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The current authors have previously shown that inhomogeneous, but spherically symmetric universe
models containing only matter can yield a very good fit to the SNIa data and the position of the first
cosmic microwave background (CMB) peak. In this work we examine how far away from the center of
inhomogeneity the observer can be located in these models and still fit the data well. Furthermore, we
investigate whether such an off-center location can explain the observed alignment of the lowest
multipoles of the CMB map. We find that the observer has to be located within a radius of �15 Mpc
from the center for the induced dipole to be less than that observed by the COBE satellite. But for such
small displacements from the center, the induced quadru- and octopoles turn out to be insufficiently large
to explain the alignment.
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I. INTRODUCTION

In a recent work [1], we studied spherically symmetric
inhomogeneous universe models—the so-called Lemaı̂tre-
Tolman-Bondi (LTB) models. We found that for a certain
class of inhomogeneities, such models could easily explain
various cosmological observations without introducing
dark energy, most notably the luminosity distance-redshift
relation of type IA supernovae and the position of the first
peak in the CMB spectrum. The inhomogeneities required
are of the form of a spherically symmetric underdense
bubble in an otherwise flat and homogeneous Einstein-de
Sitter universe, with the observer located at the center of
the bubble.

Unless the observer is positioned exactly at the center of
the bubble, the distribution of matter, as seen by the
observer, will be anisotropic. This will affect the observed
microwave background and constrain the possible location
of the observer, since the CMB dipole must be in agree-
ment with observations [2]. Note that in a homogeneous
universe model, this dipole is attributed to the peculiar
velocity of the observer. However, as discussed in [3], in
an LTB model there will be an additional contribution to
the dipole from the anisotropy of space-time. Thus, the
dipole seen by an off-center observer will be due to a
combination of kinematic effects and the off-center
location.

The anisotropy will also induce higher multipoles in the
CMB spectrum. Moffat [4] proposes this mechanism as a
possible explanation for the observed alignment of the
CMB quadru- and octopole [5–9], since the direction
from the observer towards the center of the bubble singles
out a ‘‘special’’ axis.

In this work we will investigate these induced anisotro-
pies in the CMB to establish how far from the center the
observer can be located, and whether they can offer an
explanation to the alignment of the lowest multipoles. We
find that the observer has to be located within a sphere
extending approximately 15 Mpc about the origin, in order
for the induced dipole to remain within the observed range.
However, within this small volume the induced quadru-
and octopole turn out to be insufficiently large to explain
the alignment.

The paper is organized as follows: In Sec. II, we deduce
the differential equations governing the path and redshift of
photons. We then proceed to work out expressions for the
induced temperature distribution and corresponding CMB
multipoles in Sec. III. Next, in Sec. IV, we solve these
equations numerically to find the multipoles as a function
of the position of the observer. This allows us to find LTB
models which agree with both the observed dipole and
observations of SNIa and the position of the first CMB
peak, as described in [1]. We present two such models in
this section. Finally, in Sec. V we discuss and summarize
our work.

II. THE GEODESIC EQUATION IN THE LTB
SPACE-TIME

The spherically symmetric LTB metric is given by [10–
12]

 ds2 � �dt2 �
�R0�r; t��2

1� ��r�
dr2 � R2�r; t�d�2; (1)

where R�r; t� is a position-dependent scale factor, and ��r�
is related to the curvature.

One of the great advantages of working in this space-
time is that the Einstein equations can be solved exactly in
the matter-dominated scenario. The function R�r; t� can
then be written in terms of a conformal time �, defined
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by �1=2dt � Rd�, as
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�
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�������������������
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s
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s
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where ��r� 	 0 is an arbitrary function, and we have
assumed ��r�> 0. Furthermore, we have defined R0 

R�r; 0�, with the initial time t � 0 defined as the time of
last scattering.

Photons follow trajectories determined by the geodesic
equation,
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� 0; (4)

where ���� is the Christoffel symbol, and � is a monotoni-
cally increasing (or decreasing) parameter defined along
the path of the photons.

Because of axial symmetry, the photon paths must be
independent of the azimuth angle �, which leaves three
possible choices for free index �. First, � � t yields
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Next, � � r yields
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and finally, � � � yields
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which can be written as conservation of angular momen-
tum J
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d
d�

J � 0: (8)

In addition, the 4-velocity identity, u�u� � 0 for photons,
leads to the constraint

 �

�
dt
d�

�
2
�
�R0�2

1� �

�
dr
d�

�
2
�
J2

R2 � 0: (9)

It is simplest to specify the initial conditions at the time t0
when the photon arrives at the observer’s position, which is
given by r � r0 and � � 0. The path of the photon is
shown in Fig. 1. It hits the observer at an angle 	 relative

to the z axis. The spatial components of the unit vector
along this axis are

 vi �

�������������
1� �
p

R0
�1; 0; 0�; (10)

where the three components are in the r, � and� direction,
respectively.

The spatial direction ui is given by the tangent to the
photon path at t0, i.e.

 ui �
��������d�dt

��������
�
dr
d�

;
d�
d�

;
d�
d�

�
� �

1

u
�p; J=R2; 0�; (11)

where the first factor ensures normalization, gijuiuj � 1,
and we have introduced u 
 dt=d� and p 
 dr=d�. Note
that we have chosen to let � decrease with time, since we
will start integrating the equations at t � t0 and follow the
photons backwards in time until recombination.

The angle 	 is given by the inner product of vi and ui

 cos	 � gijuivj � �
R0�������������

1� �
p

p
u
: (12)

Since the parametrization of the photon path in terms of the
affine parameter � is arbitrary, we can choose this such that
� � 0 when t � t0 and u0 � u�� � 0� � �1. Using
Eqs. (9) and (12), these conditions translate into the fol-
lowing initial conditions

 p0 �

�������������
1� �
p

R0
cos	; (13)

 J0 � J � R sin	: (14)

Furthermore, we need to determine the redshift of the
incoming photons as a function of the direction. The
photons follow a path given by r���, t���, and ����. The
redshift can be represented by the change in time separa-

 

FIG. 1 (color online). A photon hitting the observer at an angle
	.
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tion between adjacent photons. Because of the expansion
of the universe, this separation changes as the photons
propagate through space. The redshift is given by the
relative change of the separation, i.e. z � �
r � 
e�=
e,
where the subscripts r and e refer to the receiver and
emitter positions, respectively.

Consider two photons emitted by a source with a time
separation of 
. Let the equation describing the time coor-
dinate along the first geodesic be t1��� � t���. The time
along the second geodesic is then given by t2��� � t��� �

���. Both photons must satisfy the 4-velocity identity (9).
For the first photon this reads as

 

�
dt
d�

�
2
�
R0�r; t�2

1� �

�
dr
d�

�
2
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�
d�
d�

�
2
; (15)

while for the second photon, the 4-velocity identity be-
comes
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:

(16)

Expanding Eq. (16) to first order in 
 and using Eq. (15),
we arrive at the expression
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The redshift measured by the observer as a function of the
period at the time of emission is defined as

 1� z��e� �

��r�

��e�

: (18)

We differentiate this with respect to �e, which gives us the
expression

 

dz
d�e

� �
1


��e�
d
��e�
d�e


��r�

��e�

: (19)

Next, using Eqs. (17) and (18), and suppressing the sub-
script e, we arrive at the equation

 

dz
d�
� ��1� z�

d�
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�
R0 _R0
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2
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d�
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�
2
�
: (20)

This equation determines the change in redshift measured
by the observer along an infinitesimal distance d�. To find
the redshift as a function of � for a photon hitting the
observer today, we can sum up the infinitesimal contribu-
tions along the past light cone as

 

d ln�1� z�
d�

� �u�1

�
R0 _R0

1� �
p2 �

_R

R3 J
2

�
; (21)

with the initial condition z�� � 0� � z0 � 0.
To summarize, we must solve the five first-order differ-

ential equations for (t, r, �, p, and z), with the correspond-
ing initial conditions (t0, r0, 0, p0, and z0), under the
constraints (9) and (14).

III. TEMPERATURE ANISOTROPIES

We wish to examine how being situated away from the
center of the LTB coordinate system affects the CMB
temperature measured by the observer. Since space-time
is no longer spherically symmetric around such an ob-
server, we expect him to measure additional anisotropies
in the temperature to those measured by an observer at the
center. In this paper we concentrate on the additional
anisotropies rising from the observer’s location, i.e. we
disregard any intrinsic anisotropies in the CMB tempera-
ture at the last-scattering surface. Thus, we assume the
temperature at the last-scattering surface to be isotropic.
Any anisotropies measured by observers today are there-
fore due to the propagation of photons through an aniso-
tropic space-time.

The temperature of the background radiation in a given
direction is determined by measuring the intensity of inci-
dent photons from this direction. Assuming the radiation to
be black-body radiation, the intensity will be given by a
Planck spectrum with a corresponding characteristic tem-
perature. It can be shown that the radiation field preserves
its black-body nature as it propagates freely through space
under the influence of a gravitational field [13]. At any later
time, the spectrum will still remain a Planck spectrum, but
with a different temperature.

In our specific case, the CMB temperature seen today by
an off-center observer is given by

 T�	� �
T�

1� z�	�
; (22)

where T� is the temperature at the last-scattering surface,
and 	 is the angle defined in Fig. 1. The average tempera-
ture T̂ measured by the observer is then

 T̂ 

1

4�

Z
d�T�	� �

T�
2

Z �

0
d	

sin	
1� z�	�

: (23)

According to measurements made by the COBE satellite
[14], this temperature is T̂ � 2:725. We can now use
Eqs. (22) and (23) to define an average redshift to the
last-scattering surface:

 1� z� 

T�
T̂
� 2

�Z �

0
d	

sin	
1� z�	�

�
�1
: (24)

The relative temperature variation measured by the ob-
server today will then be

 ��	� 

�T

T̂
�
T�	� � T̂

T̂
�
z� � z�	�
1� z�	�

: (25)

It is often more interesting to consider contributions at
different angular scales rather than the total anisotropy
itself. Such an analysis can be performed by decomposing
the temperature field in spherical harmonics Ylm:

 ��	� �
X
l;m

almYlm; (26)
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where the amplitudes in the expansion are recovered as

 alm �
Z 2�

0

Z �

0
�Y�lm sin	d	d�: (27)

These measure the level of anisotropy at different angular
scales, with larger l values corresponding to smaller scales.
Since the relative temperature field does not depend on the
azimuth angle �, all the alm will vanish, except those with
m � 0.

The observed dipole in the CMB is of the order ja10j �
10�3. This will put a natural constraint on how far away
from the origin the observer can be located, since a farther
off-center position usually means a larger dipole.

IV. NUMERICAL RESULTS

Following Ref. [1] we will consider LTB models where
the inhomogeneity is an underdense bubble with a flat and
homogeneous space-time outside. We will consider two
specific models of this type corresponding to two different

choices of the functions ��r� and ��r� in Eqs. (2) and (3).
We will refer to these as model I and model II. We parame-
trize these function in the same way as in [1], i.e. we write

 ��r� � H2
0r

3

�
�0 � ��

�
1

2
�

1

2
tanh

r� r0

2�r

��
; (28)

 ��r� � H2
0r

2

�
�0 � ��

�
1

2
�

1

2
tanh

r� r0

2�r

��
; (29)

which corresponds to a smooth interpolation between two
homogeneous regions (i.e. a spherical bubble in an other-
wise homogeneous universe). The parameter H0 �
100hout km s�1 Mpc�1 is the Hubble constant of the outer
homogeneous region today, while �0 and �0 � 1� �0 are
the relative densities of matter and curvature in this region.
Further, �� � ��� determines the difference in matter
density between the regions, while r0 and �r specify the
position and width of the transition.

In our previous work [1], we assumed that the observer
was positioned at the center of the bubble, and found a
model that gave a good agreement with the Hubble dia-
gram of observed SNIa and the position of the first CMB
peak. Model I is identical to this model, while model II is
slightly different. The matter distribution today for these
models is plotted in Fig. 2, where we have used the
generalized matter density defined in [1]. Various other
properties of these are listed in Table I. One notable
difference between these two models is that the transition
from the underdensity to the homogeneous region is much
sharper in the second model. Note that the physical values
given in the table are found assuming that the observer is
placed at the center. The shift parameter S is defined in [1],
and is simply the shift of the first peak in the CMB power
spectrum relative to the concordance �CDM model. As we
can see, both models yield a very good fit to both SNIa and
the first CMB peak.

Figures 3 and 4 show the solutions of the geodesic
equations for two off-center observers in the two models,
with the observers located 20 Mpc and 200 Mpc from the
center. The blue lines show the photon paths in the metric
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FIG. 2 (color online). The matter density today as a function of
physical distance for the two models considered.

TABLE I. The parameters and features of two inhomogeneous models, with the observer
placed at the center. Note that d0 and �d are physical distances corresponding to r0 and �r.

Description Symbol Model I Model II

Density contrast parameter �� 0.90 0.78
Transition point [Gpc] d0 1.34 1.68
Transition width �d=d0 0.40 0.03
Fit to supernovae �2

SN 176.2 177.8
Position of first CMB peak S 1.006 1.002
Age of the universe [Gyr] t0 12.8 12.7
Relative density at the center �m;in 0.20 0.25
Relative density outside underdensity �m;out 1.00 1.00
Hubble parameter at the center hin 0.65 0.63
Hubble parameter outside underdensity hout 0.51 0.51
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�r; �� space, while the red circles are the positions of
incoming photons at evenly spaced points in (cosmic)
time. The distortion of light paths is clearly visible on
the bottom plot of Fig. 4, in which the observer is placed
relatively far from the center of the inhomogeneity and the
density gradient is large at the transition.

In our calculations, recombination is assumed to occur at
t � 0 and today (t0) is defined to be the time when the
redshift of photons emitted at t � 0 reaches z� ’ 1100.
(The exact value of z� depends on the matter density out-
side the bubble, and a fitting formula is given in [15]).

As discussed in the previous section, an off-center ob-
server will measure a temperature anisotropy due to the
nonsymmetric paths traversed by CMB photons in differ-
ent direction in the sky. Using Eqs. (26) and (27), we can
now calculate the temperature multipoles seen by such an
observer. As an example, a plot of the multipoles can be
seen in Fig. 5 for an observer who is located 200 Mpc from
the center in model I.

In Fig. 6, the coefficients al0 for the dipole (l � 1),
quadrupole (l � 2) and octopole (l � 3) are plotted as

 

r cosθ

r 
si

n
θ

r cosθ

r 
si

n
θ

FIG. 3 (color online). Model I: Photon paths converging on the
observer located 20 Mpc (top) and 200 Mpc (bottom) from the
center. The red cross marks the center of the underdensity, while
the red circles show positions that are evenly spaced in cosmic
time with a separation of 1 Gyr.

 

r cosθ

r 
si

n
θ

r cosθ

r 
si

n θ

FIG. 4 (color online). Model II: Photon paths converging on
the observer located 20 Mpc (top) and 200 Mpc (bottom) from
the center. The red cross marks the center of the underdensity,
while the red circles show positions that are evenly spaced in
cosmic time with a separation of 1 Gyr.
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functions of the observer’s position in model I. The most
striking feature of these plots is that the quadru- and octo-
poles are very small compared to the dipole. If we assume
that the induced dipole must be smaller than 10�3, the

induced quadrupole is less than 10�7 while the induced
octopole is smaller than 10�9.

In Fig. 7, the al0’s of model II are plotted as functions of
the observer’s position. It is evident that the behavior is

 

FIG. 5 (color online). Temperature anisotropy in galactic coordinates seen by an observer 200 Mpc from the center of model I,
oriented so that the induced dipole coincides with the direction of the dipole seen by the COBE satellite [14]. The top plot to the left
shows the temperature map, which is completely dominated by the dipole. Then follow plots with the dipole, quadrupole and octopole
removed, successively.
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FIG. 6 (color online). The al0 as a function of the observer’s position, in model I. The dotted lines are linear, quadratic and cubic fits,
respectively.
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almost indistinguishable from that of model I, except for
the largest distances where the transition from underden-
sity to flat space is starting to show in the first model.

V. DISCUSSION

The main purpose of this paper has been to determine
the maximum displacement of the observer from the origin
of the underdensity, for which the induced CMB dipole
remains in agreement with the results observed by COBE
[2]. Of course, one could in principle introduce an addi-
tional peculiar velocity towards the center of the under-
density to compensate for a too large induced dipole, but
such a coincidence would be very difficult to justify.
Therefore, we must require the induced a10 to be of order
10�3 or less, which from the plots in Figs. 6 and 7 can be
translated to

 dobs & 15 Mpc; (30)

where d is the physical distance. When compared to the
size of the underdensity, which according to Fig. 2 is
around 1500 Mpc, this means that if we are placed at a
random position inside the bubble, there is roughly a
chance of 1 to 106 that we end up inside the region allowed
by Eq. (30). This is a rather strong violation of the
Copernican principle, which states that we are not situated
at a special place in the universe. On the other hand, a 10�6

probability is still much better than the infinitely improb-
able case of the observer being exactly at the center of the
underdensity. Note that the size of the underdensity is

dictated by the fit to the CMB and SNIa data. We have
not been able to find smaller bubbles that fit these data as
well as the models considered here.

From Figs. 6 and 7 we see that the induced multipoles
become larger the farther away from the origin the ob-
server is located, as we would expect. Thus, the largest
possible quadru- and octopoles with a dipole compatible
with COBE measurements are those for an observer about
15 Mpc from the origin. However, at this relatively small
distance, the values for these are of the order 10�7 for the
quadrupole, and 10�9 for the octopole. It is therefore clear
that the induced quadru- and octopole cannot explain the
observed alignment of the low-l multipoles in the CMB,
since their contributions are negligible compared to the
observed anisotropies (which are of order 10�5). Fur-
thermore, any off-center placement must necessarily result
in axial symmetric contributions to the CMB spectrum.
Even if such contributions were of the correct order, Rakić
et al. [16] show that they are very unlikely to explain the
alignment.

The smallness of the induced multipoles can be under-
stood from a simplified Newtonian picture. Compared to
the homogeneous case with a spatially constant Hubble
parameter hout, the observer at dobs has a ‘‘peculiar veloc-
ity’’ of roughly

 � �
vp
c
�
hin � hout

3000 Mpc
dobs (31)

with respect to the origin. In such a picture, the temperature
anisotropies measured by the observer are attributed to a
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FIG. 7 (color online). The al0 as a function of the observer’s position, in model II. The dotted lines are linear, quadratic and cubic fits,
respectively.
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Doppler shift of the CMB photons due to his motion. The
change in frequency can then be written as [17]

 

�o
�e
�

���������������
1� �2

p
1� � cos	

; (32)

where �o is the frequency measured by the observer, and �e
is the frequency relative to a stationary background. The
temperature shift associated with this frequency shift of the
CMB photons is

 

To
Te
�

���������������
1� �2

p
1� � cos	

: (33)

The average background temperature measured by the
observer will then be

 T̂ o �
1

4�

Z
d�To�	� �

Te
2

���������������
1� �2

p
�

ln
�
1� �
1� �

�
: (34)

Thus, the temperature anisotropy can be written as

 ��	� �
�T�	�

T̂o
�

2

ln�1��1���

�
1� � cos	

� 1: (35)

Using Eq. (27), the multipoles can now be calculated in
terms of the velocity of the observer. We find that the
leading contribution to al0 is �l,

 al0 � �
l � dlobs: (36)

Thus, using this simplified Newtonian picture, we expect
the dipole to scale linearly, the quadrupole quadratically,
and the octopole cubically with the observers position. In
Figs. 6 and 7 we have plotted the real dependence of these
multipoles on the observers position along with a best-fit
dlobs dependence. As we see, the Newtonian picture gives a
very good description. The expressions for the three lowest
multipoles to the lowest order in � is

 a10 �

�������
4�
3

s
hin � hout

3000 Mpc
dobs; (37)

 a20 �

���������
16�
45

s �
hin � hout

3000 Mpc

�
2
d2

obs; (38)

 a30 �

���������
16�
175

s �
hin � hout

3000 Mpc

�
3
d3

obs: (39)

Numerically, this approximation yields a10 � 1:4� 10�3,
a20 � 5:2� 10�7 and a30 � 1:2� 10�9 for an observer
at dobs � 15 Mpc in model I, whereas the exact values
are a10 � 1:4� 10�3, a20 � 2:3� 10�7, and a30 � 1:3�
10�9 respectively.

Equations (37)–(39) imply that it is impossible to obtain
sufficiently large values for the quadru- and octopole as

long as the dipole is within the limits set by the COBE data.
Note, however, that Tomita [18] has previously found
relatively large values for the quadrupole in more simpli-
fied bubble models (where two homogeneous regions are
separated by a massive comoving shell). It is unclear to us
why the Newtonian approach fails for his models. We have
attempted to reproduce his results by introducing very
narrow transition regions in our continuous model, but
the results we get for the multipoles are of the same order
as those quoted above. We therefore expect Eq. (36) to be
roughly correct for all models of our type.

In our analysis so far we have only considered contri-
butions to the multipoles from the off-center placement.
There will of course be additional contributions from
various sources such as the intrinsic primordial tempera-
ture anisotropies, the integrated Sachs-Wolfe (ISW) effect
[19] and a nonvanishing peculiar velocity of the observer.
We have seen that when the dipole is constrained by data,
the quadru- and octopoles due to the off-center placement
are considerably weaker than those observed in the CMB.
A possible way to obtain stronger quadru- and dipoles is to
place the observer farther away from the center, while
allowing one or more of the effects mentioned above to
cancel out the excessive contribution to the dipole.

However, concerning the first two effects, it is clear that
neither of these can achieve such cancellation. Although
there is no way of measuring directly the intrinsic dipole, it
is reasonable to assume that it is of the same order as the
neighboring multipoles, which are of order 10�5 Similarly,
we expect the contribution to the dipole from the ISW
effect to be of the same order as for the quadru- and
octopole. Therefore, it is very unlikely that these effects
are responsible for a chance cancellation of an excessive
contribution to the dipole from the off-center placement.

A nonvanishing peculiar velocity can reduce the dipole
to any desired value as long as the velocity is chosen large
enough. However, multipoles due to such motion will have
a hierarchical scaling similar to that which we showed in
the Newtonian case. Thus, even if we manage to obtain
values for the dipole and quadrupole of the correct order,
the octopole would still be too weak. From this we can
conclude that even when combined with other effects, the
off-center placement cannot provide sufficient power to
both the quadru- and octopole.

In summary, LTB models like the ones listed in Table I
are not ruled out on the basis of these results, but they do
require a violation of the Copernican principle, since the
observer would have to be located at a very special place.
The volume within which the observer can be located is
severely constrained by the size of the dipole induced by an
off-center placement of the observer. As a consequence of
this, the quadru- and octopole turn out to have insufficient
power to explain the observed alignment. However, the
LTB models remain an exotic alternative to dark energy as
an explanation of the apparent accelerated expansion of the
universe.
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