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Time-independent backreaction corrections of the renormalized expectation value of the stress tensor
operator of a massless quantum scalar field, coupled in a two-dimensional spherically symmetric
Schwarzschild-de Sitter static black hole metric, are used to obtain its final state. According to the
work by Christensen and Fulling, the renormalized stress tensor is found to be determined by the nonlocal
contribution of the trace anomaly and some additional parameters. Mathematical derivations of the
backreaction equations, in close relation to the work by Bousso and Hawking, show that the scenario of
the black hole Hawking radiation is reduced to a remnant, stable, static, Schwarzschild-de Sitter mini
black hole which has still new black hole and cosmological shrunk horizons.
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I. INTRODUCTION

Hawking’s remarkable discovery [1,2] of black hole
evaporation has raised several puzzles. For instance, a
black hole defined in a suitable vacuum state decays quan-
tum mechanically. In other words, it indeed indicates that
the black holes are quantum mechanically unstable, but
they do not allow directly one to study the time evolution of
the black holes geometry. So one maybe asks a question:
What is the final state of the evaporating quantum black
holes? Properly a detailed picture of the evaporation pro-
cess and its final state can be given only within the frame-
work of a complete and self-consistent pure quantum
gravity theory, which has not yet been found. It will be
valid for the Planck scale of the Universe [3,4] in which:

 Mp��@c=G�
1=2�2:18�10�8 kg; Planck mass; (1.1)

 Dp � �@G=c3�1=2 � 1:62� 10�35 m; Planck distance;

(1.2)

 Tp�@=Mpc
2�5:31�10�44 s; Planck time: (1.3)

In the absence of a pure quantum gravity theory, the answer
of backreaction corrections on the background metric of
the evaporating black holes should be obtained in the spirit
of semiclassical gravity theories by solving the set of
equations:

 G�� ��g�� � �8�hT̂��iren; (1.4)

where the units are chosen so that, G � K � c � @ � 1.
G, K, and � are the Newtonian, Boltzmann, and cosmo-
logical constants, respectively. � as a vacuum energy
density, should lead to curvature of space-time in absence
of all matter and radiation1 in which hT̂��iren � 0. G�� is

the Einstein’s tensor and hT̂��iren is the renormalized
expectation value of the stress-energy tensor operator of
a quantum matter field described in its suitable vacuum
state. The main problem in this approach is to find hT̂��iren

for a sufficiently arbitrary nonstatic and nonspherically
symmetric four-dimensional black hole space-time. This
conjecture is hard to check in details because of the many
degrees of freedom and inherent complexity of the process
in four-dimensional space-times. So as an exactly solvable
toy model in close relation to the work by Callan-
Giddings-Harvey-Strominger [5], the final state of the
asymptotically flat, two-dimensional, evaporating, dila-
tonic, black holes (i.e. coupled to dilaton and conformal
matter fields) is predicted as a flat space-time with no
naked singularity [6–9]. The final state of the two-
dimensional, evaporating, dilatonic, Reissner-Nordström
black hole reduces to a remnant, stable, nonsingular
space-time [10]. Also the evaporating dilatonic
Schwarzschild-de Sitter black holes final state, whose
size is comparable to that of the cosmological horizon,
are not evaporated [11] and they are in thermal equilib-
rium. Whereas in this paper we will apply another ap-
proach for studying the end point of the nondilatonic
Schwarzschild-de Sitter static black hole Hawking radia-
tion. The plan of this paper is as follows. In Sec. II, we
review the Hawking radiation of a nondilatonic,
Schwarzschild-de Sitter, static black hole, minimally
coupled to a two-dimensional massless quantum scalar
field [12], by using the results of the Hadamard renormal-
ization prescriptions [12–17]. In this approach, the stress
tensor of the quantum scalar field is found to be determined
by the nonlocal contribution of the trace anomaly and some
additional parameters in close relation to the work by
Christensen and Fulling [18]. In Sec. III, we use the
Hawking radiation stress-energy tensor of the
Schwarzschild-de Sitter static black hole, for derivation
of the linear-order, time-independent, backreaction
Eqs. (1.4). In this section we follow the ideas proposed
by York [19] and Hochberg et al. [20] in which time-

*Electronic address: hghafarnejad@yahoo.com.
1Quantum field theory predicts that the vacuum is not a

featureless void but is continuously disturbed by particle-
antiparticle pair creation and annihilation. So it should be con-
tained by energy. Also we note that the experimental limit on �
is obtained as j�j � 10�54 cm�2 [3].
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independent sources of the backreaction Eqs. (1.4) reduce
to some suitable static solutions. In Sec. IV, we discuss the
results of the backreaction corrections of the quantum
scalar field on the Schwarzschild-de Sitter black hole event
horizons. Mathematical derivations predict that the time-
independent stress-energy tensor of the black hole
Hawking radiation leads to a remnant, stable, static
Schwarzschild-de Sitter mini black hole which has still
black hole and cosmological shrunk horizons. Finally in
Sec. V, we presented a summary and concluding remarks.

II. SCHWARZSCHILD-DE SITTER STATIC BLACK
HOLE AND ITS THERMAL RADIATION

We consider a linear, two-dimensional, massless quan-
tum scalar field �, propagating on a curved space-time
with the action of the standard form as

 S��	 � �
1

2

Z
d2x

���������
g�x�

q
g��@��@��; (2.1)

where � is a dimensionless quantity. This model can be at
most regarded as a toy model. Because in two-dimensional
analog, the minimal coupling reduces to the conformal
coupling [21]. Also four-dimensional quantum scalar fields
with the inverse of length dimension will have a kinetic
term different from (2.1), with a coupling involving 1

r2 ,
which follows by dimensional reduction of a standard
kinetic term in four dimensions. @� and g indicate partial
differentiation and absolute value of the determinant of the
metric g��, respectively. The corresponding scalar field
equation � is obtained such as

 ���x� � 0; (2.2)

where � � 1��
g
p @��

���
g
p
g��@��. The stress-energy tensor of

� which has a dimension of �length��2, is defined by the
singular expression

 T�� � @��@���
1
2g��@

��@��: (2.3)

The renormalization theory, such as the Hadamard renor-
malization method for the expectation value of a two-
dimensional stress-energy tensor operator T̂��, defined in
terms of a massless quantum scalar field operator �̂, leads
to a suitable regularized stress tensor hT̂��iren, satisfying
the following constraints conditions

 r�hT̂
��iren � 0 (2.4)

and

 hT̂��iren �
1

24�
R; (2.5)

in whichr� is a covariant differentiation and R is the Ricci
scalar of a suitable two-dimensional curved space-time
[12,18,22]. So the renormalization theory of quantum
fields, propagated on an arbitrary curved space-time leads
to that hT̂��iren should be a purely geometrical object. One

of suitable vacuum solutions of the Einstein’s equation
defined by G�� ��g�� � 0, is static and spherically
symmetric,initial Schwarzschild-de Sitter black hole met-
ric [23]

 dS2
i � ��r; ����dt2 � dr
2� � r2�d�2 � sin2�d’2�;

(2.6)

where the index i denotes to the word initial (unperturbed
metric). Also

 r
 �
Z dr

��r; ��
; ��r; �� � 1�

2M
r
� �

�
2M
r

�
�2
;

(2.7)

and � � ��2M�2

3 is a suitable cosmological coupling con-
stant of the black hole. The parameters defined byM and �
are black hole mass and cosmological constants, respec-
tively. Using the assumption 0< �< 1, the equation
��r; �� � 0 has real roots such that rib � 2M�1� ��,
and ric �

2M���������������
��1�

���
�
p
�

p (see Fig. 1), named as the black hole

and cosmological horizons, respectively. The size of the
black hole horizon varies between zero and the size of the
cosmological horizon. If the black hole horizon is much
smaller than the cosmological horizon (i.e. �� 0:79; 1),
the effect of the radiation coming from the cosmological
horizon is negligible [11]. In this case it is named as a
degenerate Schwarzschild-de Sitter black hole. The degen-
erate solution, in which the black hole has the maximum
size, is called the Nariai solution [24]. In this solution the
two horizons have the same size and so the same tempera-
ture. Therefore it shall be in thermal equilibrium when we
choose 0
 � < 1. Intuitively, one would expect any slight
perturbation of the geometry to cause the black hole to
become hotter than the background. Thus, one may suspect
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FIG. 1. Diagram of the function ��x� � 1� 1
x� 0:094x2 (see

Eqs. (2.7) and (3.36)), in which x � r
2M shows that the unper-

turbed Schwarzschild-de Sitter static black hole has two event
horizons at xb ’ 1:14 and xc ’ 2:54, which are named unper-
turbed black hole and cosmological event horizons, respectively.
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the thermal equilibrium of the Nariai solution (large scale
black hole) to be unstable and its final state should be
obtained by the solutions of the backreaction Eqs. (1.4).
In order to make statements about the final state of the
evaporating quantum black holes, one should really study
the dynamical, time-dependent process of black hole for-
mation and evaporation such as the work by Russo et al.
[6–10]. But according to the ideas by York [19] and
Hochberg et al. [20], the time-independent solutions of
the backreaction Eqs. (1.4) may be still predict some
suitable physical situations for the evaporating black hole
final state. In such case the choice of vacuum (i.e.,
Boulware, Hartle-Hawking, or Unruh) is crucial for the
calculation of the stress-energy tensor components, such as
its expectation value, evaluated in a suitable vacuum state
of an observer (i.e., Unruh state for a freely falling frame),
become finite [25]. According to the work by Christensen
and Fulling [18], the two-dimensional ��; ’ � constant�.
The spherically symmetric Schwarzschild-de Sitter static
black hole metric (2.6), is used to derive a time-
independent solution of the Eqs. (2.4) and (2.5) such that
[12]

 hT̂���t; r
�iren �
1

12��2M�2
�P�r; �� �

2
�
2 Q�r;��

 !
; (2.8)

where
 

P�r;�� � �
1

8
� 2��O��2� �

�2

2

�
2M
r

�
�2
�

5�
2

�
2M
r

�

�

�
2M
r

�
3
�

7

8

�
2M
r

�
4

(2.9)

and
 

Q�r;�� � �
1

8
�
�
2
�O��2� �

�2

2

�
2M
r

�
�2
�
�
2

�
2M
r

�

�
1

8

�
2M
r

�
4
: (2.10)

The stress-energy tensor (2.8), defined in quasiflat regions
of the black hole in which

 Q�rq:f; �� � P�rq:f;��; rq:f �
2M������

3�
p ; (2.11)

can be decomposed in terms of thermal equilibrium and
radiating gas stress-energy tensors, respectively, as:

 

�
12
T2
c
�2 0
0 2

� �
(2.12)

and

 

�
12
T2
b
�1 1
1 1

� �
; (2.13)

where

 Tb��� ’

������
8�
p

8�M
and Tc��� ’

��������������������������������������
4�

������
3�
p

� 28
3 �� 1

q
8�M

(2.14)

are defined, respectively, as cosmological thermal equilib-
rium and black hole radiation temperatures related to the
cosmological and black hole event horizons [12]. The
relation defined by (2.14) shows that Tc�� ’ 2� � 0.
Hawking radiation stress tensor (2.8), as a spherically
symmetric static source of the backreaction Eqs. (1.4),
provides the radial variations of the black hole mass and
cosmological constant, in close relation to the ideas by
York and Hochberg et al. [23,24]. In the next section we try
to solve the linear-order time-independent solution of the
backreaction Eqs. (1.4) by using (2.8).

III. TIME-INDEPENDENT BACKREACTION
EQUATIONS

A physically general line element describing a spheri-
cally symmetric, evaporating Schwarzschild-de Sitter final
static black hole may be proposed by the form [19,20]:
 

dS2
f � �

�
1�

2m�r�
r
�
��r�

3
r2

�
e2 �r�dv2 � 2e �r�dvdr

� r2�d�2 � sin2�d’2�; (3.1)

where the index f denotes to the word final state of
evaporating black hole. Also we assume that  , m, and �
are some suitable functions defined explicitly in terms of
the radius r. Because they are related to the time-
independent black hole Hawking radiation stress-energy
tensor (2.8), by the backreaction Eqs. (1.4). Eddington-
Finkelestein advanced time of a suitable freely falling
observer ‘v’ is described by relation of v � t� r
 in
which

 r
 �
Z dr

�1� 2m�r�
r �

��r�
3 r2	

: (3.2)

Applying (3.2), the metric (3.1) reduces to the following
line element
 

dS2
f � �

�
1�

2m�r�
r
�
��r�

3
r2

�
e2 �r�dt2

�
�2� e �r�	e �r�

�1� 2m�r�
r �

��r�
3 r2	

dr2 � 2e �r��1� e �r��drdt

� r2�d�2 � sin2�d’2�: (3.3)

It leads to the static Schwarzchild de Sitter metric (2.6)
under the boundary conditions

  �rb� � 0; m�rb� � M; ��rb� � �; (3.4)

where M> 0 and �> 0 are, respectively, constants of the
initial black hole mass and cosmology. Time-independent
Hawking radiation stress tensor (2.8) described in the
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Eddington-Finkelestein freely falling coordinate system
�v; r� is obtained as (See the appendix)
 

hT̂���v; r�iren �
1

12��2M�2

�
�P�r;�� �Q�r; �� � �

�
2�Q�r;��

��r;��
�
2�Q�r;��

��r;��
Q�r;��

�2�r;��

0B@
1CA;

(3.5)

where ��r;��, P�r; ��, and Q�r; �� are given by the rela-
tions (2.7), (2.9), and (2.10), respectively. In order to make
statements about the final state of the evaporating black
holes, one should really study the dynamical, time-
dependent process of black hole formation and evaporation
such as the work by Russo et al. [6–10]. But according to
the ideas by York [19] and Hochberg et al. [20], in which
the time-independent spherically symmetric source of the
backreaction Eqs. (1.4) perturbs the black hole metric in
terms of radial variable r. So it may be predicting some
suitable physical situations for the evaporating black hole
final state. Using the two-dimensional analog of the metric
defined by (3.1), nonzero v, r components of the Einstein’s
tensor are obtained such as
 

Gvv � �

�
1�

2m�r�
r
�

1

3
��r�r2

�

�

�
2m0�r�

r2 �
�0�r�

3
r� ��r�

�
e2 �r�; (3.6)

 Gvr � Grv �

�
2m0�r�

r2 �
�0�r�

3
r� ��r�

�
e �r�; (3.7)

 Grr � �
2 0�r�
r

; (3.8)

where prime 0 indicates differentiation with respect to r and
G�
� � G’

’ which follow from the Bianchi identityr�G�
� �

0. Using suitable dimensionless functions

 

m�x�
M
� ��x� and

��x�
�
� !�x�; x �

r
2M

; (3.9)

the set of relations defined by (3.5), (3.6), (3.7), (3.8), and
(3.9) yield the time-independent backreaction Eqs. (1.4),
respectively, as
 �
1�

��x�
x
� �x2!�x�

��
�0�x�

x2 �
�
2
�x!0�x� � 6!�x�	

�

�
1

3
fP�x;�� �Q�x;�� � �ge�2 �x;�� � 0; (3.10)

 

�
�0�x�

x2 �
�
2
�x!0�x� � 6!�x�	

�
� �

��2�Q�x;��	e� �x;��

3��x; ��
;

(3.11)

and

  �x;�� � C �
1

3

Z xQ�x;��dx

�2�x;��
; (3.12)

in which ��x; ��, P�x; ��, and Q�x;�� are given by (2.7),
(2.9), and (2.10). Furthermore C is an integral constant
and is determined by using (3.4). Eliminating �0�x� and
!0�x� defined by (3.10), the relation (3.11) leads to the
following identity, between ��x� and !�x�,

 ��x; �� � x�1� ��e� � � �x3!;

��x; �� �
��Q� P

�
2�Q

:
(3.13)

Applying (3.13), the relation defined by (3.11) becomes an
integral equation for !�x; �� such as follows,
 

!�x;�� � C! �
2

�

Z dxe� 

x3

�
e � x��0

����� x�0 � x� 0� �
x2��2�Q�

3�

�
; (3.14)

where C! is a constant of integration and it is determined
by boundary conditions (3.4). The explicit form of the
relations (3.12), (3.13), and (3.14) can be obtained by
perturbation methods in which the dimensionless cosmo-
logical coupling constant � is a suitable order parameter.
Applying the series expansions

 ��x; �� �
X1
n�0

�n�n�x�; P�x;�� �
X1
n�0

�nPn�x�;

(3.15)

 Q�x;�� �
X1
n�0

�nQn�x�;  �x; �� �
X1
n�0

 n�x�; (3.16)

and

 ��x; �� �
X1
n�0

�n�n�x�; (3.17)

in which 0< �< 1 and the terms �0; . . . ; P0; . . . ;�0; . . .
up to the order of (�2) are obtained, respectively, by the
relations (2.7), (2.9), (2.10), (3.12), and (3.13) such as
follows,

 �0�x� � 1�
1

x
; �1�x� � x2; (3.18)

 P0�x� � �
1

8
�

1

x3 �
7

8x4 ; P1�x� � 2�
5

2x
; (3.19)

 Q0�x� � �
1

8
�

1

8x4 ; Q1�x� � �1�
1

x
; (3.20)
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  0�x� �
1

3

Z xQ0�x�

�2
0�x�

dx

�
1

12�x� 1�
�

1

24
ln�x� �

1

12
ln�x� 1� �

x
12
�
x2

48
;

(3.21)
 

 1�x� �
1

3

Z x��0�x�Q1�x� � 2Q0�x��1�x�	

�3
0�x�

dx

�
x4

48
�
x3

12
�
x2

12
�
x
2
�

1

12�x� 1�2

� ln�x� 1� �
2

3�x� 1�
; (3.22)

 �0�x� �
8

x3 �
6

x4 �O
�

1

x5

�
; (3.23)

and

 �1�x� � �16�
12

x
�

64

x3 �
40

x4 �O
�

1

x5

�
: (3.24)

Using the relations (3.15), (3.16), and (3.17), we can derive
��x; �� and !�x; �� defined by (3.13) and (3.14), respec-
tively, as

 !�x;�� � C! �
!�1�x�
�

�!0�x� �O���;

��x; �� � �0�x� � ��1�x� �O��2�;

(3.25)

where
 

!�1�x� � �
1

x2 �
2

3

Z Q0�x�e� 0�x�

x�0�x�
dx� 2

Z ��0�x��0�x�

x3

�
��0�x��00�x� � �00�x��0�x� � �0�x� 00�x�	

x2

�
� e� 0�x�dx; (3.26)

 

!0 � 2
Z dxe� 0�x�

x3 f�1�x��0�x� ��0�x��1�x� ��0�x��0�x�g � 2
Z dxe� 0�x��0�x�

x2 f�01�x� �  
0
0�x� ��00�x� �  

0
1�x�g

� 2
Z dxe� 0�x��1�x�

x2 f�00�x� �  
0
0�x�g � 2

Z dxe� 0�x�

x2 f�00�x���1�x� ��0�x�	 � �01�x��0�x�g

�
1

3

Z dxe� 0�x�

x�2
0�x�

f�0�x� � 2�0�x��Q1�x� �Q0�x�	 � 2Q0�x��1�x�g; (3.27)

 �0�x� � x�1� �0�x��0�x�e� 0�x�	 � x3!�1�x�; (3.28)

and

 �1�x� � xe� 0�x���1�x��0�x� � �0�x��1�x�

�  1�x��0�x��0�x�	 � x
3!0�x�: (3.29)

Applying the relations (3.18), (3.19), (3.20), (3.21), (3.22),
(3.23), (3.24), (3.25), (3.26), (3.27), (3.28), and (3.29), the
explicit form of the solutions (3.25) reduces to the follow-
ing relations, respectively,

 !�x! 0� � C! �
7

�x167=24
�

6

x191=24
� . . . (3.30)

and

 !�x! 1� � C! �
�97� 24��1�

�x� 1�11=12
�
�1� 3��1�

�x� 1�23=12
� . . .

(3.31)

Using the solutions (3.18), (3.19), (3.20), (3.21), (3.22),
(3.23), (3.24), (3.25), (3.30), and (3.31), the explicit form
of the function ��x� is obtained by the relations

 ��x! 0� �
16�

x119=24
�
�13� 43:5��

x95=24
�

8

x71=24
� . . . ;

(3.32)

 

��x! 1� � �x� 1�1=12

�
�
6

ln�x� 1� �
�24� 97��
�x� 1�

�
�3� ��

�x� 1�2
� . . .

�
: (3.33)

We apply the solutions (3.21) and (3.22) and obtain the
series expansion (3.16) such as follows,

  �x! 0� � C �
7�
12
�

1

24
ln�x� � . . . (3.34)

and
 

 �x! 1� � C �
�12�� 1�

12
ln�x� 1� �

�1� 8��
12�x� 1�

�
�

12�x� 1�2
� . . . (3.35)

The boundary conditions (3.4) defined at xb �
rb

2M � 1�
�; 0< �
 1, reduces to the following relations

 

1

�1=12
�
�
6

ln��� �
23

�
�

3

�2 � 0; � � 0:094; (3.36)

 C!��� � 1�
97

�11=12
�

23

�23=12
�

13

�35=12
’ �11 561:39;

(3.37)

and
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 C ��� �
4

3
�

�
1

12
� �

�
ln��� ’ 1:36; (3.38)

in which we use (3.31), (3.33), and (3.35), respectively. In
the next section we try to obtain the backreaction effects of
the quantum scalar field, on the black hole and cosmologi-
cal event horizons.

IV. BACKREACTION EFFECTS AND SHRUNK
HORIZONS

In Sec. II, we saw that the Schwarzschild-de Sitter static
black hole metric (2.6), with positive cosmological cou-
pling constant 0< �< 1, has, respectively, black hole and
cosmological event horizons which are obtained by
Eq. (2.7) such that

 1�
2M
r
� �

�
r

2M

�
2
� 0; � �

1

3
��2M�2: (4.1)

In Sec. III we determined the value of � such as � � 0:094,
by solving the time-independent backreaction equations of
the perturbed black hole metric. Applying � � 0:094,
Eq. (4.1) leads us to the black hole and cosmological event
horizons of the unperturbed Schwarzschild-de Sitter space-
time (2.6), respectively, at distances (see Fig. 1)

 xib � 1:14 and xic � 2:54: (4.2)

Using the solutions (3.30), (3.31), (3.32), (3.33), (3.34),
(3.35), (3.36), (3.37), and (3.38), the explicit form of the
remnant, stable, static, evaporating Schwarzschild-de
Sitter mini black hole metric (3.3) is obtained as

 

dS2
f � ���x�d	2 � ��x�dx2 ���x�d	dx

� x2�d�2 � sin2�d’2�; (4.3)

where we defined 	 � t
2M and x � r

2M . Also we obtained
approximated forms of the metric components defined by
��x�, ��x�, and ��x� such as follows,

 ��x! 0� �
17

x2=24
�

10

x73=24
�

272

x97=24
�

459

x121=24
�

51

x145=24
;

(4.4)

 ��x! 0� �
19

3
x141=24; (4.5)

 ��x! 0� � �
37:8

x2=24
; (4.6)

 

��x! 1� �
1:97

�x� 1�2:9
�

45:54

�x� 1�1:9
�

0:62

�x� 1�0:98

�
225:88

�x� 1�0:9
� 0:46�x� 1�0:1 ln�x� 1�; (4.7)

 ��x! 1� � �
0:05

�x� 1�1:07 ln�x� 1�
; (4.8)

 ��x! 1� �
0:16

�x� 1�0:9
�

1:2

�x� 1�0:98 �
1:04

�x� 1�1:9
: (4.9)

The event horizons of the final Schwarzschild-de Sitter
mini black hole, reacted by the quantum scalar field, are
determined by the equation ��x� � 0, respectively, at dis-
tances (see Eqs. (4.3) and (4.6) and their diagrams 2 and 3)

 xfb � 0:12 and xfc � 1:25: (4.10)

This result predicts the end point of the Schwarzschild-de
Sitter black hole evaporation such as, it reduces to a
remnant stable static Schwarzschild-de Sitter mini black
hole. It will be in accord with the work by Bousso and
Hawking [11] in which an evaporating Schwarzschild-de
Sitter dilatonic black hole whose size is comparable to that
of the cosmological horizon is stable (i.e., it is in thermal
equilibrium). Comparing (4.2) and (4.10), not only does the
scale of mini black hole horizons become smaller than its
first horizons but also the final shrunk horizons come near
to each other.
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FIG. 3. Diagram of the function ��x! 1� (see Eq. (4.7))
shows that the perturbed cosmological horizon is made at xc �
rc

2M � 1:25.

 

–8e+06

–6e+06

–4e+06

–2e+06

0
0.15 0.2 0.25 0.3 0.35 0.4

x

FIG. 2. Diagram of the function ��x! 0� (see Eq. (4.4))
shows that the perturbed black hole event horizon is made at
xb �

rb
2M � 0:12.

HOSEIN GHAFARNEJAD PHYSICAL REVIEW D 74, 104012 (2006)

104012-6



V. CONCLUDING REMARKS

According to the work by Christensen and Fulling we
obtained the Hawking radiation stress-energy tensor of the
Schwarzschild-de Sitter static black hole. Then it is used to
solve the time-independent backreaction equations. The
linear-order solution of the backreaction equations gave
perturbed metric of the black hole which again has two
black hole and cosmological shrunk event horizons. In
other words, the backreaction effects of the Hawking ra-
diation stress-energy tensor provide that the evaporating
Schwarzschild-de Sitter static black hole reduces to a
remnant, stable, static, mini black hole. Its singularity r �
0 is still covered by a spacelike hypersurface as a final
event horizon of the black hole. Furthermore the scale of
mini black hole horizons becomes smaller than of its first
horizons and the final shrunk horizons come near to each
other.
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APPENDIX

Using the relation

 hT̂��iren � 
��
��hT̂��iren (A1)

and assumptions

 v � t� r
; dr
 �
dr

��r�
; (A2)

we can obtain

 hT̂vviren � hT̂ttiren � hT̂r
r
 iren � hT̂tr
 iren � hT̂r
tiren;

(A3)

 hT̂vriren � hT̂rviren �
hT̂tr
 iren � hT̂r
r
 iren

��r�
; (A4)

and

 hT̂rriren �
hT̂r
r
 iren

�2�r�
: (A5)
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