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We consider the weak lensing effect induced by linear cosmological perturbations on the cosmic
microwave background (CMB) polarization anisotropies. We find that the amplitude of the lensing peak in
the BB mode power spectrum is a faithful tracer of the dark energy dynamics at the onset of cosmic
acceleration. This is due to two reasons. First, the lensing power is nonzero only at intermediate redshifts
between the observer and the source, keeping record of the linear perturbation growth rate at the
corresponding epoch. Second, the BB lensing signal is expected to dominate over the other sources.
The lensing distortion on the TT and EE spectra do exhibit a similar dependence on the dark energy
dynamics, although those are dominated by primary anisotropies. We investigate and quantify the effect
by means of exact tracking quintessence models, as well as parameterizing the dark energy equation of
state in terms of the present value (w0) and its asymptotic value in the past (w1); in the interval allowed by
the present constraints on dark energy, the variation of w1 induces a significant change in the BB mode
lensing amplitude. A Fisher matrix analysis, under conservative assumptions concerning the increase of
the sample variance due to the lensing non-Gaussian statistics, shows that a precision of order 10% on both
w0 and w1 is achievable by the future experiments probing a large sky area with angular resolution and
sensitivity appropriate to detect the lensing effect on the CMB angular power spectrum; the forecast
precision reaches a few percent for highly dynamic models whose dark energy abundance at the epoch
when lensing is most effective is sensibly larger than the present one, i.e. for w1 * �0:5. These results
show that the CMB can probe the differential redshift behavior of the dark energy equation of state,
beyond its average.
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I. INTRODUCTION

One of the most challenging issues in modern cosmol-
ogy is the comprehension of the nature of the dark energy,
the unknown component representing about 70% of the
cosmological critical density today, responsible for a late
phase of acceleration in the cosmic expansion (see [1,2]
and references therein).

The first report on the evidence of cosmic acceleration
was due to the magnitude-redshift relation inferred by
type Ia supernovae [3,4]; the cosmic microwave back-
ground (CMB) experiments, combined with the data on
large-scale structure, confirmed and strengthened that re-
sult (see [5] and references therein).

The simplest interpretation for the acceleration can be
given in terms of a Cosmological Constant, leading how-
ever to serious theoretical problems concerning its magni-
tude. In fact, its energy scale is required to be 123 orders of
magnitude lower than the Planck energy, possibly the only
one relevant in the very early universe; and its value has to
be such to render it comparable with the matter density at
the present epoch. These issues are known as fine-tuning
and coincidence, respectively, (see e.g. [2]).

The concept of dark energy generalizes the
Cosmological Constant, allowing dynamics of the equation
of state and fluctuations of the dark energy component, in
the attempt to alleviate these tweaking problems and to find
clues to unveil the physical mechanism giving rise to the
acceleration.

This is the case of the Quintessence, a self-interacting
scalar field evolving according to different potential ener-
gies. For reference, the potentials which have been studied
extensively in the literature are characterized by an expo-
nential shape [6], inverse power law [7], or a combination
of those [8], and have been suggested in the context of
particle physics beyond the standard model.

The present measurements are consistent with the
Cosmological Constant case, w � �1 [9], with a precision
of about 10%. However, these observations do not have the
capability to address the dynamics of the dark energy yet:
the corresponding constraints either concern models where
the dark energy is constant, or may be interpreted as
constraints on the redshift average of the equation of state.

Most dark energy models, including the ones quoted
above, may account for a present equation of state close
to the Cosmological Constant case, but have a significantly
different evolution at the epoch of equality between dark
matter and energy, occurring at redshift z ’ 0:5. Therefore,
on the basis of the Cosmological Constant problems, and
having no other theoretical clue about the nature of the
dark energy, it is clearly crucial to investigate its behavior
at the onset of acceleration, where the models most differ.

The dark energy dynamics is and will be probed in the
first place by the same observables which gave evidence
for cosmic acceleration. The latest measurements of
type Ia supernovae measurements are from space, from
the Hubble Space Telescope (HST), reaching a redshift of
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about 0.5 [10]. With appropriate experimental resources,
the type Ia supernovae measurements may get farther in
redshift, collecting data from events occurred before the
onset of acceleration, up to a maximum redshift between
1.5 and 2, thus probing the whole redshift interval where
the dark energy is relevant [11]. At the same time, the
combination of CMB and large-scale structure probes the
dark energy, through the modified history of structure
formation. The local large-scale structure is probed di-
rectly by the spatial distribution of galaxies. Indications
on the cosmological structures at higher redshifts come
from the distribution of the Ly� clouds [12]. The imprints
of the baryon acoustic oscillations in the dark matter
distribution have been observed [13]. In addition, the
CMB undergoes a geometrical shift of the acoustic peak
locations in the angular domain, because of the modified
distance to the last scattering resulting from the change in
the expansion rate. The 2dF survey [14] and Sloan Digital
Sky Survey (SDSS, see [15] and references therein), and
the CMB experiments culminating with the Wilkinson
Microwave Anisotropy (WMAP, see [5] and references
therein) contributed to set the quoted constraint on the
dark energy equation of state [9]. On the other hand, as
we stressed above, almost all those observables with the
only exception perhaps of the baryon acoustic oscillations,
rely on a line of sight integral of the light rays, picking up
comparable contributions at all epochs from emission
through observation; for those observables, the redshift
behavior of the dark energy is averaged, and, in particular,
markedly influenced by the expansion at recent epochs,
where the observations require the dark energy to be close
to a Cosmological Constant. In particular, the large-scale
structure survey data are mostly determined by nearby
structures, only extending up to a redshift of about 0.1,
while the CMB projection effect is dominated by the effect
of the dark energy when it is most relevant, i.e. at the
present. Therefore it is also important to study observables
capable to pick up the dark energy abundance at the onset
of acceleration. The lensing effect is a unique tool for this
purpose, and is the subject of the present work. The reason
is an elementary geometric property of lensing, yielding a
null cross section if the lens position coincides with the
observer or the source, thus probing intermediate regions
only (see [16] for reviews).

The weak lensing in cosmology, i.e. the large-scale shear
injected on the background light by forming cosmological
structures, is one of the most promising observables for
future studies on dark matter and energy; a great effort is
directed towards the study of the ellipticity induced by
weak lensing on distant galaxies in the optical band, and
how that is sensitive to the dark energy properties and other
cosmological parameters. In principle, by measuring the
weak lensing shear induced on shells of galaxies at differ-
ent redshifts, either statistically or looking at the lensing
induced by one single large structure, one has information

on the redshift evolution of the dark energy abundance,
which is equivalent to the knowledge of the equation of
state dynamics [17–19]. In this perspective, a large experi-
mental effort is ongoing; see [20] for reviews on the exist-
ing observations and future projects, [21–23] for parameter
forecasts, also in connection with the constraints expected
from other cosmological probes.

In particular, if the source can be considered at infinity
the lensing cross section is nonzero at redshifts roughly
between 0.1 and 10, peaking at z ’ 1, rather independently
of the particular cosmological model considered, and thus
most relevant to study the universe at the corresponding
epoch. This is the case of this work, where we consider the
lensing of the CMB [24–28]. The relevance of CMB
lensing as a tool for constraining the dark energy has
been investigated for what concerns the statistics of order
higher than the second for the anisotropies in total intensity
[29,30]. Indeed, even if the primordial CMB anisotropies
obey a perfect Gaussian distribution, after lensing their
statistics is modified as a result of the correlation among
different scales induced by the lensing itself, in total in-
tensity and polarization. Such effect appears already at the
level of anisotropies in the total intensity, which represent
the strongest component, and that is the reason why it has
been studied so far mainly in that respect. As the present
subject concerns the CMB lensing and is therefore related
to that, we return on this issue in the concluding remarks.

Here we focus on a different domain where the lensing is
relevant for CMB, and precisely the anisotropy angular
power spectrum, in particular, for the curl or BB compo-
nent in the CMB polarization signal. The lensing redistrib-
utes the primordial power and correlates different scales; as
a result, the acoustic peaks in the total intensity (TT),
gradient (EE) components of the CMB polarization and
their correlation (TE) are smoothed, and some power is
transferred from such scales to the damping tail. Moreover,
a central aspect of the present work is that the gradient
component of CMB polarization leaks into the BB modes,
causing a broad peak centered on the angular scales of a
few arcminutes, roughly corresponding to a multipole l ’
1000. Although the lowest expected contribution to the
CMB anisotropies, this observable is entirely caused by
lensing, and basically unbiased by primordial power; a
contamination due to primordial gravitational waves may
arise on larger angular scales, multipoles of about 100,
where however the lensing signal is rapidly decreasing
approaching the superhorizon regime. Furthermore, as we
stated already, the lensing is a non-Gaussian process, cor-
relating cosmological perturbations on different angular
scales, while the primordial tensor power is expected to
be close to Gaussianity. This difference might be crucial to
deconvolve the two patterns [31]. The non-Gaussian dis-
tribution of lensing has an impact already at the level of the
variance in the angular power spectrum of the BB modes,
which is currently under investigation [32–34].
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Therefore, since the lensing cross section is nonzero at
intermediate redshifts only, as specified above, we do
expect some relevance in studying this effect for investi-
gating the dark energy at nonzero redshifts;, in particular,
being the BB power on the arcminute scale caused by
lensing only, this relevance should be directly reflected
by the behavior of that component. An analogous study,
pointing out the lensing cross section redshift distribution
and focusing on the high redshift dark energy behavior, has
been performed considering the CMB third order statistics
in total intensity anisotropies [29].

Our treatment is based on a previous work [35], casting
the cosmological weak lensing theory in the context of
scalar field dark energy models with arbitrary kinetic and
potential forms in the fundamental Lagrangian, and also
coupling arbitrarily to the Ricci scalar. The aim of that
work was to embrace the most general scalar field dark
energy models, including as a particular case the minimally
coupled, purely self-interacting Quintessence, which is the
scenario upon which this work is based. In section II we
recall the relevant issues concerning the lensing computa-
tion in dark energy cosmologies. In Sec. III we derive and
discuss the lensed CMB power spectra and their depen-
dence on the dynamical dark energy properties. In Sec. IV
we evaluate the impact on a parametric analysis of CMB
data. Finally, in Sec. V we draw our conclusions.

II. WEAK LENSING AND DARK ENERGY

In this section we describe the cosmological models we
consider throughout this paper, and we outline the physics
of lensing on the CMB total intensity and polarization
anisotropies; for more details, see [35] and references
therein. We focus on the modifications to the Boltzmann
codes which numerically evolve cosmological perturba-
tions required in order to take into account the effects of
lensing in scalar field dark energy cosmologies.

A. Dark energy cosmology

In this paper we will consider the tracking Quintessence
scenarios, where the dark energy is described through a
scalar field � (see e.g. [2]). The associated action is of the
form:

 S �
Z
d4x

�������
�g
p

�

�
1

2�
R��;��;�

1

2
� V��� �Lfluid

�
:

(1)

We chose two representative models where the equation of
state has a mild and violent redshift behavior, respectively,
for the inverse power law potentials, (IPL [7]) and those
inspired by supergravity theories (SUGRA [8]):

 V��� �
M4��

�� ; V��� �
�
M4��

��

�
e4�G�2

: (2)

These scalar field dark energy models are implemented and

integrated exactly, also considering Quintessence fluctua-
tions, using DEfast, a modification of the Boltzmann code
for numerical integration of cosmological background and
linear perturbations based on the version 4.0 of CMBfast
[36], which has been used in several papers, see [37–39]
and references therein.

For what concerns the background evolution, a variety
of models including the ones above are well described by
essentially two parameters: those are the present value w0

of the equation of state and its first derivative with respect
to the scale factor a, �wa [40,41]. In this framework, the
evolution of the equation of state with the scale factor can
be written as

 w�a� � w0 � wa�1� a� � w1 � �w0 � w1�a; (3)

where w1 is the asymptotic value of w in the past. We will
exploit the parameterization above in Sec. IV, in order to
evaluate the precision achievable on the measure of w0 and
w1 from the CMB total intensity and polarization angular
power spectra.

B. Weak lensing and Boltzmann numerical codes in
cosmology

The effect of gravitational lensing on the CMB spectra
had been first introduced in the CMBfast code by
Zaldarriaga and Seljak [28] for Cold Dark Matter (CDM)
cosmologies including a Cosmological Constant (�CDM).
In their formalism the effect on the correlation functions
can be understood as the convolution of the unlensed
spectra with a Gaussian filter determined by the lensing
potential [16]. The expression for the lensing potential has
to be generalized in scalar-tensor cosmologies because of
the presence of anisotropic stress already at a linear level
[35]. In the present scenario, however, this is not required
and the structure of the quantities relevant for computing
the lensing effect is formally unchanged. Therefore, fol-
lowing the notation of the original paper [28], and showing
for simplicity the TT case only, the anisotropy correlation
between directions � and �0, deflected by �� and ��0,
respectively, and separated by an angle � is expanded in
the harmonic space exploiting the flat sky approximation,
taking the form

 CTT��� �
Z d2l

�2��2
eil� cos�lheil�������

0�iC eTTl
(4)

where the expectation value in the above equation repre-
sents the ensemble average and is expressed as

 heil�������
0�i � e��l

2=2���2
0����cos�2�l��2

2����; (5)

and the quantities �2
0��� and �2

2��� are given by
 

�2
0��� � 16�2

Z 	rec

0
W2�	; 	rec�d	

Z 1
0
k3dk

� P��k; 
 � 
0 � 	��1� J0�k�	��; (6)
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and
 

�2
2��� � 16�2

Z 	rec

0
W2�	; 	rec�d	

Z 1
0
k3dk

� P��k; 
 � 
0 � 	�J2�k�	�: (7)

Here k is the wavenumber, Jl is the Bessel function of order
l, 	 is the comoving radial distance, 
 is the cosmological
conformal time, P� is the power spectrum of the gravita-
tional potential, and W is a function accounting for the
cosmic curvature, which amounts to 1� 	=	rec for a flat
universe. In �CDM cosmologies and most of the numeri-
cal codes dealing with them, including CMBfast, the quan-
tities appearing in the above equations may be computed
independently of the main routine which performs the
integration of the hierarchical Boltzmann equations. This
can be done because the power spectrum of matter density
perturbations �m can be factorized in two terms, depend-
ing, respectively, only on the wavenumber and the redshift:

 P�m
�k; 	� � Akn � T2�k; 0�g2�	�: (8)

Akn here represents the primordial power, T is the transfer
function of density perturbations taking into account the
evolution on subhorizon scales, and g is the perturbation
linear growth factor. However, this separation is only con-
venient if one is provided with a satisfactory analytical fit
of the growth of perturbations, which is not the case unless
we ignore the influence of Quintessence perturbations,
which do make a non-negligible effect on large scales
[42]. To account for these changes, we evaluate numeri-
cally the gauge invariant expression of density perturba-
tions from all fluctuating components � [43]. This quantity
is computed and saved while the main routine performs the
integration of the hierarchical Boltzmann equations, and
used later for the numerical integration of the quantities (6)
and (7), which include all fluctuating components.

A separate issue concerns the normalization constant A
above when lensing is taken into account. The lensed
perturbation spectra no longer depend linearly on the pri-
mordial normalization, since the lensing is a second order
effect, being sourced by cosmological structures and acting
on CMB anisotropies. Consequently, the description of the
primordial anisotropy power has to be treated appropri-
ately to take into account this occurrence; we modified our
Boltzmann code in order to require the primordial normal-
ization as an input, which is among the cosmological
parameters to be constrained in Sec. IV.

This is different from the procedure followed in Sec. III,
where we investigate phenomenologically the impact of
lensing on the CMB angular power spectra as a function of
the dark energy parametrization given above. The remain-
ing parameters will be tuned to a fiducial value, in order to
highlight differences and behavior induced exclusively by
the variation of the underlying dark energy model;, in
particular, for the purposes of this Section only, the scenar-
ios under examination are set to have the same amplitude

of the primordial perturbations. An equivalent parametri-
zation of the strength of primordial perturbations might be
given with reference to the present epoch, usually by
means of the variance evaluated on a scale of 8h�1 Mpc,
�8; we choose the parametrization in terms of the primor-
dial amplitude for numerical convenience, and we verify
that the relevance of the effects we find does not depend on
this choice.

III. LENSED CMB POLARIZATION POWER
SPECTRA

We consider the two dark energy models discussed in the
previous Section, as they well represent the different dy-
namics that the dark energy might have. We study the
behavior of the relevant lensing quantities, showing results
for the corresponding lensed CMB power spectra. In par-
ticular, we focus on the effect induced by the dark energy
behavior at the epoch when the lensing power injection is
effective. We give a qualitative description of how the
lensing peak breaks the degeneracy between w0 and w1
affecting the TT, TE and EE spectra, described later in
detail.

Both the SUGRA and the IPL models are characterized
by two parameters, the index of the power law �, and the
mass of the field M. As it is well known [44,45] they both
admit attractor trajectories for the field dynamics in the
early universe, known as tracking solutions. These are
characterized by a relative independence of the field dy-
namics on its mass. The relevant parameter ruling the
motion of the field is �, which in our example is set,
respectively, as �2:21 and �0:34 for the SUGRA and
IPL models. On the other hand, the mass sets the normal-
ization of the dark energy density along the trajectory,
being therefore crucial to achieve acceleration today, and
must be set accordingly.

First of all we want to discuss qualitatively the effects on
the corresponding background evolution, where we expect
to see the most relevant differences between the two mod-
els; the key point of the comparison is the behavior of the
dark energy component, which will characterize the scal-
ing of the expansion factor. We consider models where the
present equation of state of the dark energy is w0 � �0:9,
consistently with the present constraints [9]. The redshift
evolution of w�z� is shown in Fig. 1, showing that while in
the IPL model it is mildly departing from its present value
at high redshifts, in the SUGRA one it rapidly gets to
higher values. The different behavior of the dark energy
density affects of course directly H2, which is also plotted
relatively to the two models in the figure; the difference
peaks between redshift 1 and 2, and then quickly decreases,
due to the increasing matter dominance. The remaining
cosmological parameters are chosen accordingly to the
concordance �CDM model, listed in the first column of
Table I.
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Since in the SUGRA model the dark energy keeps being
relevant at higher redshifts with respect to the IPL case, the
inhibition of structure formation starts earlier (see [46] and
references therein); thus, for a fixed primordial normaliza-
tion, we expect two effects. The first is a smaller lensing
signal in the SUGRA case, where clustering suppression
starts earlier. The second is that the redshift interval where
the lensing signal picks up its power, formally defined here

below, is shifted towards earlier epochs, as a consequence
of the structure formation process occurring at higher red-
shifts following the earlier dark energy dominance.

These features can be verified analyzing the redshift
behavior of the function which appears in the integral
defining �0���; we choose a reference value of the angle,
say �0 � 4 � 10�3 radians, corresponding roughly to the
middle of the range suitable for CMB computations. We
consider the function k��0; z�, which gives �2

0 in (6) when
integrated over z, assuming an unitary power spectrum for
the gravitational potential fluctuations. We call the result-
ing quantity the lensing kernel; its dimensions are the
inverse of a volume, and it gives a measure of the redshift
distribution of the lensing effect coming from the back-
ground cosmological expansion. The result is shown in
Fig. 2. Both our expectations are verified; note how the
two cosmological models, although having the same values
of all cosmological parameters today, differ substantially
(30%) at the peak entirely because of the behavior of the
dark energy equation of state. The corresponding behavior
for the function giving �2

2 when integrated over z, eval-
uated on the same scale and using an unitary power spec-
trum, is qualitatively similar; indeed, the relevant quantity
is W2 � �1� 	=	rec�

2, appearing multiplied by functions
vanishing at present in the integral of both (6) and (7).

Let us now turn to analyze the impact of the different
perturbation growth rate, influencing �0��� and �2���
through the power spectrum of the gravitational potential.
It is convenient to plot the linear growth factor, g�
�, for the
two models at a fixed wavenumber; the behavior is quali-
tatively the same for any �. The result is shown in Fig. 3.
The phenomenology is the following. In the matter domi-
nated era, say at redshifts between 1000 and a few in the
figure, g has the well known scaling as a � 1=�1� z�. At
the onset of acceleration, its growth is inhibited and even-
tually it starts to decrease. As expected, this effect is
stronger in the SUGRA case, as dark energy dominance
takes place earlier. We also notice that the relation between
the curves in Fig. 3 is similar to the ones in 2: the case of
SUGRA has less power with respect to the IPL. This brings
us to fix the quantity which matters here, i.e. causing the
differences we just discussed. That is simply the dark

TABLE I. Results from the Fisher matrix analysis for the four models.

�CDM IPL SUGRA1 SUGRA2
value �Fisher value �Fisher value �Fisher value �Fisher

w0 �1 0.12 �0:9 9:7	 10�2 �0:9 6:1	 10�2 �0:82 3:5	 10�2

w1 �1 0.27 �0:8 0.19 �0:4 6:9	 10�2 �0:24 1:9	 10�2

�Bh2 0.022 5:7	 10�5 0.022 6:0	 10�5 0.022 5:7	 10�5 0.022 5:9	 10�5

�Ch
2 0.12 7:0	 10�4 0.12 7:3	 10�4 0.12 6:6	 10�4 0.12 5:0	 10�4

h 0.72 5:0	 10�2 0.72 4:5	 10�2 0.72 2:9	 10�2 0.72 1:5	 10�2

nS 0.96 2:1	 10�3 0.96 2:2	 10�3 0.96 2:1	 10�3 0.96 2:0	 10�3


 0.11 3:1	 10�3 0.11 3:0	 10�3 0.11 3:1	 10�3 0.11 3:2	 10�3

A 1.0 5:6	 10�3 1.0 5:5	 10�3 1.0 5:5	 10�3 1.0 5:6	 10�3

FIG. 1. Top: evolution of the equation of state of dark energy
for the SUGRA (dashed line) and IPL (solid line) models.
Bottom: ratio of H2 in the two models as a function of redshift.
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energy abundance at the epoch in which lensing injects its
power, corresponding to the interval outlined by the lens-
ing kernel in Fig. 2. Indeed, the latter as well as the
perturbation growth rate are determined by the Hubble
expansion rate, which contains the dark energy through
the Friedmann equation. The higher is the dark energy, the
higher H, causing an higher suppression of perturbations,
Fig. 3, as well as modified geometry, Fig. 2. Unfortunately,
there is no unique parameter fixing the dark energy abun-
dance at a given redshift, which is determined in general by
the present abundance and w�z�; in our parametrization,
usually the most relevant parameter is w1, specifying the
dark energy density redshift behavior at high redshifts, but
only approximately in models where w1 is sensibly larger
than w0. On the other hand, the improvement from having
the lensing effect in the CMB analysis is evident keeping
the parametrization we have exploited so far, as we show in

the following. As a final remark of this part of the dis-
cussion, we notice that the combination of the two effects
of background evolution and perturbations growth contrib-
uting to the expressions of �0 and �2 is indeed large. We
thus expect a significant dependence of the amplitude of
CMB lensing power upon the dark energy equation of state
value in the redshift interval which is relevant for lensing,
i.e. the one outlined by the lensing kernel in Fig. 2.

On the basis of the issues outlined above, it is crucial to
fix CMB observables purely sourced by gravitational lens-
ing. The BB modes in the CMB represent an almost ideal
candidate for this, since the lensing dominates their power
on subdegree angular scales. In the following we give a
qualitative illustration of their relevance, leaving a more
quantitative discussion for the next Section.

The TT, TE and EE CMB spectra are dominated by
primary anisotropies, imprinted at last scattering, where
in most models the dark energy is not yet effective. The
location of the acoustic peaks depends on the different
cosmological expansion histories, as a result of the modi-
fication in the comoving distance to last scattering dLS,
which is written as
 

dLS � H�1
0

Z zLS

0
dz��m�1� z�3

� �1��m�e
3
R
z

0
dz0��1�w�z0��=�1�z0����1=2: (9)

where H0 is the Hubble parameter, �m is the matter
abundance today relative to the critical density and the
contributions from radiation and curvature are neglected.
It does not come as a surprise that this quantity depends
very weakly on different forms of w�z�, since those are
washed out by two integrals in redshift; the latter occur-
rence gives rise to the so-called projection degeneracy of
CMB anisotropies. This simply comes from the fact that
dLS is the same for different combinations of parameters in
(9);, in particular, for a given set of those except the dark
energy equation of state, there is an entire set of curves
w�z� giving rise to the same dLS; in general, in all those
models the dark energy is negligible at decoupling, so that
the shape of acoustic peaks is also unchanged, making the
spectra in those models nearly identical, and therefore
degenerate. The Integrated Sachs-Wolfe effect (ISW) acts
on large scales only, responding to the change in the
cosmic equation of state; although promising results may
be obtained correlating the ISW with the large-scale struc-
ture data [47], from a pure CMB point of view the cosmic
variance represents a substantial limiting factor.

The BB phenomenology is utterly different. Here the
lensing is the only source of power on subdegree angular
scales, and the lensing cross section is largest at intermedi-
ate redshifts, say around z ’ 1 as Fig. 2 shows, where the
dark energy might differ significantly from a Cosmological
Constant, even for the same expansion rate today. The
lensed CMB power spectra are shown in Figs. 4–6. The
TT, TE and EE spectra undergo a projection effect due to

FIG. 3. Growth factor of the perturbations for a comoving
wavenumber k � 0:1 Mpc�1, for the SUGRA (dashed line)
and IPL (solid line) models. In the two models, g has the
same value at infinity.

FIG. 2. Lensing kernel for � � 4 � 10�3 rad, for the SUGRA
(dashed line) and IPL (solid line) models, having the same
equation of state today.
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the modified distance to last scattering, plus a lensing
distortion which is barely visible, as the curves are still
dominated by the primordial component of anisotropies.
On the other hand, the BB spectrum amplitude is markedly
affected by the different lensing process in the two models.
Indeed, as we discussed above, the BB peak directly traces
the perturbation growth rate and the background expansion
in the redshift interval visible in Fig. 2. For the cosmologi-
cal parameters at hand, the effect is of 20–30%, consis-
tently with the results in Figs. 2 and 3. We remark that the
Cls have been obtained with the same value of all cosmo-
logical parameters, including the primordial normaliza-
tion, and differ only in the value of the dark energy
equation of state at redshifts relevant for lensing. As we
explained above, that is equivalent to a different dark
energy abundance between the models considered at that
epoch, and therefore a different expansion rate, which
determines the strength of the lensing process. In order to
check that the magnitude of the effect we point out does not
depend on the normalization procedure adopted, in Fig. 7
we plot the BB lensing peak for the SUGRA and IPL

models, normalized to have the same �8 at present, which
is chosen to be 0.844. Correspondingly, the models need
now to start from a different primordial normalization, in
order to get the same present power, given their different
perturbation growth histories represented in Fig. 3. As it is
evident, the magnitude of the difference is comparable to
the one in Fig. 6, but the order of the curve is reversed. This
may be understood by looking again at Fig. 3; starting from
the same power at present, and going towards higher red-
shifts, in the SUGRA model perturbations are higher at any
epoch, determining the opposite behavior with respect to
Fig. 6. Thus, the fact that the lensing difference is compa-
rable in both cases makes us confident that the effect we
point out is not an artefact of the normalization procedure.

We now demonstrate how the lensing breaks the projec-
tion degeneracy mentioned above. For simplicity, here and
in the rest of this Section we adopt the simple parametri-
zation in terms of w0 and w1. Let us consider dark energy
models featuring the same value of dls in (9), with different
values of w0 and w1. The TT and BB spectra are shown in
Figs. 8 and 9, showing clearly the same pattern in the TT
acoustic peaks but markedly different BB amplitude, re-

FIG. 5. EE lensed power spectra for the SUGRA (dashed line)
and IPL (solid line) models.

FIG. 4. TT lensed power spectra for the SUGRA (dashed line)
and IPL (solid line) models.

FIG. 7. Lensed BB power spectra for the IPL and SUGRA
models, normalized to have the same �8 at present.

FIG. 6. BB lensed power spectra for the SUGRA (dashed line)
and IPL (solid line) models.
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flecting the enhanced dependence of the latter on w1. It is
appropriate here to make a connection with the issue out-
lined before of the relevance of the dark energy abundance
through H. The dark energy density at the epoch which is
relevant for lensing, see Fig. 2 again, follows an opposite
behavior with respect to the curves represented in the
figure: the lower the curve, the higher the value of the
expansion rate at the lensing relevant epoch leading to an
increasing suppression of the power, the higher the dark
energy density at the corresponding redshifts, which is
mainly influenced by w1 here, as the present dark energy
abundance is the same.

Finally, we wish to address an important point which
will be relevant in the next Section, i.e. the lensing dis-
tortion on the TT, TE and EE modes. Indeed, most of the
reasoning exposed in this Section, represented by the phe-
nomenology in Figs. 2 and 3, does not apply to the lensing
BB modes only, but to every effect coming from lensing. It
is therefore relevant to compare the lensing effect on non-

BB modes, too. This is done in Fig. 10, where we plot the
quantity �CXX�w1 � dw1� � C

XX�w1��=C
XX�w1�, where

XX stays for TT, EE and BB. Such quantity represents the
fractional change to the spectra induced by a different dark
energy abundance at the epoch in which the lensing is
active, see Fig. 2 again; the latter is determined entirely
by w1, as w0 is fixed to �1, and the present dark energy
abundance is the same. We perform a double-sided varia-
tion around the �CDM cosmology, so that w1 � �1, and
dw1�0:05. As it is evident, the changes have a comparable
order of magnitude for all the spectra, including the BB
one; remarkably, the latter is not oscillating around zero,
but possesses a definite sign. This is due to the absence of
sharp peaks and valleys in the spectrum, which in turn
comes from the lensing capability of correlating different
scales, smearing out the EE peaks which represent the
source for BB lensing modes. That may be a relevant
aspect for experiments looking at limited sky patches, for
which a binning procedure is required. The binning would
of course reduce the relevance of the lensing distortion on
the TT and TE, while the BB would remain substantially
unaffected.

In the next Section, we will evaluate the relevance of
considering the lensing effect for cosmological parameter
estimation.

IV. FISHER MATRIX ANALYSIS

Here we give a first quantitative evaluation of the benefit
that the knowledge of the lensing and, in particular, the BB
spectra has on the CMB capability of constraining the dark
energy dynamics. Our approach is based on a Fisher matrix
analysis, reviewed in Section IVA; in Sec. IV B we show
the results.

A. Method

In a CMB analysis involving the polarization power
spectra [48], the Fisher matrix takes the form

FIG. 9. Lensed BB power spectra for dark energy models with
w0 � �0:9, w1 � �0:4 (solid line), w0 � �0:965, w1 � �0:3
(dashed line), w0 � �0:8, w1 � �0:56 (dotted line).

FIG. 10. Relative lensing changes for the TT, EE and BB CMB
spectra, varying around a �CDM cosmology.

FIG. 8. Lensed TT power spectra for dark energy models with
w0 � �0:9, w1 � �0:4 (solid line), w0 � �0:965, w1 � �0:3
(dashed line), w0 � �0:8, w1 � �0:56 (dotted line).
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 F ij �
X
‘

X
XY

@CX‘
@�i
��‘�

�1
XY
@CY‘
@�j

; (10)

where X and Y are either TT, EE, TE or BB and �XY 


Cov�CX‘ C
Y
‘ � is the power spectra covariance matrix:

 �‘ �

�TT;TT
‘ �TT;EE

‘ �TT;TE
‘ 0

�TT;EE
‘ �EE;EE

‘ �EE;TE
‘ 0

�TT;TE
‘ �EE;TE

‘ �TE;TE
‘ 0

0 0 0 �BB;BB
‘

0BBBB@
1CCCCA: (11)

The terms in the power spectra covariance matrix are given
by
 

�xy;x0y0

‘ �
1

�2‘� 1�fsky�‘
��Cxy

0

‘ � N
xy0

‘ ��C
yx0

‘ � N
yx0

‘ �

� �Cxx
0

‘ � N
xx0
‘ ��C

yy0

‘ � N
yy0

‘ ��; (12)

where �x; y� � �T; E; B�. The noise covariance is given by
Nxy
‘ , which also contains the effect of the instrumental

beam, assumed Gaussian and circular. The inverse of the
Fisher matrix gives the uncertainty on the theoretical pa-
rameters:

 C ij 
 h��i��ji � F�1
ij : (13)

��i is the marginalized 1-� error on the ith parameter, and
is given by the square root of the diagonal elements of the
inverse of the Fisher matrix.

As a representative of the forthcoming CMB polariza-
tion probes capable to detect the BB spectrum we consider
a post-Planck all-sky experiment. We conservatively con-
sider a Gaussian beam with 7 arcminutes full width half
maximum, considering multipoles up to l � 1800. We
assume an instrumental error of 1 �K on the beam scale,
and cut the galactic plane assuming a sky fraction of 0.66.

A delicate issue in applying a Fisher matrix analysis to
the CMB lensing is represented by the non-Gaussianity of
the lensing effect, due to the correlation of cosmological
perturbations on different angular scales; the lensing sta-
tistics is being investigated, receiving increasing attention
in view of the incoming precision polarization experiments
[31–34,49].

In particular, Smith et al., [33] achieved a first quantifi-
cation of the increase in the covariance matrix due to the
non-Gaussian nature of the lensing signal in the BB modes,
giving a pipeline to estimate the resulting achievable
accuracy.

For our study their most relevant result is the behavior of
the so-called degradation factor, the ratio between the
squared sample covariance in the case of this non-
Gaussian signal and the corresponding Gaussian case.
This is shown to depend both on the instrumental error
(the degradation increases with the signal-to-noise ratio of
the experiment, as expected because the instrumental error

is close to Gaussian) and on the maximum available multi-
pole (again increasing with lmax, because of the stronger
effect of the correlation between neighboring band
powers).

According to their worst case scenario, we make a
conservative choice enlarging by a factor 10 the covariance
contribution to the BB spectrum in the covariance matrix
(12); this would correspond to an experiment with lmax �
2000 and �FWHM ’ 10.

Steps further in the issue of taking into account has been
made in [50], who suggested a way of taking into account
the non-Gaussian correlations of the lensed BB spectra,-
with special regard on the issue of degeneracies between
the dark energy parameters and the neutrino mass, and
most recently in [49,51]. These approaches go however
beyond the scope of the present paper, and may be consid-
ered in further work.

B. Marginalized errors on cosmological parameters

We analyze four cosmological models, corresponding to
a pure �CDM, and inverse power law, and two SUGRA
cases, specified by eight cosmological parameters, includ-
ing the two specifying the dark energy equation of state:

w0 present e.o.s. of dark energy
w1 asymptotic past e.o.s. of dark energy
h present value of Hubble parameter
�Bh

2 fractional baryon density 	h2

�Ch
2 fractional CDM density 	h2

AS primordial normalization parameter
nS perturbation spectral index

 reionization optical depth

All the cosmological parameters, are chosen consistently
with the current observations of CMB and large-scale
structure [9]; of course the dark energy equation of state
is allowed to depart from a �CDM case. We assume the
same values for the non-dark-energy parameters for all the
models. Their values are listed in Table I. As we specified
in the previous Section, in our numerical machinery the
normalization is performed through an input parameter
specifying the primordial power. For all the four reference
models we run DEfast with the in-built large-scale normal-
ization option (COBEnormalize), we correct in order to
reproduce the best fit of the combined datasets of WMAP
1st year, CBI and ACBAR (see [5] and references therein),
and we use these four numbers as the reference primordial
amplitudes for each model. The parameter AS is the ratio of
the primordial amplitude with respect to the latter; this is
done for notational convenience since the units of DEfast,
based on version 4.1 of CMBfast, are not easily interpreted
in terms of physical quantities. The value AS � 1, reported
for the four cases, does not therefore indicate that the
models have the same amount of primordial perturbations,
but simply that for each case the adopted normalization is
the one obtained with the procedure described above,
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whose actual value is, of course, model-dependent. Indeed
all the models give rise to a similar value for �8, which is
’ 0:86 for the �CDM case and ’ 0:81 for the highly
dynamical SUGRA2.

The results of the analysis are shown in Table I, report-
ing the 1-�marginalized errors for each parameter, accord-
ing to the present Fisher matrix approach. For the �CDM
model there is an important indication of an achievable
precision smaller than 20% on the w0 parameter, while the
limit on w1 is considerably weaker. The accuracy on the
others is in agreement with previous similar analysis [52],
which was indeed expected because the BB modes statis-
tics have large error bars and trace the physics at late
redshifts so that their influence on other parameters is
smaller. Results are increasingly better for the IPL and
the two SUGRA cases; this can be attributed to the more
and more violent redshift behavior of the equation of state
of these models, making them increasingly sensitive to the
redshift region probed by lensing, outlined in Fig. 2. In
particular, the achievable precision on the w1 parameter
appears to be growing faster, so that for the SUGRA cases
the results for the two dark energy parameters are
comparable.

As we did in the discussion in the last part of the
previous Section, it is relevant to evaluate the role of the
BB modes compared to the lensing distortion on the TT,
TE and EE spectra. When the lensing effect is not consid-
ered, i.e. performing an analysis only on the unlensed CTT,
CTE and CEE spectra, the projection degeneracy related to
the last scattering surface distance (9) is almost exact
making, in particular, the Fisher matrix singular. When
the lensing is taken into account, even on the spectra which
are actually dominated by the primordial power, namely,
the TT, TE and EE ones, such degeneracy is broken, as
Fig. 10 proves. It is interesting to compare the forecast
precision on the cosmological parameters we consider, in
particular w0 andw1, in presence of absence of the lensing
BB modes. Looking at Fig. 10, we roughly expect a
precision increase of order 20% in the w1 parameter, as
the order of magnitude of the relative variation in the BB
power is of the order of the other ones. The results are
shown in Table II and confirm our expectation, in some

cases being even larger than the naive expectation due to
the peculiar sensitivity of the BB modes spectrum to the
dark energy equation of state derivative. It is also interest-
ing to note that there are significant improvements in the
precision on some of the remaining parameters as well, as a
result of the addition of a new independent observable.

In the next Section we further comment these results,
and draw our conclusions.

V. CONCLUSIONS

Our aim in this paper is to study the potentiality of the
CMB physics, with particular regard to the BB modes of
the polarization, which are sourced by gravitational lensing
of cosmic structures, in order to constrain the dark energy
dynamics at the epoch of equivalence with the nonrelativ-
istic matter component. We focus on the lensing effect and,
in particular, on the amplitude of the BB angular power
spectrum; BB mapping techniques isolating the lensing
power [31] might also be considered for extracting infor-
mation about the cosmic expansion rate redshift behavior.
We have shown how the CMB lensing, being directly
linked to the cosmic dynamics and linear perturbation
growth rate when the darkenergy enters the cosmic picture,
presents an enhanced sensitivity to the value of the dark
energy equation of state at the corresponding epoch. Such a
feature breaks the so-called projection degeneracy, affect-
ing the unlensed spectra, preventing the possibility of
constraining the redshift dependence of the dark energy
equation of state from CMB. These features are particu-
larly evident by looking at the response of the amplitude of
the BB angular power spectrum induced by lensing; the
latter is lowered by a factor as large as 30% if the equation
of state of the dark energy at high redshifts is raised to the
value of typical Quintessence models, currently allowed by
observations; correspondingly, the TT, TE, EE spectra
undergo an angular shift in the acoustic peaks location,
and a variation in the smearing of acoustic peaks because
of lensing. The reasons are that, on one hand, the lensing
probes only intermediate redshifts between source and
observers, and on the other, that the lensing dominates
the BB power. The first aspect is clearly not specific to

TABLE II. Results from the Fisher matrix analysis in absence or presence of the BB modes.

�CDM IPL SUGRA1 SUGRA2
� (no BB) � (with BB) � (no BB) � (with BB) � (no BB) � (with BB) � (no BB) � (with BB)

w0 0.13 0.12 0.11 9:7	 10�2 6:6	 10�2 6:1	 10�2 3:7	 10�2 3:5	 10�2

w1 0.31 0.27 0.24 0.19 7:9	 10�2 6:9	 10�2 2:1	 10�2 1:8	 10�2

�Bh2 6:4	 10�5 5:7	 10�5 6:5	 10�5 6:0	 10�5 6:4	 10�5 5:7	 10�5 6:5	 10�5 5:9	 10�5

�Ch
2 7:9	 10�4 7:0	 10�4 7:8	 10�4 7:3	 10�4 7:5	 10�4 6:6	 10�4 7:0	 10�4 5:0	 10�4

h 5:6	 10�2 5:0	 10�2 5:4	 10�2 4:5	 10�2 3:3	 10�2 2:9	 10�2 1:6	 10�2 1:5	 10�2

nS 2:3	 10�3 2:1	 10�3 2:3	 10�3 2:2	 10�3 2:2	 10�3 2:1	 10�3 2:3	 10�3 2:0	 10�3


 3:2	 10�3 3:1	 10�3 3:0	 10�3 3:0	 10�3 3:2	 10�3 3:1	 10�3 3:2	 10�3 3:2	 10�3

A 5:7	 10�3 5:6	 10�3 5:6	 10�3 5:5	 10�3 5:8	 10�3 5:5	 10�3 6:0	 10�3 5:6	 10�3
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the CMB angular power spectrum, but may applied to any
CMB lensing observable. Analogous studies have been
focused on the non-Gaussian power injection into the
anisotropy statistics of order larger than the second
[29,30]. Indeed, the outcome of these studies is consistent
with the present one, i.e. the lensing power in the CMB
bispectrum, the harmonic space analogue to the three point
correlation function, presents a remarkable sensitivity to
the dark energy equation of state at the onset of accelera-
tion. Thus the present study is related to those, although on
a completely different domain. Since we still do not know
where the impact of instrumental systematics and fore-
grounds will be the strongest in a real experiment attempt-
ing to detect the CMB lensing signal, it is important to
carry out the analysis on all CMB lensing observables, and,
in particular, on the angular power spectrum. Our results
show that the relative changes, �CXYl =CXYl where XY stays
for TT, EE, TE or BB, induced by lensing are all of the
same order of magnitude, but in addition there are at least
two reasons why the BB signal should be taken into
account. First, the BB modes in CMB polarization at the
arcminute scale are the explicit target of forthcoming CMB
probes (see i.e. [53] and references therein). Second, their
response to the variation of the dark energy abundance has
a definitee sign, while the others oscillate around zero; this
might cause a difference in favor of the lensing BB modes
for experiments targeting a limited fraction of sky, due to
the potential loss of information involved in the binning
procedure.

We have then quantified the scientific impact of our
result in terms of the achievable precision on the cosmo-
logical parameters, evaluated through a Fisher matrix
analysis, modeling our assumptions on the specifics of
forthcoming probes of CMB polarization, for
Cosmological Constant and three more dynamical dark
energy scenarios. The results are strongly encouraging,

predicting an accuracy better of order 10% on the present
value of the dark energy equation of state, and a somehow
weaker limit on its first derivative with respect to the scale
factor, but with an important indication of better results
with increasing dark energy dynamics. The inclusion of the
BB spectra is responsible at the 10 to 20% level for the
quoted forecasts. This result is comparable with the one
quoted in [22], where the authors take into account SNIa
data and CMB physics but do not include BB modes into
the analysis and with the forecasts in [21] for Quintessence
models, where the authors consider SNIa data and weak
lensing of background galaxies. In particular, the predic-
tion of a smaller uncertainty for high dark energy dynamics
is reproduced also for the observable considered here. The
latter might be a complementary and independent dark
energy probe with respect to the ones mentioned above.
In [54], a work which came out in the literature during the
refereeing process of the present one, the lensing BB
modes are included in the analysis, finding a benefit which
is similar to the one found here.

In conclusion, the weak lensing of the CMB is confirmed
by this work as a potential probe of the dark energy
dynamics when acceleration starts, independently of the
present expansion rate. This adds even more interest to the
impact of high precision weak lensing measurements in
cosmology [20]. Moreover, our results indicate that the
measure of the dark energy dynamics suggested here could
be achieved by the forthcoming CMB probes aiming at the
detection of the polarization BB modes.
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