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The interacting dark energy model with interaction term Q � �mH�m � �dH�d is considered. By
studying the model near the transition time, in which the system crosses the ! � �1 phantom divide line,
the conditions needed to overcome the coincidence problem is investigated. The phantom model, as a
candidate for dark energy, is considered, and for two specific examples, the quadratic and exponential
phantom potentials, it is shown that it is possible the system crosses the ! � �1 line, meanwhile the
coincidence problem is alleviated, the two facts that have root in observations.

DOI: 10.1103/PhysRevD.74.103007 PACS numbers: 95.36.+x, 98.80.Cq, 98.80.Jk

I. INTRODUCTION

Nowadays based on astrophysical data it is believed that
the universe is accelerating [1]. The origin of this accel-
eration is still unknown and different models have been
proposed to elucidate this subject. One picture is the as-
sumption that nearly 70% of the universe is composed of a
smooth energy component with negative pressure dubbed
as dark energy. A simple candidate for dark energy is the
cosmological constant [2] which suffers from conceptual
problems such as fine-tuning and coincidence problems
[3]. Therefore alternative models, e.g., introducing dy-
namical exotic fields such as scalar fields with suitably
chosen potentials, have been introduced [4].

In dark energy models, the ratio of matter to dark energy
density, r, is expected to decrease rapidly (proportional to
the scale factor) as the universe expands, but observations
show that these densities are of the same order today. To
solve this problem (known as coincidence problem), one
can adopt an evolving dark energy field with suitable non-
gravitational interaction with matter [5,6]. Various models
corresponding to different forms of interaction, leading to a
constant or slowly varying (soft coincidence) r at late
times, have been proposed [7].

Some present data seems to favor an evolving dark
energy, corresponding to an equation of state parameter
less than ! � �1 at present epoch (phantom regime) from
!>�1 in the near past (quintessence regime) [8]. So
another cosmological coincidence problem may be pro-
posed: why ! � �1 crossing occurred at the present time
[9].

In [10], it was shown that ! � �1 crossing in models
including matter and phantom scalar field is either impos-
sible or unstable with respect to cosmological perturba-
tions. However, this transition may be possible for scalar-
tensor theories [11], multifield models [12], and coupled
dark energy models with specific couplings [13,14].

In [15], the transition from quintessence to the phantom
phase in the quintom model was considered in the slow roll

approximation. By studying the Friedmann equations near
the transition time, it was shown that, in the noninteracting
quintom model, r ’ 0 at transition time. This lies in the fact
that the main part of the dark energy at transition time
corresponds to the quintom potential. By considering in-
teraction between cold dark matter and dark energy, the
mutual energy exchange between two fluids will be al-
lowed and the coincidence problem may be alleviated.

In this paper we consider the dark energy model com-
posed of a phantom scalar field interacting with cold dark
matter. We try to elucidate the connection between the
coincidence problem and ! � �1 crossing (second cos-
mological coincidence problem).

It may be worth noting that the phantom models suffer
from the quantum instability problem. Because the phan-
tom fields have negative kinetic energy, it is possible that a
phantom particle decays into an arbitrary number of phan-
toms and ordinary particles, such as gravitons. It can be
shown that the decay rates of these interactions are infinite,
which indicates that the phantom models are dramatically
unstable. But if we think of these models as the low-energy
effective theories, with the fundamental fields having posi-
tive kinetic energy, then we should use a momentum cutoff
� in calculating the decay rates. In this way, it can be
shown that, for ��Mpl, the lifetimes can become larger
than the age of the universe when one chooses suitable
phantom-gravity interaction potentials, and this removes
the quantum instability of these kinds of phantom models
[16].

The Scheme of the paper is as follows. After the
Introduction, we consider the dark energy model with
interaction term Q � �mH�m � �dH�d in Sec. II. By
restricting ourselves to times t� h�1

0 around the transition
time (h0 is the Hubble parameter), we study the general
properties of interacting dark energy models and the nec-
essary conditions needed to cross the ! � �1 line are
obtained. These results are insensitive to the origin of the
dark energy. In Sec. III we assume that dark energy is
composed of a phantom scalar field interacting with cold
dark matter. After a general discussion, we illustrate, via
two specific examples, how the necessary conditions for
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! � �1 crossing can alleviate the coincidence problem. It
is seen that it is possible to tune the parameters such that
r0 � 3=7 at transition time.

We use units @ � c � G � 1 throughout the paper.

II. ! � �1 CROSSING IN INTERACTING DARK
ENERGY MODEL

We consider a spatially flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe containing dark en-
ergy and dark matter fluids. In terms of dark energy density
�d and matter energy density �m, the Hubble parameter is
given by the Friedmann equation

 H2 �
8�
3
� �

8�
3
��m � �d�; (1)

where � is the total energy density. By introducing �d �
�d=� and �m � �m=�, Eq. (1) can be written as �d �
�m � 1, which indicates that the universe is spatially flat.
The derivative of the Hubble parameter with respect to the
comoving time can be extracted from Einstein equations.
The result is

 

_H � �4���d � Pd � �m�: (2)

Pd is the pressure of the dark energy fluid and the dark
matter is assumed to be pressureless. The equation of state
of the universe is P � !�, where P � Pd is the pressure
and ! is the equation of state parameter which can be
written as

 ! � �1�
2 _H

3H2 : (3)

For an accelerated universe we have !<�1=3. When
�1<!<�1=3, the universe is in the quintessence phase
and when!<�1, the universe is in the phantom phase. In
the following, we assume that the dark matter and dark
energy components can interact through the following
source term:

 Q � �mH�m � �dH�d; (4)

where �m and �d are two real constants. For special
choices such as �m � 0, �d � 0 or �d � �m, Eq. (4) re-
duces to the interaction terms which have been considered
before [5]. The other forms of interaction terms, not nec-
essarily suitable for our purpose, have been also considered
in the literature [17].

Because of the interaction term, we have not the con-
servation of partial stress-energy tensors of matter and dark
energy: T��

�m� ;� � �T
��
�d� ;� � 0. In fact, the projection of

this nonconservation equation along the velocity of the
whole (comoving) fluid U� (which was taken to be the
same as the velocities of each of the fluid components) is
[6]

 U�T
��
�m� ;� � �U�T

��
�d� ;� � �Q: (5)

Note that the coupling (4) can be written as a scalar as
follows:

 Q � 1
3U�U���mT

��
�m� � �dT

��
�d� �U

�
;�: (6)

For the FLRW metric, the equation (5) reduces to

 _� d � 3H��d � Pd� � �Q; _�m � 3H�m � Q: (7)

Using Eq. (1), Eq. (7) can be written as
 

_�d � �3� �d � �m�H�d � 3HPd � �
3

8�
�mH

3;

_�m � �3� �d � �m�H�m �
3

8�
�dH3:

(8)

Using Eq. (8), the evolution equation of the ratio of energy
densities of dark matter and dark energy, denoted by r �
�m=�d, reads

 _r � r�r� 1�
�

3!� �m �
�d
r

�
H: (9)

From

 �d �
1

1� r
; (10)

Eq. (9) then results in

 ! � �
1

3H

_�d

1��d
�

�d�d

3�1��d�
�
�m
3
: (11)

In the vicinity of transition time from quintessence to
phantom era, !>�1 goes to !<�1, so _H must change
sign from _H < 0 to _H > 0. At transition time we have _H �
0 and ! � �1. The dark energy equation of state parame-
ter !d is defined through Pd � !d�d. Therefore !� �
!d�d or �d!d � !. Using

 �m �
3!dH

2 � 2 _H � 3H2

8�!d
�d � �

2 _H � 3H2

8�!d
;

(12)

and Eq. (8), one can obtain the following equation for the
Hubble expansion:
 

�H � �6� �d � �m � 3!d�H _H

�
3

2
��3� �m�!d � 3� �d � �m	H3 �

_!d

!d

�
_H�

3H2

2

�
:

(13)

For a constant !d, we arrive at the result of [18]. At _H � 0
we obtain

 

�H � �3
2��3� �m�!d � 3� �d � �m	H3: (14)

Note that H > 0, therefore for a constant !d, the sign of �H
does not change. This shows that in the constant-!d ap-
proximation, the system can cross the ! � �1 line only
once. This is because the transition from quintessence to
phantom phase needs positive �H (at transition time), while
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the vice versa needs negative �H. In the following, we
consider !d as a function of time.

At transition time, we obtain from Eq. (11)

 � 3 _! � �3� �m � �d�
_�d

1��d
�

��d

H�1��d�
; (15)

which results in

 �3� �m � �d� _�d �
��d

H

 0: (16)

Insertion of

 

_� d �
8�
3

_�d
H2 ;

��d �
8�

3H2

�
��d � 2

�H
H
�d

�
(17)

into Eq. (16), leads to

 �3� �m � �d�H _�d � ��d �
2 �H
H
�d 
 0; (18)

at transition time.
We assume that, in the neighborhood of transition time,

the Hubble parameter is a differentiable function of time.
The Taylor expansion of H at transition time, which we
take as t � 0, can be written as [15]

 H � h0 � h1t� �O�t��1�; � 
 2; h1 � 0:

(19)

h0 � H�t � 0�, � is the order of the first nonzero deriva-
tive of the Hubble parameter at transition time, and h1 �
�1=�!�d�H=dt�jt�0. The transition from quintessence to
phantom phase occurs if � is an even positive integer and
h1 > 0. We also consider the following expansions for �d,
�m, and �d at t � 0:
 

�d � u0 � u1t� �O�t��1�;

�m � �m0 � �m1t� �O�t��1�;

�d � �d0 � �d1t	 �O�t	�1�;

(20)

respectively. �, �, and 	 are the orders of the first nonzero
derivatives of �d, �m, and �d at t � 0, respectively. Note
that the above expansions are valid until t� h�1

0 , which is
completely reasonable since h�1

0 is of the order of the age
of our universe.

To obtain the relation between the parameters �, �, �,
and 	, we proceed as follows. For � � 1, if we expand
both sides of Eq. (11) at t � 0, the first resulting term of the
right-hand side, with nonvanishing power of t, is t��1

while the left-hand side (after t0) begins with t��1. So if
� � 1, we must have � � �. In this case, �3=8��H2�d �
�d results in 	 � ��� ��. For � � 1, this equation results
in 	 � ��� 1�. Therefore always 	 � �. From Eq. (12) it
is clear that, for a constant !d, we must have � � �� 1
which leads to � � 1 and � � 2.

In the case � � 1, comparing the coefficients of
t0-terms of Eq. (11) gives

 u0 �
3� �m

�d � �m � 3
; (21)

and equating the coefficients of t��1-terms results in

 h1 �
h0u1

2�1� u0�
: (22)

This relation shows that the transition is possible only if
u1 > 0.

In the case � � 1, the same procedure leads to

 u1 � ��m � �d � 3�h0u0 � �3� �m�h0; (23)

 ��d � �m � 3�h0uk � �k� 1�uk�1 � 0;

1< k � �� 2;
(24)

and

 h1 �
��d � �m � 3�h2

0u��1 � �h0u�
2��1� u0�

: (25)

The Taylor expansion of r at t � 0 is

 r � r0 � r1t
� �O�t2�; (26)

where r0 � u�1
0 � 1 and r1 � �u1=�u2

0�.

III. INTERACTING PHANTOM DARK ENERGY
MODEL AND COINCIDENCE PROBLEM

In this section we assume that the origin of the dark
energy is a phantom scalar field 
. So

 �d � �
1
2

_
2 � V�
�; Pd � �
1
2

_
2 � V�
�; (27)

where V�
�> 0 is the phantom potential. !d is given by

 !d �
� 1

2
_
2 � V�
�

� 1
2

_
2 � V�
�
; (28)

therefore !d <�1. For �d!d <�1, the universe is in the
phantom phase and for �d!d >�1 it is in the quintes-
sence phase.

The field equation of 
 is

 

_

�

�
� 3H _
�
dV
d


�
� Q: (29)

This can be derived by putting Eq. (27) back into Eq. (7).
From Eq. (27) we obtain

 

_
 2 � ��1�!d��d 2V�
� � �1�!d��d: (30)

The second equation of (30) can be written as

 

_
 �
dV�1�y�
dy

_y; (31)

where y � �1�!d��d=2, and V�1 is the inverse function
of V. Equation (31) and the first equation of (30) then lead
to
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 �1�!d��d � �
�
dV�1�y�
dy

�
2

_y2; (32)

which after some calculation can be rewritten as

 � _�d � _!� 3H�1�!���d �!�	2
�
dV�1�y�
dy

�
2

� �
4

�
��d �!�: (33)

This equation together with our previous results may be
served to find some necessary conditions for ! � �1
crossing in interacting phantom dark energy models, in-
cluding the domain to which u0 belongs. We will try to
obtain a relation between the coincidence problem and the
behavior of the system at transition time. For example, for
the case � � 1, if one obtains h1 as a polynomial of u0,
then restricting h1 to positive values, which is necessary for
transition, will restrict the value of u0 to a subset of (0, 1).
By choosing the appropriate parameters, then it becomes
possible to prevent r to be 0 or very large. For � � 1 cases,
Eq. (21) determines the value of r at transition time, which
again can be chosen to be O�1�. In this way the occurrence
of ! � �1 crossing and the alleviation of the coincidence
problem can be achieved simultaneously.

In the following, we will show these points via some
specific examples. In these examples we restrict ourselves
to the case � � 2.

A. Phantom field with square power law potential

For V�
� � �1=2�m2
2, Eq. (33) becomes

 2m
�������������������
!2 ��2

d

q
� �� _�d � _!� 3H�1�!���d �!�	:

(34)

In the following, we adopt that, in the quintessence phase
and near the transition time, _�d > 0 or equivalently r1 < 0
[19]. Therefore

 2m
�������������������
!2 ��2

d

q
� _�d � _!� 3H�1�!���d �!� (35)

can be used in the neighborhood of transition time. Taking
� � 1 (the case � � 1 will be discussed later), the expan-
sion of Eq. (35) at t � 0 then results in

 2m
��������������
1� u2

0

q
�

2m��4h1 � 3u0u1h
2
0�

3
�������������������
1� u2

0h
2
0

q t�O�t2�

� u1 �
4h1

3h2
0

�

�
2u2 � 4

h2

h2
0

� 4
h1�1� u0�

h0

�
t�O�t2�:

(36)

As a result we arrive at

 2m
��������������
1� u2

0

q
� u1 �

4h1

3h2
0

: (37)

The necessity of quintessence to phantom phase transition,
i.e. h1 > 0, then results in

 u1 > 2m
��������������
1� u2

0

q
: (38)

Using Eq. (23), we can write the above inequality in terms
of u0:

 au0 � b < c
��������������
1� u2

0

q
: (39)

We have defined a � �m � �d � 3, b � 3� �m, and c �
2m=h0.

To study the solutions of Eq. (39), we consider two
situations. The first possibility is

 au0 � b � 0; (40)

which leads to r1 
 0. This conflicts with the assumption
r1 < 0, or equivalently _�d > 0 at transition time, and
therefore is not acceptable. The second possibility is au0 �
b > 0 which leads to

 P �u0� :� �a2 � c2�u2
0 � 2abu0 � b2 � c2 < 0: (41)

If a2 � b2 � c2 < 0, P has no real roots and its sign does
not change. But P �1�> 0, therefore Eq. (41) is not satis-
fied in this case. For a2 � b2 � c2 > 0, P has two roots
which we denote by uR1 and uR2. Equation (41) is satisfied
if the value of �d at transition time is restricted to the
intersection of the intervals �uR1; uR2� and (0, 1):

 u0 2 �0; 1�
\
�uR1; uR2�: (42)

So if �uR1; uR2� 
 �0; 1�, by choosing the appropriate pa-
rameters a, b, and c, we can obtain the desired order of
magnitude: �O�1� for r0 � 1=u0 � 1. The Sturm sequen-
ces at 0 and 1 are

 S�0� �
�
b2 � c2; 2ab;

c2�a2 � b2 � c2�

a2 � c2

�
; (43)

and

 S�1� �
�
�a� b�2; 2�a2 � c2 � ab�;

c2�a2 � b2 � c2�

a2 � c2

�
:

(44)

Using the Sturm theorem, one can show that for

 a2 � b2 � c2 > 0; a2 � c2 � ba > 0;

b2 � c2 > 0; ab < 0;
(45)

the two roots of P belong to (0, 1). In this way we have

 

�ab� c
���������������������������
a2 � c2 � b2
p

a2 � c2
<�d

<
�ab� c

���������������������������
a2 � c2 � b2
p

a2 � c2 (46)
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at transition time. As an example, consider the case �m �
1, �d � 2, and c � 1. In this case uR1 � 0:258 and uR2 �
0:682, therefore 0:46< r < 2:8 at transition time. Note
that �uR1; uR2� may be more tightened by choosing appro-
priate a, b, and c, e.g. for c � 1, a � 7, and b � �5,
which correspond to �m � 8 and �d � �2, we have uR1 �
0:6 and uR2 � 0:8, therefore 0:6< u0 < 0:8 in agreement
with the expected value u0 � 0:7 and r0 � 3=7.

In � � 1 cases, we have � � �. For � � 2, following
the same method ending to Eq. (36), we expand both sides
of Eq. (35). It is obtained, up to the order O�t�,

 m
��������������
1� u2

0

q
�

2h1

3h2
0

(47)

which results in h1 > 0. u0 and u1 are given by Eqs. (21)
and (22), respectively. Higher orders of t in the Taylor
expansion of Eq. (35) determine the other coefficients of
the Taylor expansion of H an �d. Since h1 > 0 induces no
additional constraint on u0, the appropriate parameters a,
b, and c can lead to the desired values for r0. For�> 2, the

aforementioned expansion leads to m
��������������
1� u2

0

q
� 0 which

is ruled out by the assumption that u0 � 1. Therefore in
� � 1, the choice � � 2 is the only eligible one.

Equation (35) with _�d < 0 and Eq. (34) with the minus
sign can also be investigated by the same method. In brief,
it is shown that, in the interacting phantom model with
V�
� � �1=2�m2
2 phantom potential and the interaction
Q-term of Eq. (4), it is possible to choose the parameters
such that both the ! � �1 crossing and r0 � O�1� occur.
In the special case which leads to Eq. (47), one can tune the
parameters such that r0 has no choice but the desired value
3=7.

B. Exponential potential

Consider the following potential:

 V � v0 exp��
�; � > 0; v0 > 0: (48)

Equation (33) then results in

 H ~��!2 ��2
d�

1=2��d �!�1=2

� �� _�d � _!� 3H�1�!���d �!�	; (49)

where ~� �
���������������
3=�8��

p
�. As the previous example, we con-

sider the upper sign of Eq. (49) which is a result of the
assumptions _�d > 0 and _!< 0 in the vicinity of transition
time.

By Taylor expansion of both sides of Eq. (49) at tran-
sition time, we obtain the following equation for � � 2
and � � 1:

 

4h1

3h3
0

� �au0 � b� ~��1� u2
0�

1=2�1� u0�
1=2: (50)

a and b are defined by the same relations as for the first
example. h1 > 0 then results in

 au0 � b < ~��1� u2
0�

1=2�1� u0�
1=2: (51)

Equation (51) is satisfied in two cases: (i) au0 � b < 0,
which makes r1 negative, or _�d < 0, and is not acceptable;
(ii) au0 � b > 0. In this case we must have

 u3
0 � �A

2 � 1�u2
0 � �2AB� 1�u0 � B

2 � 1< 0; (52)

where A � a=�~�2� and B � b=�~�2�. We also assume B2 >
1. Equation (52) is satisfied only if the polynomial

 Q �u0� :� u3
0 � �A

2 � 1�u2
0 � �2AB� 1�u0 � B

2 � 1

(53)

has real roots. Following Descartes rule, B2 � 1> 0 and
2AB� 1< 0 are necessary conditions for Q�u0� to have
two real positive roots. The domain to which u0 in Eq. (52)
belongs is the intersection of (0, 1) and �uR1; uR2�, where
uR1 and uR2 are the roots of Q�u0�. So by appropriate
choosing of A and B, one can restrict u0 to the domain
allowed by astrophysical data. To do so, we construct the
Sturm sequence corresponding to the cubic polynomial
Q�u0� at 0 and 1. They are

 S�0� �
�
B2 � 1; 2AB� 1;

1

9
�2AB� 1��A2 � 1� � �1� B2�;

9

4

D

�A4 � 2A2 � 6AB� 4�2

�
; (54)

and

 S�1� �
�
A2 � 2AB� B2; 2A2 � 2AB� 4;

1

9
�2A4 � 2A3B� 3A2 � 10AB� 9B2 � 16�;

9

4

D

�A4 � 2A2 � 6AB� 4�2

�
:

(55)

In the above equations, D> 0 is discriminant of the polynomial Q�u0�. By implying the Sturm theorem, it can be verified
that, in order to have two real roots in interval (0, 1), the parameters A and B must satisfy, besides the previous mentioned
conditions B2 � 1> 0 and 2AB� 1< 0, the following inequalities:

 A2 � AB� 2> 0; 2A4 � 2A3B� 3A2 � 10AB� 9B2 � 16> 0: (56)

For example, for ~� � 1, �m � 1, and �d � 2, we obtain 0:23< u0 < 0:73 which is in agreement with u0 � 0:7 obtained
from astrophysical data.
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Now we consider � � 1. For � � 2, the Taylor expansion of both sides of Eq. (49), with upper sign, results in

 

4

3

h1

h2
0

� ~�
��������������
1� u2

0

q ��������������
1� u0

p
�

�
4
h2

h2
0

� 2u2 � 4
h1�1� u0�

h0
�

2

3

~�h1

��������������
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Therefore
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which implies h1 > 0. By suitable choosing of �m and �d,
one can obtain the appropriate value for r at transition time.
For �> 2, the aforementioned expansion leads to ~��1�
u2

0�
1=2�1� u0�

1=2 � 0 which is ruled out by the assumption
that u0 � 1. Therefore � � 2 is the only allowed case for
� � 1.

IV. CONCLUSION

In this paper, by considering the energy exchange be-
tween cold dark matter and dark energy [see Eq. (4)], we
study the possibility of simultaneous occurrence of two
phenomena, the coincidence problem, and ! � �1 cross-
ing, from !>�1 to !<�1. We consider the physical
quantities near the transition time t � 0, through Eqs. (19)
and (20). The transition occurs for positive h1 and even �,
the parameters which have been introduced in Eq. (19).

The equation of state parameter ! is expressed by
Eq. (11) and the potential of phantom field, as a candidate

of dark energy, enters in Eq. (33). We studied the pertur-
bative solutions of these equations, near t � 0, for two
specific potentials, i.e. the quadratic and exponential po-
tential. It is shown that always 	 � �, and for � � 1, � �
� [see Eq. (20) and its subsequent discussion]. For � � 2,
as a first acceptable solution for ! � �1 crossing, it is
shown that, in both examples, it is possible to choose the
parameters such that, besides the satisfaction of dynamical
equations, the occurrence of!>�1 to!<�1 transition
allows the ratio r0 � ��m=�d�t�0 to be around the desired
value 3=7. This proves the possibility of solving these two
problems in a unique framework.

For �> 2 and � � 1, it can also be shown that it is
possible to choose the parameters such that the above-
mentioned properties are achieved.
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