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contained within those generated from the same seed by the inverse scattering method.

DOI: 10.1103/PhysRevD.74.104004 PACS numbers: 04.50.+h, 04.70.Bw

I. INTRODUCTION

Recently, the studies on higher-dimensional black holes
have received much attention, since it has been predicted
that they would be produced in a future linear collider [1].
In particular, a stationary black hole solution of the
Einstein equation has an important role in that it is ex-
pected to describe the classical equilibrium state and
Hawking emission from it is considered to give us the
signal of black hole production in the linear collider. By
a lot of studies on higher-dimensional black holes, it has
been clarified that they have a more complicated structure
than in four dimensions [2].

Some higher-dimensional stationary black hole solu-
tions were found. As higher-dimensional generalization
of the Kerr black hole solution, the Myers-Perry black
hole solution, which has an event horizon with spherical
topology, was found [3]. Emparan and Reall found a black
ring solution as the five-dimensional vacuum Einstein
equation, which has an event horizon diffeomorphic to
S1 � S2 [4] and describes a black hole rotating in the S1

direction.
The black ring solution which is rotating only in an S2

direction was also found by two of the present authors [5]
by using one of the solitonic solution-generating tech-
niques [6], the so-called Bäcklund transformation. This is
essentially the technique to generate new solutions of the
Ernst equation from a known solution. In addition, it was
shown by the same authors that the black ring with S1

rotation can be generated by the same solution-generating
technique [7].

As another solitonic technique, the inverse scattering
technique [8] developed by Belinski and Zakharov is
well known. This technique is essentially based on the
fact that the Einstein’s second-order nonlinear partial dif-
ferential equations can be replaced with a pair of first-order
linear partial differential equations called Lax pair. This
method produces vacuum solutions from a certain known
vacuum solution called a seed and succeeded in generation
of a lot of four-dimensional solutions. In fact, as four-
dimensional solutions the Kerr black hole solution, the
multi-Kerr black hole solutions, and the Tomimastu-Sato

solutions can be generated from the Minkowski seed and
physically interesting various solutions were also gener-
ated [9,10].

Recently, some higher-dimensional black hole/ring so-
lutions have been generated by using the inverse scattering
method. As an infinite number of static solutions of the
five-dimensional vacuum Einstein equations with axial
symmetry, the five-dimensional Schwarzschild solution
and the static black ring solution were reproduced [11],
which gave the first example of the generation of a higher-
dimensional asymptotically flat black hole solution by the
inverse scattering method. The Myers-Perry solution with
single and double angular momenta were regenerated from
the Minkowski [11,12] and some unphysical seed [13],
respectively. The black ring solutions with S2 rotation
was also reproduced by using this method from the
Minkowski seed [12]. The S1-rotating black ring solution
was also reproduced from the Levi-Civita solution via the
inverse scattering method by one of the authors [14].

Thus, the inverse scattering method is a powerful for-
malism for solving systems of nonlinear partial differential
equations such as the Einstein equation. When we try to
find a further new higher-dimensional black hole/ring so-
lution, it is important to know the relationship between
solutions generated by the Bäcklund transformation used
in Ref. [5] and ones generated by the inverse scattering
method used in Refs. [12,14] in that we can avoid the
overlap of obtained solutions. Though the relationship
between the four-dimensional solutions generated by the
inverse scattering method and some Bäcklund transforma-
tions were considered in Refs. [15,16] (see also
Refs. [10,17] about the relationship between the other
generation techniques), the relationship between higher-
dimensional solutions generated by these techniques dis-
cussed here may be nontrivial and useful. In usual cases, in
these solitonic generation techniques a diagonal metric is
often used as a seed since such a seed simplifies the
analysis. These techniques have a merit in that more com-
plex solutions can be generated from simple solutions. This
is why in this article, we investigate the relation between
the solutions generated from a diagonal seed by both
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solitonic generation techniques applied to five dimensions,
and show that the two-solitonic solutions generated by
Bäcklund transformation in Ref. [5] from an arbitrary
diagonal seed coincide with two-solitonic solutions gener-
ated from the same seed by the inverse scattering method
under the special normalization.

This article is organized as follows: In Sec. II, we review
the Bäcklund transformation developed by two of the
authors in Ref. [5] and the inverse scattering method
applied to five dimensions by one of the authors [12]. In
Sec. III, we show that the two-solitonic solutions generated
by the former technique from a diagonal seed coincide with
the special solutions generated by the latter technique from
the same seed under the special normalization.

II. PRELIMINARY

In this article, we consider the spacetimes which satisfy
the following conditions: (1) five dimensions, (2) asymp-
totically flat spacetimes, (3) the solutions of vacuum
Einstein equations, (4) having three commuting Killing
vectors including one time-translational Killing vector
and two axial Killing vectors, (5) having a single nonzero
angular momentum component.

A. Bäcklund transformation

Here we review the generation technique of the five-
dimensional solution established by Ref. [5]. Under the
conditions (1)–(5), we can start the analysis from the
following form of the metric

 ds2 � e�T��eS�dt�!d��2 � eT�2U1�2�d��2

� e2���U1��T�d�2 � dz2�� � e2T�d �2: (1)

Using this metric form the Einstein equations are reduced
to the following set of equations,

(i)
 r2T � 0;

(ii)
 

�
@��T �

3
4���@�T�

2 � �@zT�
2�

@z�T �
3
2��@�T@zT�;

(iii)
 r2ES �

2

ES � �ES
rES 	 rES;

(iv)
 

� @��S �
�

2�ES� �ES�
�@�ES@� �ES � @zES@z �ES�

@z�S �
�

2�ES� �ES�
�@�ES@z �ES � @�ES@z �ES�;

(v)
 �@��; @z�� � ��1e2S��@z!; @�!�;

(vi)  � � �S � �T;

(vii)
 U1 � �

S� T
2

;

where the function ���; z� is defined through the

equation (v) and the function ES is defined by ES :� eS �
i�. It should be noted that eS and � correspond to a
gravitational potential and a twist potential. The
equation (iii) is exactly the same as the Ernst equation in
four dimensions [18]. The most nontrivial task to obtain
new metrics is to solve the equation (iii) because of its
nonlinearity. Here the method similar to the Neugebauer’s
Bäcklund transformation [19] or the Hoenselaers-
Kinnersley-Xanthopoulos transformation [20] is used.

Following the procedure given by Castejon-Amenedo
and Manko [21], for a static seed solution eS

�0�
a new Ernst

potential can be written in the form

 E S � eS
�0� x�1� ab� � iy�b� a� � �1� ia��1� ib�
x�1� ab� � iy�b� a� � �1� ia��1� ib�

;

where x and y are the prolate-spheroidal coordinates: � �

�
��������������
x2 � 1
p ��������������

1� y2
p

, z � �xy with the ranges 1 
 x and
�1 
 y 
 1, and the functions a and b satisfy the follow-
ing simple first-order differential equations

 �lna�;x �
1

x� y
��xy� 1�S�0�;x � �1� y2�S�0�;y �;

�lna�;y �
1

x� y
���x2 � 1�S�0�;x � �xy� 1�S�0�;y �;

�lnb�;x � �
1

x� y
��xy� 1�S�0�;x � �1� y2�S�0�;y �;

�lnb�;y � �
1

x� y
���x2 � 1�S�0�;x � �xy� 1�S�0�;y �:

(2)

The corresponding expressions for the metric functions can
be obtained by using the formulas shown by [21]. For the
seed,
 

ds2 � e�T
�0�
��eS

�0�
dt2 � e�S

�0�
�2�d��2

� e2��0��S�0� �d�2 � dz2�� � e2T�0� �d �2; (3)

a new solution is given by

 ds2 � �eS
�0��T�0� A

B

�
dt�

�
2�e�S

�0� C
A
� C1

�
d�

�
2

�
B
A
e�S

�0��T�0��2�x2 � 1��1� y2�d�2 � e2T�0�d 2

� e2��S�0��T�0� B
A
�2�x2 � y2�

�
dx2

x2 � 1
�

dy2

1� y2

�
;

(4)

where A, B, and C are defined by
 

A :� �x2 � 1��1� ab�2 � �1� y2��b� a�2;

B :� ��x� 1� � �x� 1�ab�2 � ��1� y�a� �1� y�b�2;

C :� �x2 � 1��1� ab���1� y�b� �1� y�a�

� �1� y2��b� a���x� 1� � �x� 1�ab�: (5)

To assure that the spacetime does not have global rotation,

SHINYA TOMIZAWA, HIDEO IGUCHI, AND TAKASHI MISHIMA PHYSICAL REVIEW D 74, 104004 (2006)

104004-2



the constant C1 is given by

 C1 �
2�1=2�
1� ��

: (6)

B. Inverse scattering techniques

We will give a summary of the inverse scattering method
developed by Belinski and Zakharov [8] which is applied
to five dimensions.

As in the previous subsection, we consider the asymp-
totically flat, five-dimensional stationary and axisymmetric
vacuum spacetime with three commuting Killing vector
fields V�i� (i � 1, 2, 3) following the argument in [12,14].
The commutativity of Killing vectors �V�i�; V�j�� � 0 ena-
bles us to find a coordinate system such that V�i� � @=@xi

(i � 1, 2, 3) and the metric is independent of the coordi-
nates xi, where �@=@x1� is the Killing vector field associ-
ated with time translation and �@=@x2�, �@=@x3� denote the
spacelike Killing vector fields with closed orbits. We put
x1 � t, x2 � �, and x3 �  . From the theorem in
Ref. [22], in such a spacetime, the metric can be written
in the canonical form [22] as

 ds2 � f�d�2 � dz2� � gijdxidxj; (7)

where f � f��; z� and gij � gij��; z� are a function and an
induced metric on the three-dimensional space, respec-
tively. Both of them depend only on the coordinates �
and z. Here it is the most convenient to choose the 3� 3
matrix g � �g�ij as to satisfy the condition

 detg � ��2: (8)

This is compatible with the vacuum Einstein equations
gijRij � 0, which reduces to �@2

� � @2
z��� detg�1=2 � 0.

It follows from Rij � 0 that the matrix g satisfies the
solitonic equation

 ��g;�g�1�;� � ��g;zg�1�;z � 0: (9)

From the other components of the Einstein equations
R�� � Rzz � 0 and R�z � 0, we obtain the equations
which determine the function f��; z� for a given solution
of the solitonic Eq. (9)

 �lnf�;� � �
1

�
�

1

4�
Tr�U2 � V2�; (10)

 �lnf�;z �
1

2�
Tr�UV�; (11)

where the 3� 3 matrices U��; z� and V��; z� are defined
by

 U :� �g;�g�1; V :� �g;zg�1: (12)

The integrability condition with respect to f is automati-

cally satisfied for the solution g of Eq. (9). Note also that
R�� � Rzz � 0 is consistent with the solution (9)–(11).

Although our immediate goal is to solve the differential
equations (9), it cannot be generally solved due to its
nonlinearity. But in analogy with the soliton technique,
we can find the Lax pair for the matrix equations (9). We
consider Schrödinger-type equations for the 3� 3 matrix
 ��; �; z� as in four dimensions;

 D1 �
�V � �U

�2 � �2  ; D2 �
�U� �V

�2 � �2  ; (13)

where � is a complex spectral parameter independent of �
and z. The differential operators D1 and D2 are defined as

 D1 :� @z �
2�2

�2 � �2 @�; D2 :� @� �
2��

�2 � �2 @�;

(14)

which can be shown to commute �D1; D2� � 0. Note that
Eq. (14) is invariant under the transformation �! ��2=�.
Then the compatibility condition �D1; D2� � 0 reduces to
the Einstein equations (9) with

 g��; z� �  �0; �; z�: (15)

It is worth noting that the Einstein’s second-order non-
linear partial differential equations (9) are reduced to a pair
of first-order linear partial differential equations (13).

Let g0, U0, V0, and  0 be particular solutions of Eqs. (9)
and (13). We shall call the known solution g0 the seed
solution. We are going to seek a new solution of the form

  � � 0; (16)

which leads the following equations that the dressing
matrix ���; �; z� must satisfy

 D1� �
�V � �U

�2 � �2 �� �
�V0 � �U0

�2 � �2 ;

D2� �
�U� �V

�2 � �2 �� �
�U0 � �V0

�2 � �2 :

(17)

In order for the solutions g��; z� to be real and symmet-
ric, we impose the following conditions on the dressing
matrix �,

 ��� ��; �; z� � ���; �; z�; � � ��; �; z� �  ��; �; z�;

(18)

and

 g � ����2=�; �; z�gT0���; �; z�; (19)

where �� and T� denote complex conjugation and the
transposition of �. From Eqs. (16) and (19), the dressing
matrix � asymptotes to a unit matrix �! I as �! 1.

The general n-soliton solutions for the matrix g are
generated due to the presence of the simple poles of the
dressing matrix on the complex �-plane:

RELATIONSHIP BETWEEN SOLITONIC SOLUTIONS OF . . . PHYSICAL REVIEW D 74, 104004 (2006)

104004-3



 � � I �
Xn
k�1

Rk
��	k

; (20)

where the matrices Rk and the position of the pole 	k
depend only on the variables � and z. Here and hereafter,
the subscript k, l counts the number of solitons. It is the
characteristic feature of solitons that the dressing matrix �
is represented as the meromorphic function on the complex
�-plane. Pole trajectories 	k��; z� are determined by the
condition that the left-hand side of Eq. (17) has no poles of
second order at � � 	k, which yields the following two
differential equations for 	k��; z�:

 	k;z � �
2	2

k

	2
k � �

2 ; 	k;� �
2�	k

	2
k � �

2 ; (21)

which are expressed by the solutions of the following
quadratic equations

 	2
k � 2�z� wk�	k � �2 � 0; (22)

where wk are arbitrary constants. Solving Eq. (22), one can
easily see

 	k � wk � z�
��������������������������������
�z� wk�

2 � �2
q

; (23)

where wk are arbitrary constants. Since the matrices Rk are
degenerate at the poles Rk��1�	k� � 0, which follows
from the condition ���1 � I at � � 	k, it is possible to
write down the matrix elements of Rk in the form

 �Rk�ij � n�k�i m
�k�
j : (24)

The fact that Eq. (17) has no residues at the poles � � 	k

leads to obtain the vectors m�k�i as

 mi�k� � m�k�0j � 
�1
0 �	k; �; z��

ji; (25)

where m�k�0i are arbitrary constants. The vectors n�k�i , on the
other hand, are determined by the condition that Eq. (19) is
regular at � � 	k as

 n�k�i �
Xn
l�1

	�1
k ��

�1�klL
�l�
i ; (26)

where the vectors L�k�i and the symmetric matrix �kl are
given by

 L�k�i � mj�k��g0�ij; (27)

 �kl �
mi�k��g0�ijmj�l�

�2 �	k	l
; (28)

respectively. Therefore one can now find from Eqs. (15),
(16), and (20) that the matrix g becomes

 g�unphys�
ij �  �0; �; z�ij

� �g0�ij �
Xn
k;l�1

���1�kl	
�1
k 	�1

l L�k�i L
�l�
j : (29)

This metric does not meet the condition detg � ��2,
which we have denoted g�unphys�. In order to satisfy the
gauge condition detg � ��2, the metric should be appro-
priately normalized. One example is to normalize all the
metric components by the same weight as

 g�phys� � ��1�n=3��2n=3

�Yn
k�1

	2=3
k

�
g�unphys�; (30)

where g�phys� is the metric which fulfills the condition
detg � ��2. Actually, the four-dimensional Kerr solution
is obtained similarly by the overall normalization as
Eq. (30). Substituting the physical metric solution g�phys�

given by Eq. (30) into Eqs. (10) and (11), we obtain a
physical value of f as
 

f � C0f0�
�n�n�1�=3 det��kl�

Yn
k�1

�	2�n�2�=3
k �	2

k � �
2��1=3�

	
Yn
k>l

�	k �	l�
�4=3; (31)

where C0 is an arbitrary constant, and f0 is a value of f
corresponding to the seed g0. In general, these solutions
have two angular momentum components. In this article,
we study the relationship between the solutions generated
by the inverse scattering method applied to five dimensions
and those generated by the Bäcklund transformation in
Ref. [5] which generates the only solutions with a single
angular momentum component. So, we should compare
the solutions which have a single angular momentum
component generated by them with each other. As dis-
cussed in Ref. [12], since the two-solitonic solution (30)
with n � 2 would not be regular on a certain part of an axis
(as far as we choose a seed regular on it), it is suitable to
normalize the metric so that �g0�33 is unchanged:

 g�phys� �

�Qn
k�1

	k
�

�
g�unphys�
AB 0

0 �g0�33

0
@

1
A; (32)

where A;B � 1, 2. Here, we consider the two-soliton
solution. We choose the sign of plus in Eq. (23) and take
the constants w1 � �w2 � ��.

III. RELATION BETWEEN TWO-SOLITONIC
SOLUTIONS

In this section, we show that for a general diagonal seed
solution which takes the form of

 ds2 � g01dt
2 � g02d�

2 � g03d 
2 � f0�d�2 � dz2�; (33)

where g01, g02, and g03 are functions of � and z, and satisfy
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the constraint g01g
0
2g
0
3 � ��

2, the two-solitonic solutions
generated by the inverse scattering method under the spe-
cial normalization (32) coincide with ones generated by the
Bäcklund transformation explained in Sec. II A. To do so,
as a diagonal seed, instead of (33) it is sufficient to consider
the following metric form,

 ds2 � �dt2 � g2d�2 � g3d 2 � f�d�2 � dz2�; (34)

where g2 and g3 are functions of � and z, and satisfy the
constraint g2g3 � �2 (in fact, starting with this form of the
seed metric simplifies the proof).

The reason for this is explained as follows. Let us
consider the conformal transformation of the two-
dimensional metric gAB�A;B � t; �� and the rescale of
the   -component with the determinant detg invariant ;

 g0 � diag��1; g2; g3� ! g00 � diag���;�g2;��2g3�;

(35)

where ln� must be a harmonic function on the three-
dimensional Euclid space in order to assure that the trans-
formed metric is the solution of Eq. (9). (Since the metric
function f or f0 is determined by only the three-
dimensional metric g0 or g00, we need not consider this
for the present purpose.) Under this transformation, the
physical metric (32) is transformed as

 g �
gAB 0

0 g3

� �
! g0 �

�gAB 0
0 ��2g3

� �
: (36)

From this, we see that the transformation (35) of a seed
commutes with the operation of putting two solitons on the
background. Therefore we can obtain the two-solitonic
solution generated from a diagonal seed g00 �
diag�g01; g

0
2; g

0
3� such that the tt-component is not �1 by

the transformation (36) with � � g01 for the two-solitonic
solution generated from the seed (34).

For the Bäcklund transformation, the same fact also
holds, i.e. by the transformation (35) of the seed, the
solution generated is transformed as Eq. (36). Note that
the seed functions for the metric (34) can be written in
terms of g2 as

 S�0� � T�0� � �
1

2
ln
�
g2

�2

�
: (37)

The two-solitonic solution for the general seed metric with
seed functions S�0� � �1=2 ln�g2=�2� and T0

�0� �

�1=2 ln�g2=�2� can be obtained from the solitonic solu-
tion of the seed (34) with the subsequent transformation

(35) with � � eS
�0��T0

�0� . As a result, we can conclude that it
is sufficient to assume the form of the diagonal seed as
Eq. (34), i.e., the seed such that �g0�tt � �1 as far as we
consider a diagonal seed solution.

To begin with, we show that for an arbitrary diagonal
seed (34), the solutions of Eqs. (2) are given by

 a � ���
1 � 1��3=2 g
1=2
2 �x� 1��1� y�
� 2��; z; 	2�

;

b � ��
� 2��; z;	1�

�
2 � 1��3=2�x� 1��1� y�g1=2
2

;

(38)

where  2��; z; �� is the ��-components of the solution  
of Eqs. (13) (we may assume the generating matrix
 0��; z; �� to be diagonal  0��; z; �� �
diag� 1��; z; ��;  2��; z; ��;  3��; z; ��� for a diagonal
seed). �, �, 
1, and 
2 are arbitrary constants.

From Eq. (37), the right-hand side in the first equation of
(2) is reduced to

 

1

x� y
��xy� 1�S�0�;x � �1� y2�S�0�;y �

� �
1

2�x� y�

�
�xy� 1�

�
ln
g2

�2

�
;x
� �1� y2�

�
ln
g2

�2

�
;y

�
:

(39)

On the other hand, using the first equation of (38), the left-
hand side in Eq. (2) becomes

 

�lna�;x �
1

2
�lng2�;x�

1

x� 1
� �ln��;x� �ln 2��; z;	2��;x

�
1

2
�lng2�;x�

1

x� 1
� �ln��;x�

�2

�
x�1� y2�

� �ln 2��; z;	2��;���y�ln 2��; z;	2��;z: (40)

Let us note that the term containing �ln ��; z;	2��;� in the
above equation is computed as

 

�ln 2��; z;	2��;� � �ln 2��; z; ���;�j��	2

� �ln 2��; z; ���;�j��	2
		2;�

� �
2	2�

�2 �	2
2

�ln 2��; z; ���;�j��	2

�
�2�lng2�;� � �	2�lng2�;z

�2 �	2
2

� �ln 2��; z; ���;�j��	2
	

2	2�

�2 �	2
2

�
�2�lng2�;� � �	2�lng2�;z

�2 �	2
2

; (41)

where we used Eqs. (13) and (21). Similarly, the term
containing �ln ��; z; 	2��;z in Eq. (40) can be computed as

 �ln 2��; z;	2��;z �
�2�lng2�;z � �	2�lng2�;�

�2 �	2
2

: (42)

Therefore, using Eqs. (41) and (42), Eq. (40) becomes
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�lna�;x � �
1

2�x� y�

�
�xy� 1�

�
ln
g2

�2

�
;x

� �1� y2�

�
ln
g2

�2

�
;y

�
: (43)

This coincides with the right-hand side of Eq. (39), which
implies that a in Eq. (38) is a solution of the first equation
in Eq. (2). Similarly, we can show a satisfies the second
equation of (2) and that b also satisfies the third and fourth
equations of (2). As a result we see that the solutions (2) are
given by Eqs. (38) for a diagonal seed whose tt-component
is �1.

Substituting Eq. (38) into Eqs. (4) and (5), we obtain the
following general solution generated from a static seed
solution,

 gtt � �
~A
~B
; gt� � 2�1=2g2

~C
~B
� C1

~A
~B
;

g�� �
g2
t� � �

2

gtt
:

(44)

Here we have introduced new functions ~A, ~B, and ~C
defined as
 

~A � ��2 2�	1�
2 2�	2�

2�1� y�2

� ��2�2�
1 � 1�2g2 2�	1�
2�x� 1�2

� ��
2 � 1�2g2 2�	2�
2�x� 1�2

� �2�2�
1 � 1�2�
2 � 1�2g2
2�1� y�

2

� 2����
1 � 1��
2 � 1�g2 2�	1� 2�	2��x
2 � y2�;

(45)

 

~B � �2 2�	1�
2 2�	2�

2�1� y2�

� �2�2�
1 � 1�2�
2 � 1�2g2
2�1� y

2�

� ��2�2�
1 � 1�2 2�	1�
2g2�x

2 � 1�

� ��
2 � 1�2 2�	2�
2g2�x

2 � 1�

� 2����
1 � 1��
2 � 1�g2 2�	1� 2�	2��x
2 � y2�;

(46)

 

~C � ���
2 � 1� 2�	1� 2�	2�
2�x� y�

� ��2�
1 � 1� 2�	1�
2 2�	2��x� y�

� ��2��
2 � 1��
1 � 1�2g2 2�	1��x� y�

� ���
1 � 1��
2 � 1�2g2 2�	2��x� y�: (47)

Next, let us consider the solutions generated from the
inverse scattering method. Under the special normalization
(32), the two-soliton solution can be written in the follow-
ing form:

 g�phys�
tt � �

Gtt

	1	2�
;

g�phys�
t� � �g2

��2 �	1	2�Gt�

	1	2�
;

g�phys�
�� � �g2

G��

	1	2�
;

(48)

 g�phys�
  � g3; g�phys�

� � g�phys�
t � 0; (49)

where the functions Gtt, Gt�, G��, and � are defined as
 

Gtt � �m
�1�2
01 m

�2�2
01  2�	1�

2 2�	2�
2�	1 �	2�

2�4

�m�1�201 m
�2�2
02 g2	

2
2��

2 �	1	2�
2 2�	1�

2

�m�2�201 m
�1�2
02 g2	

2
1��

2 �	1	2�
2 2�	2�

2

�m�1�202 m
�2�2
02 g

2
2	

2
1	

2
2�	1 �	2�

2

� 2m�1�01m
�2�
01m

�1�
02m

�2�
02 g2 2�	1� 2�	2�

� ��2 �	2
1���

2 �	2
2�	1	2; (50)

 

G�� � m�1�201 m
�2�2
01 	

2
1	

2
2�	1 �	2�

2 2�	1�
2 2�	2�

2

�m�1�202 m
�2�2
02 g

2
2�	1 �	2�

2�4

�m�1�201 m
�2�2
02 g2	

2
1 2�	1�

2��2 �	1	2�
2

�m�2�201 m
�1�2
02 g2	

2
2�g2 �	2�

2��2 �	1	2�
2

� 2m�1�01m
�2�
01m

�1�
02m

�2�
02g2	1	2 2�	2� 2�	1�

� ��2 �	2
1���

2 �	2
2�; (51)

 

Gt��m
�1�
01m

�2�2
01 m

�1�
02	2�	1�	2� 2�	2�

2 2�	1���2�	2
1�

�m�1�01m
�1�
02m

�2�2
02 g2	2�	2�	1� 2�	1���

2�	2
1�

�m�1�201 m
�2�
01m

�2�
02	1�	2�	1� 2�	1�

2 2�	2���2�	2
2�

�m�2�01m
�1�2
02 m

�2�
02	1g2 2�	2���2�	2

2��	1�	2�;

(52)

 

� � m�1�201 m
�2�2
01  2�	1�

2 2�	2�
2�	1 �	2�

2�2

�m�1�202 m
�2�2
02 g

2
2�	1 �	2�

2�2

�m�1�201 m
�2�2
02 g2 2�	1�

2��2 �	1	2�
2

�m�1�202 m
�2�2
01 g2 2�	2�

2��2 �	1	2�
2

� 2m�1�01m
�2�
01m

�1�
02m

�2�
02 g2 2�	1� 2�	2�

� ��2 �	2
1���

2 �	2
2�; (53)

where the two functions g2 and g3 are given by Eq. (34).
In order for the metric to approach the Minkowski

spacetime asymptotically, let us consider the coordinate
transformation of the physical metric such that
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 t! t0 � t� C1�; �! �0 � �; (54)

where C1 is a constant chosen to ensure the asymptotic
flatness. We should note that the transformed metric also
satisfies the supplementary condition detg � ��2. Under
this transformation, the physical metric components be-
come

 g�phys�
tt ! g�phys�

t0t0 � g�phys�
tt ;

g�phys�
t� ! g�phys�

t0�0 � g�phys�
t� � C1g

�phys�
tt ;

g�phys�
�� ! g�phys�

�0�0 � g�phys�
�� � 2C1g

�phys�
t� � C2

1g
�phys�
tt :

(55)

If we choose the parameters such that

 m�1�01m
�2�
01 � �; (56)

 m�2�01m
�1�
02 � �1=2�
2 � 1�; (57)

 m�1�01m
�2�
02 � ��

1=2���
1 � 1�; (58)

 m�1�02m
�2�
02 � ����
1 � 1��
2 � 1�; (59)

 C1 �
2�1=2�
1� ��

; (60)

and use the prolate spherical coordinate �x; y�, we can
confirm that the transformed metric coincides with the
metric (44) generated by the technique used in Ref. [5]
from a diagonal seed. In order to show the coincidence of
the metrics, it is sufficient to check only two components
gtt and gt� due to the supplementary condition detg �
��2 and the fact that the metric components g�� and gzz
(or, gxx and gyy) are determined by the three-dimensional
metric gij.

IV. SUMMARY AND DISCUSSION

In this article, we studied the relation between the in-
verse scattering method and the Bäcklund transformation
applied to five dimensions. We showed that the two-
solitonic solution generated from an arbitrary diagonal

seed by the Bäcklund transformation coincides with one
generated from the same diagonal seed by the inverse
scattering method under the special normalization (32).
This implies that the five-dimensional solutions generated
by the inverse scattering method contain the ones gener-
ated by the Bäcklund transformation used in Ref. [5] as
concerned with the two-solitonic solutions generated from
a diagonal seed. As clarified in the previous works
[5,7,12,14], if we choose the five-dimensional
Minkowski or the Euclidean C-metric as a diagonal seed,
we can obtain the black ring solution with a rotating two-
sphere [5] or the black ring solution found by Emparan and
Reall [4] as the two-solitonic solution, respectively.
Therefore, we see that the previous works [12,14] corre-
spond to the special cases of the present result.

However, while the Bäcklund transformation used in
Ref. [5] can generate solutions with a single angular mo-
mentum component at the most, the inverse scattering
method can generate five-dimensional solutions with two
angular momentum components, as discussed in
Refs. [12,14]. In fact, the Myers-Perry black hole solution
with two angular momentum components was generated
by the inverse scattering method [13]. It is expected that a
new black ring solution with two angular momentum
components may be generated by this method.

Though in this article, we focus on the two-solitonic
solution generated from a diagonal seed by these tech-
niques, we also expect solutions generated from nondiag-
onal seeds by both generation techniques or a
multisolitonic solution (more than two) generated by
them to be the same if we choose the special normalization
(32) in the inverse scattering method. It would be also
interesting to deal with the generation of solutions in the
five-dimensional Einstein-Maxwell equations with the
same symmetries [23].
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