers. A theory of black-
hole dynamics is needed, with generalizations of all the
above-mentioned quantities. Event horizons are not an
appropriate platform, since they cannot be located by
mortals, let alone admit physical measurements. A more
practical way to locate a black hole is by a marginal
surface, an extremal surface of a null hypersurface, where
light rays are momentarily caught by the gravitational field.
Marginal surfaces are used extensively in numerical simu-
lations, where they have historically been called apparent
horizons, though the textbook definition of the latter is
different [15–17]. Here a hypersurface foliated by mar-
ginal surfaces will be called a trapping horizon.

PHYSICAL REVIEW D 74, 104013 (2006)

1550-7998=2006=74(10)=104013(12) 104013-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.104013


A systematic treatment of trapping horizons [18] distin-
guished four subclasses, called future or past, outer or inner
trapping horizons, with the future outer type proposed as
the practical location of a black hole. Such a horizon was
shown to have several expected properties of a black hole,
assuming the Einstein equation and positive-energy con-
ditions: the horizon is achronal, being null in a special case
of quasistationarity, but otherwise being spatial; the area
form �1 of the marginal surfaces is constant in the null case
and increasing in the spatial case; and the marginal sur-
faces have spherical topology, if compact. The area law
implies that the area A �

H
S �1 of the marginal surfaces S

is nondecreasing,

 L�A � 0; (2)

where L denotes the Lie derivative and � the generating
vector of the marginal surfaces. So a black hole grows if
something falls into it, otherwise staying the same size.

Comprehensive treatments were subsequently given for
spherical symmetry [19–21], cylindrical symmetry [22]
and a quasispherical approximation [23–26]. In each
case, definitions were found for all the nonzero physical
quantities mentioned above, providing prototypes of all
except J and �. In addition, an effective energy tensor �
for gravitational radiation was found, entering equations
additively to the matter energy tensor T. The Einstein
equations were decomposed into forms with manifest
physical meaning, such as a quasi-Newtonian gravitational
law, a wave equation for the gravitational radiation, and an
energy conservation law which can be written in the form

 L�M �
I
S
��T�� �����k

���; (3)

where � in the normal dual of � and k is a certain vector,
playing the role of a Killing vector, which is null on the
horizon. Such equations actually hold not just on a trapping
horizon, but anywhere in the space-time, energy conserva-
tion reducing at null infinity to the Bondi energy equation.

Contemporaneously, Ashtekar et al. and others [27–35]
developed a theory of null trapping horizons with various
additional conditions, under the names nonrotating isolated
horizons, nonexpanding horizons, weakly isolated hori-
zons, rigidly rotating horizons and (strongly) isolated hori-
zons. Each is intended to capture the idea that the black
hole is quasistationary in some sense. They gave defini-
tions of all the relevant physical quantities and derived a
generalized version of the so-called first law.

Subsequently, Ashtekar & Krishnan [36–38] studied
future spatial trapping horizons under the name dynamical
horizons, giving classes of definitions of energy and angu-
lar momentum, deriving corresponding flux equations and
obtaining a version of the so-called first law for Q � 0.
However, the ‘‘3� 1’’ formalism used to describe spatial
trapping horizons breaks down when the horizon becomes
null, so that the isolated-horizon and dynamical-horizon

frameworks were essentially distinct. Some connections
were drawn, particularly for slowly evolving horizons by
Booth & Fairhurst [39– 41]. Recently, Andersson et al.
[42] showed that a stable trapping horizon is, on any one
marginal surface, either spatial or null everywhere, so that
transitions between the two types happen simultaneously
on a marginal surface. They and Ashtekar & Galloway [43]
also obtained some existence and uniqueness results for
trapping horizons.

A unified framework for any trapping horizon is pro-
vided by a dual-null formalism [44,45], which was used
throughout the earlier studies [18–26]. The energy flux
equation was then cast in a surface-integral form where the
null limit could be taken [46,47]. Moreover, it was cast in
the form of a conservation law (3), by identifying an
effective energy tensor �. The mass M, which might
take any value on a given S by choice of scaling of k,
was chosen to be the irreducible mass or Hawking mass
[48] for consistency with the earlier studies. This corre-
sponds to the simplest general definition of k, such that it
becomes a unit vector for round spheres near infinity.

The main task here is to make similar refinements for
angular momentum, as briefly described in shorter articles
[49,50]. In particular, one desires not just a flux equation
but a conservation law of the form

 L�J � �
I
S
��T�� ����� 

���: (4)

Here  should be an axial vector in some sense, playing the
role of an axial Killing vector, with J being the angular
momentum about that axis. It turns out that natural restric-
tions on  allow it to be uniquely specified under certain
generic conditions. The angular momentum, initially a
functional J� 	, is obtained directly from the Komar in-
tegral [51] in terms of a 1-form ! known as the twist [45],
which reduces to the 1-form used for dynamical horizons
[36–38]. It encodes the rotational frame-dragging pre-
dicted in the Lense-Thirring effect, thereby giving a pre-
cise meaning to the twisting around of space-time due to a
rotating mass.

The null limit is more subtle for angular momentum than
for energy, where the irreducible mass is uniquely defined
for a null trapping horizon, energy conservation (3) reduc-
ing correctly to L�M � 0. The dual-null foliation becomes
nonunique for a null hypersurface, with ! becoming non-
unique. This is reflected in the fact that different 1-forms
were used for isolated horizons [27–35] and dynamical
horizons [36–38]. Neither 1-form is necessarily preserved
along a null trapping horizon, but a certain linear combi-
nation is so preserved. However, all three 1-forms coincide
if the nonuniqueness of the dual-null foliation for a null
hypersurface is fixed in a certain way. Then J� 	 becomes
unique for a null trapping horizon and conservation (4)
reduces as desired to L�J � 0. Thus a consistent treatment
of angular momentum naturally resolves the issue of the
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degeneracy of the null limit. It follows that a black hole
cannot change its angular momentum without increasing
its area.

The article is organized as follows. Section II summa-
rizes the underlying geometry. Section III reviews trapping
horizons and conservation of energy. Section IV derives
angular momentum from the Komar integral and shows
how restrictions on the axial vector can be used to construct
a unique definition. Section V derives and discusses the
conservation law. Section VI includes charge conservation
and discusses local versus quasilocal conservation.
Section VII describes the state space, defining the remain-
ing physical quantities and deriving a dynamical version of
the so-called first law. Section VIII considers null trapping
horizons, deriving a zeroth law. Appendices concern
(A) weak fields, (B) normal fundamental forms and (C) a
Kerr example. The above discussion serves as a summary.

II. GEOMETRY

General relativity will be assumed, with space-time
metric g. The geometrical object of interest is a one-
parameter family fSg of spatial surfaces S, locally generat-
ing a foliated hypersurface H. Labelling the surfaces by a
coordinate x, they are generated by a vector � � @=@x,
which can be taken to be normal to the surfaces, ?� � 0,
where ? denotes projection onto S. A Hodge duality
operation on normal vectors �, ?� � 0, yields a dual
normal vector �� satisfying

 ?�� � 0; g���; �� � 0; g���; ��� � �g��;��:

(5)

In particular,

 � � �� (6)

is normal to H, with the same scaling (Fig. 1). The coor-
dinate freedom here is just x � ~x�x� and choice of trans-
verse coordinates on S, under which all the key formulas
will be invariant. The generating vector � may have any
causal character, at each point. For instance, a future outer
trapping horizon is spatial while growing, becomes null
when quasistationary, and would become temporal if
shrinking during evaporation [18,46,47].

A dual-null formalism [44,45] describes two families of
null hypersurfaces �
, intersecting in a two-parameter
family of spatial surfaces, including the desired one-

parameter family. Some merits of the dual-null approach,
apart from comparative ease of calculation, are that it is
adapted both to marginal surfaces, defined as extremal
surfaces of null hypersurfaces, and to radiation propaga-
tion, which makes it easier to identify terms arising due to
gravitational radiation [46,47,50]. Relevant aspects of the
formalism are summarized as follows.

Labelling �� by coordinates x
 which increase to the
future, one may take transverse coordinates xa on S, which
for a sphere would normally be angular coordinates xa �
�#;’�. Writing space-time coordinates x� � �x�; x�; xa�
indicates how one may use Greek letters ��;�; . . .� for
space-time indices and corresponding Latin letters
�a; b; . . .� for transverse indices. The coordinate basis vec-
tors are @� � @=@x� and the dual 1-forms are dx�, satisfy-
ing @��dx

�� � ���. Coordinate vectors commute,
�@�; @�	 � 0, where the brackets denote the Lie bracket
or commutator. Two coordinate vectors have a special role,
the evolution vectors @
 � @=@x
 which generate the
dynamics, spanning an integrable evolution space. The
corresponding normal 1-forms dx
 are null by assumption:

 g�1�dx
; dx
� � 0: (7)

The relative normalization of the null normals may be
encoded in a function f defined by

 ef � �g�1�dx�; dx�� (8)

where the metric sign convention is that spatial metrics are
positive definite. The transverse metric, or the induced
metric on S, is found to be

 h � g� 2e�fdx� � dx�; (9)

where � denotes the symmetric tensor product. There are
two shift vectors

 s
 � ?@
; (10)

where ? is generalized to indicate projection by h. The
null normal vectors

 l
 � @
 � s
 � �e
�fg�1�dx�� (11)

are future-null and satisfy
 

g�l
; l
� � 0; g�l�; l�� � �e�f; l
�dx
� � 1;

l
�dx
�� � 0; ?l
 � 0: (12)

The metric takes the form

 g � hab�dx
a � sa�dx

� � sa�dx
�� � �dxb � sb�dx

�

� sb�dx�� � 2e�fdx� � dx�: (13)

Then �h; f; s
� are configuration fields and the independent
momentum fields are found to be linear combinations of
the following transverse tensors:

 	
 � �L
 � 1 (14)

S

H
τ

ξ

FIG. 1. A non-null hypersurface H foliated by spatial surfaces
S, with generating vector � and its normal dual � � ��. If H
becomes null, � and � coincide.
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 � ?L
h� 	
h (15)

 �
 � L
f (16)

 ! � 1
2e
fh��l�; l�	�; (17)

where � is the Hodge operator of h and L
 is shorthand for
the Lie derivative along l
. Then the functions 	
 are the
null expansions, the traceless bilinear forms 

 are the
null shears, the 1-form! is the twist, measuring the lack of
integrability of the normal space, and the functions �
 are
the inaffinities, measuring the failure of the null normals to
be affine. The fields �	
; 

; �
; !� encode the extrinsic
curvature of the dual-null foliation. These extrinsic fields
are unique up to interchange
� � and diffeomorphisms
x
 � ~x
�x
� which relabel the null hypersurfaces.
Further description of the geometry was given recently
[47].

As described, the dual-null formalism is manifestly co-
variant on S, with transverse indices not explicitly denoted,
while 
 indices indicate the chosen normal basis [45,47].
Conversely, one can use a formalism which is manifestly
covariant on the normal space, with transverse but not
normal indices explicitly denoted [52]. Both types of for-
malism can seem obscure to the uninitiated, so indices will
be explicitly denoted in longer formulas in this article,
nevertheless being omitted where the meaning should be
clear. Capital Latin letters �A;B; . . .� will be used for
normal indices, when not denoted by 
 in the dual-null
basis. Then the configuration fields are �hab; f; sbA�, the
momentum fields are �	A;
Abc; �A;!a� and the derivative
operators are �?LA;Da�, where D is the covariant deriva-
tive operator of h.

Since the normal space is not integrable unless! � 0, it
generally does not admit a coordinate basis. However, one
may still take dx
 as basis 1-forms, in which case the dual
basis vectors are l
, as follows from (12), implying
lA�dxB� � �BA. In this basis, the normal metric

 � � g� h (18)

has components which follow from (9) as

 �AB � �e
�f�dx�A dx

�
B � dx

�
A dx

�
B �; (19)

and its inverse has components

 �AB � �ef�lA�l
B
� � lA�lB��; (20)

which can be used to lower and raise normal indices. Also
useful is the binormal

 AB � e�f�dx�A dx
�
B � dx

�
A dx

�
B � (21)

or its inverse

 AB � ef�lA�l
B
� � l

A
�l

B
��: (22)

The mixed form

 AB � lA�dx
�
B � l

A
�dx�B (23)

has components 

 � 
1, 
� � 0, so can be used to
express the duality operation (5) on normal vectors, ex-
tended to the dual-null foliation, as

 ����A � AB�
B: (24)

The dual-null Hamilton equations and integrability con-
ditions for vacuum Einstein gravity were derived previ-
ously [45], with matter terms added subsequently [25]. The
components of the field equations which are relevant to
angular momentum turn out to be the twisting equations

 ?L
!a � �	
!a 

1
2Da�
 �

1
2Da	
 �

1
2	
Daf


 1
2h
cdDd

ac � 8�Ta
; (25)

where Ta
 � h�aT��l
�

 is the transverse-normal projection

of the energy tensor T, and units are such that Newton’s
gravitational constant is unity. The corresponding all-index
version can be written using the binormal as

 ?LB!a � �	B!a �
1
2
E
B�Da�E �Da	E � 	EDaf

� hcdDd
Eac � 16�TaE�: (26)

III. TRAPPING HORIZONS AND CONSERVATION
OF ENERGY

Returning to a general foliated hypersurfaceH, a normal
vector � has components �
 along l
, so that � �
��l� � ��l�, and its normal dual is �� � ��l� �
��l�. In particular, the generating vector is

 � � ��l� � �
�l� (27)

and its dual is

 � � ��l� � �
�l�: (28)

Since the horizon is given parametrically by functions
x
�x�, the components �
 � @x
=@x are independent of
transverse coordinates:

 D�
 � 0: (29)

It is also useful to introduce the expansion

 	� � L� log��1� � 	A�A (30)

along a normal vector �, particularly the expansion 	�
along the generating vector.

A trapping horizon [18,20,46,47] is a hypersurface H
foliated by marginal surfaces, where S is marginal if one of
the null expansions, 	� or 	�, vanishes everywhere on S.
Then S is an extremal surface of the null hypersurface ��
or ��.

The recently derived energy conservation law [46,47]
will be stated here for later comparison, modifying some
notation. Assuming compact S henceforth, the transverse
surfaces have area
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 A �
I
S
�1; (31)

and the area radius

 R �
������������
A=4�

p
(32)

is often more convenient. The Hawking mass [48]

 M �
R
2

�
1�

1

16�

I
S
��AB	A	B

�
(33)

can be used as a measure of the active gravitational mass on
a transverse surface. Assuming the null energy condition,
M is the irreducible mass R=2 of a future outer trapping
horizon, L�M � 0, by the area law (2). On a stationary
black-hole horizon, M reduces to the usual definition of
irreducible mass for a Kerr-Newman black hole, namely,
the mass which must remain even if rotational or electrical
energy is extracted. It is generally not the ADM energy, but
an effective energy E is defined in Sec. VII which does
recover the ADM energy in this case. Equality on a trap-
ping horizon will be denoted by  , e.g. R  2M.

Mass or energy has a certain duality with time, e.g. there
is a standard formula for energy if a stationary Killing
vector exists. For a general compact surface, the simplest
definition of such a vector which applies correctly for a
Schwarzschild black hole is [46,47]

 k � �g�1�dR��� (34)

or kA � ABLBR. This vector actually was found to be the
appropriate dual ofM, in the sense of conservation laws for
trapping horizons [46,47] and for uniformly expanding
flows [52,53]. In either case, the energy conservation law
can be written as

 L�M 
I
S
��TAB ��AB�k

A�B; (35)

where � is an effective energy tensor for gravitational
radiation. This determines only the normal-normal compo-
nents of �, as

 �

 � jj

jj2=32� (36)

 �
� � e�f
��������!� 1

2
Df

��������
2
=8�; (37)

where j�j2 � hab�a�b and jj
jj2 � hachbd
ab
cd. Further
discussion is referred to [46,47,52,53].

IV. ANGULAR MOMENTUM

The standard definition of angular momentum for an
axial Killing vector  and at spatial infinity is the Komar
integral [51]

 J� 	 � �
1

16�

I
S
���r

� �: (38)

Now consider  to be a general transverse vector,? �  

(Fig. 2). Since �� � � 0, the Komar integral can be
rewritten via (22) as

 J� 	 �
1

8�

I
S
� a!a; (39)

where ! is the twist (17). Since the twist encodes the
nonintegrability of the normal space, it provides a geomet-
rical measure of rotational frame-dragging. It is an invari-
ant of a dual-null foliation and therefore of a non-null
foliated hypersurface H, so the twist expression for J� 	
is also an invariant. Appendix A shows that J� 	 recovers
the standard definition of angular momentum for a weak-
field metric [16], with the twist being directly related to the
precessional angular velocity of a gyroscope due to the
Lense-Thirring effect. Thus the twist does indeed encode
the twisting around of space-time caused by a rotating
mass.

There are several definitions of angular momentum
which are similar surface integrals of an axial vector
contracted with a 1-form [30,36,54], the situation being
clarified by Gourgoulhon [55] and in Appendix B.
Ashtekar & Krishnan [36] gave a definition for a dynami-
cal horizon which involves a 1-form coinciding with !.
Brown & York [54] gave a definition which was stated only
for an axial Killing vector  , involving a 1-form which is
generally inequivalent to !, but can be made to coincide if
adapted to a trapping horizon. Ashtekar et al. [30,31] gave
a definition for a type II (rigidly rotating) isolated horizon,
using a 1-form which is generally inequivalent to !.
However, it can be made to coincide with ! if the dual-
null foliation is fixed in a natural way, as described in the
penultimate section.

The above properties suggest (39) as a general quasilo-
cal definition of angular momentum. However, if the trans-
verse vector  does not have properties expected of an
axial vector, the physical interpretation as angular momen-
tum is questionable. For instance, it would be natural to
expect an axial vector to have integral curves which form a
smooth foliation of circles, apart from two poles, assuming
spherical topology for S. In the following, two conditions
on  with various motivations will be considered, which,
taken together, determine  uniquely in a certain generic
situation. These conditions then yield a conservation law
with the desired form (4), as described in the next section.

S

H

ξ

ψ

FIG. 2. A transverse vector  .
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Ashtekar & Krishnan [37] proposed that  has vanishing
transverse divergence:

 Da 
a  0: (40)

This condition holds if  is an axial Killing vector, and can
be understood as a weaker condition, equivalent to  
generating a symmetry of the area form rather than of the
whole metric, since L ��1� � �Da 

a. Alternatively, as-
suming that the integral curves of  are closed, it can
always be satisfied by choice of scaling of  , as discussed
by Booth & Fairhurst [40]. The original motivation was
that the different 1-forms used for dynamical and isolated
horizons, denoted here by ! and !� 1

2Df, will then give
the same angular momentum J� 	, by the Gauss diver-
gence theorem.

Spherical topology will be assumed henceforth for S,
which follows from the topology law [18] for outer trap-
ping horizons, assuming the dominant energy condition. If
there exist angular coordinates �#;’� on S with  �
@=@’, completing coordinates �x; #; ’� on H, then since
coordinate vectors commute,

 L�  0: (41)

This condition was proposed as a natural way to propagate
 along H by Gourgoulhon [55]. Now there is a commu-
tator identity [45]

 L��Da 
a� �Da�L� �

a �  aDa	�: (42)

Therefore assuming both conditions (40) and (41) forces

  aDa	�  0: (43)

This is automatically satisfied if D	�  0, as in spherical
symmetry or along a null trapping horizon. However,
generically one expects D	� 6 0 almost everywhere. It
must vanish somewhere on a sphere, by the hairy ball
theorem, but the simplest generic situation is that there
are curves � of constant 	� which form a smooth foliation
of circles, covering the surface except for two poles
(Fig. 3). Assuming so, since  is tangent to �, one can
find a unique  , up to sign, in terms of the unit tangent
vector  ̂ and arc length ds along �:

    ̂
I
�
ds=2�; (44)

where the scaling ensures that the axial coordinate ’ is

identified at 0 and 2�. Then the angular momentum be-
comes unique up to sign, J� 	 � J, the sign being natu-
rally fixed by J � 0 and continuity of , corresponding to a
choice of orientation.

For an axisymmetric space-time with axial Killing vec-
tor  , (40) holds, while (41) holds if � respects the sym-
metry, L � � 0, so the above construction, if unique as
assumed, yields the correct axial vector. In particular, the
construction does work for a Kerr space-time, as described
in Appendix C.

To summarize this section, the definition (39) of angular
momentum can be made generically unique if the axial
vector is a coordinate vector, (41), and generates a sym-
metry of the area form, (40). The construction can be
applied in any situation where D	� 6 0 almost every-
where, though the physical interpretation as angular mo-
mentum seems to be safest in the case of two poles, which
locate the axis of rotation. Then J is proposed to measure
the angular momentum about that axis.

V. CONSERVATION OF ANGULAR MOMENTUM

The main result of this paper is that

 L�J  �
I
S
��TaB ��aB� a�B (45)

holds along a trapping horizon under the conditions (40)
and (41), where

 �aB � �
1

16�
hcdDd
Bac (46)

is thereby determined to be the transverse-normal block of
the effective energy tensor for gravitational radiation. It
can be shown by differentiating the angular momentum
(39) using (41) to give

 L�J 
1

8�

I
S
��	� a!a �  aL�!a�; (47)

then expanding � by (27) and using the twisting Eqs. (25)
to express L�!. The term in 	� � ��	� � ��	� cancels
with the first term from (25), while the D gradients may all
be removed as total divergences due to (29) and (40) and
the fact that (43) reduces to  aDa	�  0 on a trapping
horizon with 	
  0. This leaves just

 L�J 
1

8�

I
S
� a

�
��
�
1

2
hcdDd
�ac � 8�Ta�

�

� ��
�
1

2
hcdDd
�ac � 8�Ta�

��
; (48)

which is an expanded form of (45), noting (28) and thereby
identifying (46).

Apart from the inclusion of �, the conservation law (45)
is the standard surface-integral form of conservation of
angular momentum, were  an axial Killing vector. It
thereby describes the increase or decrease of angular mo-

S
γ ψ

FIG. 3. Curves � of constant expansion 	�.
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mentum of a black hole due to infall of corotating or
counter-rotating matter, respectively. The corresponding
volume-integral form for a spatial horizon H, expressing
the change �J	@H in J between two marginal surfaces,
follows as

 �J	@H  �
Z
H
�̂�TaB ��aB� a�̂B; (49)

where �̂ � �=
���������������
g��; ��

p
is the unit normal vector and �̂1 �

�
���������������
g��; ��

p
^ dx is the proper volume element. Although

more familiar, as for the energy conservation law [46,47],
this form becomes degenerate as the horizon becomes null,
since �̂1! 0 while �̂ ceases to exist. Since this is a
physically important limit, where a black hole is not grow-
ing, the surface-integral form (45) is preferred.

The null shears 

bc have previously been identified in
the energy conservation law (35) as encoding the ingoing
and outgoing transverse gravitational radiation, via the
energy densities (36), which agree with expressions in
other limits, such as the Bondi energy density at null
infinity and the Isaacson energy density of high-frequency
linearized gravitational waves [46,47]. So the expression
(46) implies that gravitational radiation with a transversely
differential waveform will generally possess angular mo-
mentum density. One can see corresponding terms in the
linearized approximation [16], but they are set to zero by
the transverse-traceless gauge conditions, which are
‘‘transverse’’ in a different sense to that used here. In any
case, the conservation law shows that a black hole can spin
up or spin down even in vacuum, at a rate related to ingoing
and outgoing gravitational radiation.

The identification of the transverse-normal block (46) of
� appears to be new. Previous versions of angular momen-
tum flux laws for dynamical black holes [36– 41,55] con-
tain different terms, which are not in energy-tensor form,
i.e. some tensor contracted with  and �. They can be
recovered by removing a transverse divergence from
�aB 

a�B, yielding 
ad� Dd a=16� � 
ad� L had=32�,
where 
ad� � �Bhaehcd
Bce encodes the shear along �.
Such terms have been described by analogy with viscosity
[55,56].

The conservation laws (35) and (45) take a similar form,
expressing rate of change of mass M and angular momen-
tum J as surface integrals of densities of energy and
angular momentum, with respect to preferred vectors k
and  which play the role of stationary and axial Killing
vectors, even if there are no symmetries. Of the ten con-
servation laws in flat-space physics, they are the two
independent laws expected for an astrophysical black
hole, which defines its own spin axis and center-of-mass
frame, in which its momentum vanishes.

VI. QUASILOCAL CONSERVATION LAWS

For an electromagnetic field with charge-current density
vector j, the total electric charge Q in a region H of a

spatial hypersurface is defined as

 �Q	@H � �
Z
H
�̂g�j; �̂�: (50)

The surface-integral form of conservation of charge fol-
lows by the same arguments relating (45) and (49):

 L�Q � �
I
S
�g�j; ��: (51)

As before, this is more general, since H may have any
signature. The conservation laws for energy (35) and an-
gular momentum (45) evidently take the same form

 L�M  �
I
S
�g�~|; ��; L�J  �

I
S
�g��|; �� (52)

by identifying current vectors

 ~| B � �kA�T
AB ��AB�; �|B �  a�T

aB ��aB�:

(53)

The local differential form of charge conservation,

 r�j� � 0; (54)

where r is the covariant derivative of g, notably does not
hold for ~| or �| in general. A weaker property holds, ob-
tained as follows. First note that in any of the three con-
servation laws (35), (45), and (51), � and � may be
interchanged. Thus there are really two independent laws
in each case. This can be understood from special relativ-
ity: if � were causal, one would interpret them as express-
ing rate of change of energy, angular momentum or charge
as, respectively, power, torque or current; while if � were
spatial, one would normally convert to volume-integral
form and regard them as defining the energy, angular
momentum or charge in a region. One can make either
interpretation for a black hole, since H would be generi-
cally spatial, but the marginal surfaces S locate the black
hole in a family of time slices.

Given two independent equations in the normal space, it
follows that

 ABLAM  �
I
S
�1 ^ ~|B; ABLAJ  �

I
S
�1 ^ �|B:

(55)

Expressed in terms of the curl and divergence of the normal
space,

 curlM  �
I
S
�1 ^ ~|; curlJ  �

I
S
�1 ^ �|; (56)

whereas

 r�| � �div��1 ^ |�� (57)

for any normal vector |. Then divcurl � 0 yields

 

I
S
�r�~|� 

I
S
�r� �|�  0: (58)
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This subtly confirms the view that energy and angular
momentum in General Relativity cannot be localized
[16], but might be quasilocalized, as surface integrals
[57]. The corresponding conservation laws have indeed
been obtained in surface-integral but not local form.

VII. STATE SPACE

There are now three conserved quantities �M; J;Q�,
forming a state space for dynamical black holes.
Following various authors [31,32,36–39], related quanti-
ties may then be defined by formulas satisfied by Kerr-
Newman black holes, specifically those for the ADM
energy

 E 

������������������������������������������������
��2M�2 �Q2�2 � �2J�2

p
4M

; (59)

the surface gravity

 � 
�2M�4 � �2J�2 �Q4

2�2M�3
������������������������������������������������
��2M�2 �Q2�2 � �2J�2

p ; (60)

the angular speed

 � 
J

M
������������������������������������������������
��2M�2 �Q2�2 � �2J�2

p ; (61)

and the electric potential

 � 
��2M�2 �Q2�Q

2M
������������������������������������������������
��2M�2 �Q2�2 � �2J�2

p : (62)

It would be preferable to have independently motivated
definitions of these quantities, but so far this has been done
only in spherical symmetry [19–21], where there are natu-
ral definitions of E, � and � � Q=R which can be applied
anywhere in the space-time, coinciding with the above
expressions on the outer horizons of a Reissner-
Nordström black hole.

In the dynamical context, E � M is generally not the
ADM energy, since there may be matter or gravitational
radiation outside the black hole. Rather, it can be inter-
preted as the effective energy of the black ole, as follows.
Defining the moment of inertia I by the usual formula J 
I� yields

 I  M
������������������������������������������������
��2M�2 �Q2�2 � �2J�2

q
 ER2: (63)

Expanding E for J� M2 and Q� M yields

 E � M�
1

2
I�2 �

1

2
Q2=R: (64)

The second and third terms are standard expressions for
rotational kinetic energy and electrostatic energy. Thus the
irreducible mass M plays the role of a rest mass, with E
including contributions from rotational and electrical
energy.

Returning to the general case, the above definitions
satisfy the state-space formulas

 �  8�
@E
@A


1

4M
@E
@M

; � 
@E
@J
; � 

@E
@Q

:

(65)

There follows a dynamic version of the so-called first law
of black-hole mechanics [14]:

 L�E 
�

8�
L�A��L�J��L�Q: (66)

As desired, the state-space perturbations in the classical
law for Killing horizons [14], or the version for isolated
horizons [30–32], have been replaced by the derivatives
along the trapping horizon, thereby promoting it to a
genuine dynamical law.

The rate of change of effective energy can also be
written in energy-tensor form,

 L�E �
I
S
���T�� �����K

��� ��j��
��; (67)

where

 K � 4M�k�� (68)

plays the role of the stationary Killing vector. Note that in
the classical theory of stationary black holes, the state
variables are usually taken to be �E; J;Q�, with the irre-
ducible mass M defined as a dependent variable. The
dynamical theory reveals that �M; J;Q� are the more basic
variables, since they each satisfy a simple conservation
law. Then the effective energy E is defined as a dependent
variable and therefore satisfies the above conservation law.
This reflects a shift in emphasis from the classical to the
dynamical theory: the so-called first law is a dependent
result, obtained from more fundamental conservation laws
for energy, angular momentum and charge.

VIII. NULL TRAPPING HORIZONS AND ZEROTH
LAW

A zeroth law for trapping horizons follows from the
above, if one defines local equilibrium by the absence of
relevant fluxes:

 g�~|; ��  g��|; ��  g�j; ��  0: (69)

Then �M; J;Q� are constant on the horizon and so is �. In
fact, these conditions do hold on a null trapping horizon
under the dominant energy condition, as shown below. This
treatment also turns out to be compatible with the defini-
tion of weakly isolated horizon [29,31–35].

Consider a null trapping horizon, assumed henceforth in
this section to be given by 	�  0. The null focussing
equation yields T�� � jj
�jj2=32�  0, so the null en-
ergy condition, which implies T�� � 0, yields [18]

 T��  0; 
�  0: (70)
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Thus the degenerate metric of the horizon is preserved
along the generating vector. The dominant energy condi-
tion, which implies that the energy-momentum P� �
�T��l

�
� is causal, further yields [29]

 T�a  0; (71)

since P � �T��dx� � T��dx� � T�adxa would other-
wise be spatial.

On a null hypersurface H, one can take the null coor-
dinate to be the generating coordinate, x�  x, meaning
that the shift vector vanishes, s�  0, so that �  �  l�.
Since k  �efL�Rl� (34), one finds

 g�~|; ��  efL�R�T�� �����;

g��|; ��   a�Ta� ��a��:
(72)

These fluxes vanish by the above results (70) and (71) and
the expressions (36) and (46) for components of �. The
other flux in (69) vanishes due to the Maxwell equations
[29].

For a null trapping horizon, the dual-null foliation is not
unique, so the question arises whether there is a natural
way to fix it. An affirmative answer is given by noting that
the above results also imply, via the twisting Eqs. (25),

 L��!�
1
2Df�  0: (73)

This restriction on the dual-null geometry is suggestive of a
proto-conservation law for angular momentum. Now the
only normal fundamental form intrinsic to a null hypersur-
face is ��� �

1
2Df�! of Appendix B, which was there-

fore used by Ashtekar et al. [29] to define angular
momentum for an isolated horizon. However, it is the other
null normal fundamental form ��� �

1
2Df�!, depend-

ing on the dual-null foliation, which is preserved as above.
Given that the general definition (39) of angular momen-
tum involves !, it seems best to fix the unwanted freedom
by

 Df  0: (74)

Recalling the definition (8) or (12) of f, this condition fixes
the normalization of the extrinsic null normal l� with
respect to the intrinsic null normal l�, which is always
possible on a null hypersurface H. In fact, it is common
simply to fix f  0. A similar normalization is also used in
the context of null infinity.

Then the definition (39) of angular momentum becomes
unambiguous on a null trapping horizon, coincides with the
definition for isolated horizons [30–32], and is preserved
along the horizon, assuming only that  is a coordinate
vector field (41):

 L�J  0: (75)

Since the area law [18] shows that A is increasing unlessH
is null everywhere on a given S, this answers, in the
negative, a simply stated physical question: whether a

black hole can change its angular momentum without
increasing its area.

The above reasoning has largely recovered the notion of
a weakly isolated horizon introduced by Ashtekar et al.
[29], except that the scaling freedom in l� has not been
fixed. In more detail, Ashtekar et al. [29] introduced a 1-
form which will here be denoted by $, defined by

 r̂ �l
�
� � $�l

�
�; (76)

where r̂ is the covariant derivative operator of H. The
transverse and normal components are found as

 ?$ � �!� 1
2Df; l��$� � ���: (77)

Since $ is an invariant of H and l�, Ashtekar et al. [29]
demanded

 L�$  0 (78)

in order to define a weakly isolated horizon. The transverse
part agrees with the above results, which also imply
D��  0, while the normal part further fixes the inaffinity
�� to be constant on H. This fixes the scaling of l� up to a
constant multiple. Ashtekar et al. [29] defined the surface
gravity to be

 �̂  ���; (79)

which recovers the standard surface gravity of a Killing
horizon if l� is the null Killing vector [17]. Then the
constancy of �̂ can also be interpreted as a zeroth law.
This still leaves nonzero �̂ ambiguous up to a constant
multiple, not necessarily agreeing with the definition (60),
which therefore fixes that freedom.

The above considerations appear to have a closed a gap
in the general paradigm, concerning how a growing black
hole ceases to grow. It seems that the generically spatial
trapping horizon simply becomes null. It is difficult to find
a practical formalism describing all cases without some
degeneracy arising in the null case, but the dual-null for-
malism appears to be adequate; one fixes the additional
freedom in the null case by (74). In particular, no additional
conditions need be imposed on the horizon itself, as com-
pared with the variety of definitions of isolated horizons
[27–35]. Numerical evidence that such horizons exist in
practice has been given by Dreyer et al. [34], who looked
for and found approximately null trapping horizons, under
the name nonexpanding horizons.
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APPENDIX A: TWIST AND WEAK FIELDS

The twist may be calculated by first finding the shift
vectors s
, due to the form [45]

 ! � 1
2e
fh��@�; s�	 � �@�; s�	 � �s�; s�	�: (A1)

If it is more convenient to use an orthonormal basis fl0; l1g
of the normal space,

 ?l0 � ?l1 � 0 � g�l0; l1�; g�l0; l0� � �1 � �g�l1; l1�;

(A2)

then

 ! � 1
2h��l0; l1	� (A3)

follows by linear combinations from (39), or directly from
the Komar integral (38). If the basis is adapted to a coor-
dinate basis via

 lA � @A � sA; sA � ?@A; (A4)

then

 ! � 1
2h��@1; s0	 � �@0; s1	 � �s0; s1	�: (A5)

In either case, the first step is to find the shift vectors.
The weak-field metric [16], in standard spherical polar

coordinates �t; r; #; ’� adapted to the axis of rotation, is
 

g��
�
1�

2M
r

�
dt2 �

4J
r

sin2#dtd’

�

�
1�

2M
r

�
�dr2 � r2�d#2 � sin2#d’2��; (A6)

where, in this appendix only, M and J denote the mass and
angular momentum as defined in this approximation, ob-
tained by linearizing the metric and neglecting higher
powers of 1=r. The inverse metric is
 

g�1 ��

�
1�

2M
r

�
@2
t �

4J

r3 @t@’

�

�
1�

2M
r

��
@2
r �

1

r2

�
@2
# �

@2
’

sin2#

��
: (A7)

Taking the transverse surfaces S as those of constant �t; r�,
one can read off the nonzero component of the shift 1-
forms sAb as

 st’ � gt’ ��
2J
r

sin2#; s’t ��
2J

r3 : (A8)

Then the nonzero component of the twist is given by

 !’ �
1

2
@rs

’
t �

3J

r4 ; !’ �
3J

r2 sin2#: (A9)

The area form is

 � 1� r2 sin#d# ^ d’; (A10)

so that

 �!’ � 3Jsin3#d# ^ d’: (A11)

Standard integrals yield

 

I
S
�!’ � 8�J: (A12)

Since !a 
a � !’ if  � @=@’, this agrees with the gen-

eral definition (39) of angular momentum.
A directly measurable quantity due to rotational frame-

dragging is the precessional angular velocity [16]

 

~� LT �
J

r3 �3�ẑ � r̂�r̂� ẑ� (A13)

of a gyroscope due to the Lense-Thirring effect, where r̂ is
a unit vector in the direction of the gyroscope and ẑ is a unit
vector along the axis of rotation. Results of measurements
of the effect due to the Earth by Gravity Probe B are
expected soon. If the twist ! is formally converted to an
angular velocity ~� by

 !� ~�� r̂; (A14)

then

 

~��
�������� !

sin#

��������ẑ� 3J

r3 ẑ (A15)

does have the direction and relativistic dimensions of
angular velocity. Then

 

~� LT � �
~� � r̂�r̂� 1

3
~�: (A16)

Curiously, this is a linear transformation of ~�, by the same
traceless tensor used in defining quadrupole moments [16].
The puckish role of the factor of 3 in the above calculations
is also noteworthy. In any case, it confirms that the twist
does indeed encode the twisting around of space-time due
to a rotating mass, in a directly measurable way.

For completeness, the agreement of the weak-field mass
with the Hawking mass can also be checked, as follows.
One needs to keep track of an extra power of 1=r in the area
form

 � 1�
�

1�
2M
r

�
r2 sin#d# ^ d’: (A17)

Then the expansion 1-form 	A has nonzero component

 	r � @r log
��

1�
2M
r

�
r2

�
�

2

r

�
1�

M
r

�
: (A18)

Then

 �AB	A	B � �
rr	r	r �

4

r2

�
1�

4M
r

�
; (A19)

and
 I
S
��AB	A	B �

I
S

4
�
1�

2M
r

�
sin#d# ^ d’

� 16�
�
1�

2M
r

�
: (A20)

Since R� r, this agrees with the Hawking mass (33).
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APPENDIX B: NORMAL FUNDAMENTAL FORMS

Various definitions of angular momentum [30,36,54] are
similar to (39), with ! replaced by a 1-form which is,
implicitly or explicitly, a normal fundamental form. To
clarify the situation, normal fundamental forms are re-
viewed below, referring to previous treatments [45,55].

Writing the twist (17) explicitly in components,

 2!� � efh���l��r�l
�
� � l

�
�r�l

�
��: (B1)

If l
 are adapted to a coordinate basis via (11), then
commutativity r��r�	x
 � 0 allows it to be written as

 2!� � efh���l��r�l�� � l
�
�r�l���: (B2)

This is the difference of two normal fundamental forms
��
 with components

 ��
� � efl��h
�
�r�l
�: (B3)

They are the independent normal fundamental forms, since
the corresponding �

 vanish. Their sum is Df, since the
normalization in (12) yields

 D�f � efh���l��r�l�� � l
�
�r�l���: (B4)

Then

 ��
 �
1
2Df
!; (B5)

and the normal fundamental forms are thereby encoded in
! and Df.

For an orthonormal basis (A2), there is just one inde-
pendent normal fundamental form �̂01 � ��̂10, given by

 �̂ 01� � l�0h
�
�r�l1�; �̂10� � l�1h

�
�r�l0�; (B6)

with corresponding �̂00, �̂11 vanishing. Under a boost trans-
formation

 l0 � l0 cosh�� l1 sinh�; l1 � l0 sinh�� l1 cosh�;

(B7)

which preserves the orthonormal conditions (A2), the nor-
mal fundamental form is generally not invariant:

 �̂ 01 � �̂10 �D�; �̂10 � �̂10 �D�: (B8)

However, if the orthonormal basis is adapted to the dual-
null basis by, e.g.

���
2
p
l
 � l0 � l1, then

 �̂ 01 � ��̂10 � !: (B9)

For spatial H, the same result is obtained by adapting the
orthonormal basis by choosing

 l0 � �=
���������������
g��; ��

q
; l1 � �=

���������������
g��; ��

q
: (B10)

The missing information inDf can be recovered by instead
defining

 �01� �
��h��r���
g��; ��

; �10� �
��h��r���
g��; ��

;

�00� �
��h��r���
g��; ��

; �11� �
��h��r���
g��; ��

:

(B11)

Then

 �01 � ��10 � !; �00 � ��11 �
1
2Df: (B12)

These 1-forms nevertheless become degenerate when �
becomes null.

As shown explicitly by Gourgoulhon [55], the 1-form
used by Brown & York [54] to define angular momentum
is, in this notation, ��̂10. Therefore it coincides with ! if
the orthonormal basis is adapted to a trapping horizon, but
generally not if it is adapted to a foliation of spatial hyper-
surfaces intersecting the trapping horizon in the marginal
surfaces. The 1-form used by Ashtekar & Krishnan [36] to
define angular momentum for dynamical horizons is also
��̂10, this time explicitly adapted to the horizon by (B10),
therefore coinciding with ! in this case. The 1-form used
by Ashtekar et al. [30–32] to define angular momentum for
isolated horizons is ���, which generally does not coincide
with !. However, it does coincide if the gauge freedom is
fixed by (74).

APPENDIX C: KERR EXAMPLE

Consider a Kerr space-time in Boyer-Lindquist coordi-
nates �t; r; #; ’�, with S given by constant �t; r� and � �
@=@r. Then

 � 1 �
������������������������������������������������
�r2 � a2�2 � �a2sin2#

q
sin#d# ^ d’; (C1)

where � � r2 � 2mr� a2,

 	� �
2r�r2 � a2� � �r�m�a2sin2#

�r2 � a2�2 � �a2sin2#
; (C2)

and

 D	��
2a2�r2�a2��r3�3mr2�a2r�ma2�sin# cos#

��r2�a2�2��a2sin2#�2
d#:

(C3)

If a � 0, D	� is nonzero except at the poles, equator and
isolated values of r, so the construction yields a unique
continuous  ,  � @=@’.
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