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The convergence of the iterative solutions of the transport equations of cosmic muon and tau neutrinos
propagating through Earth is studied and analyzed. For achieving a fast convergence of the iterative
solutions of the coupled transport equations of ��, ��� and the associated �� fluxes, a new semianalytic
input algorithm is presented where the peculiar �-decay contributions are implemented already in the
initial zeroth order input. Furthermore, the common single transport equation for muon neutrinos is
generalized by taking into account the contributions of secondary �� and ��� fluxes due to the prompt
�-decay �! �� initiated by the associated tau flux. Differential and total nadir-angle-integrated upward-
going �� ��� event rates are presented for underground neutrino telescopes and compared with the
muon rates initiated by the primary ��, ��, and � fluxes.
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I. INTRODUCTION

Upward-going cosmic neutrinos with energies below
108 GeV play a decisive role for underground neutrino
telescopes, since the atmospheric background can be
more effectively controlled, in contrast to downward-going
cosmic neutrinos. While traversing through the Earth,
upward-going muon (anti)neutrinos undergo attenuation
(absorption) due to weak charged current (CC) and neutral
current (NC) interactions as well as regeneration [1,2] due
to NC interactions. The latter shift the energy of the
neutrinos, rather than absorbing them, to lower energies
and populate the lower energy part of the initial cosmic
neutrino flux spectra, thus adding to the naive nonregen-
erated �� ��� event rates at the detector. Such propa-
gation effects of muon (and electron) neutrinos through
Earth are described by a single transport (integro-
differential) equation which can be rather easily solved
iteratively [1–5].

On the other hand tau (anti)neutrinos are not absorbed,
but degraded in energy, in the Earth as long as the interac-
tion length of the produced tau leptons is larger than their
decay length (which holds for energies up to about
109 GeV). Because of these latter (semi)leptonic decays
�! ��X, the Earth will not become opaque to �� [6] since
the �� produced in CC interactions decays back to ��. This
‘‘regeneration chain’’ �� ! �! �� ! . . . continues until
the �� and ���, as well as the �� leptons, reach the detector
on the opposite side of the Earth. Thus the propagation of
high-energy tau neutrinos through the Earth is very differ-
ent from muon and electron neutrinos, and we have now to

deal with coupled transport equations for the �
���

� and ��

fluxes [4,7–13]. Obtaining stable iterative solutions of
these coupled integro-differential equations is far more
involved as compared to the single transport equation for
muon neutrinos. It is one of our main objectives to discuss
the general qualitative and quantitative structure of these

solutions and to present an efficient input algorithm which
allows for a rather fast convergence of the iterative proce-
dure. This applies to all present model cosmic neutrino
fluxes. Moreover the �� � �� flux, generated by the initial
cosmic �� � ��� flux while traversing the Earth, gives rise
to a secondary ��� � �� flux [14] via �! �� due to the
prompt �-decays like �� ! ���

� ���. This adds consider-
able contributions to the primary cosmic �� � ��� flux and
may increase the�� ��� rates at the detector site sizably
[9,12], depending on the cosmic flux and nadir angle
considered. Such effects require an extension of the simple

single transport equation for �
���

� and the inclusion of the
appropriate prompt decay term reduces the convergence of
the iterative procedure considerably.

The simple single transport equation for �
���

� will be
discussed for completeness in Sec. II. Although frequently
used, the excellent convergence of its iterative solutions
has not been explicitly demonstrated thus far for more
realistic cosmic neutrino fluxes, apart from some specific
steep toy model neutrino fluxes [2]. In Sec. III we turn to
the iterative solutions of the far more complicated coupled

transport equations for �
���

� and their associated �� fluxes.
A new semianalytic input algorithm is presented which
allows for a fast convergence of the iterative solutions. The
implications for the upward-going �� ��� event rates
for underground neutrino detectors for some relevant cos-
mic neutrino fluxes will be briefly outlined as well. The
solutions of the generalized single transport equation for
muon neutrinos, by taking into account the contributions of
the secondary �� � ��� flux from prompt �� decays based
on the calculated associated �� fluxes, are discussed in
Sec. IV. Their implications for the expected �� ���

event rates, as initiated by various relevant cosmic neutrino
model fluxes, are presented as well. Finally, our conclu-
sions are summarized in Sec. V.
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II. THE TRANSPORT EQUATION OF MUON
NEUTRINOS

Disregarding possible contributions from other neutrino
flavors for the time being, the transport equation for

upward-going cosmic muon (anti)neutrinos �
���

� passing
through Earth can be written as [1–5]

 

@F���E;X�

@X
� �

F���E;X�

���E�
�

1

���E�

�
Z 1

0

dy
1� y

KNC
� �E; y�F���Ey; X�; (1)

where F�� � d���=dE is the differential cosmic neutrino
flux and Ey � E=�1� y�. The column depth X � X���,
being the thickness of matter traversed by the upgoing
leptons, depends on the nadir angle of the incident neutrino
beam (� � 0	 corresponds to a beam traversing the diame-
ter of the Earth); it is obtained from integrating the density
��r� of the Earth along the neutrino beam path L0 at a given
�, X��� �

R
L
0 ��L

0�dL0 with L � 2R
 cos�, R
 ’
6371 km, denoting the position of the underground detec-
tor, and X��� can be found, for example, in Fig. 15 of [15]
in units of g=cm2 � cm we. Furthermore ��1

� � NA�tot
�N ,

NA � 6:022� 1023 g�1, is the inverse neutrino interaction
length where �tot

�N � �CC
�N � �

NC
�N and

 KNC
� �E; y� �

1

�tot
�N�E�

d�NC
�N �Ey; y�

dy
: (2)

The various CC and NC �
���
N cross sections are calculated

as in [5,13], with the relevant details to be found in [16],
utilizing the QCD inspired dynamical small-x predictions
for parton distributions according to the radiative parton
model [17]. Notice that conventionally fitted parton distri-
butions at the relevant weak scale Q2 � M2

W would require
additional ad hoc assumptions (see, e.g., [15,18]) for the
necessary extrapolations into the yet unmeasured small
Bjorken-x region x < 10�3 (x ’ M2

W=2mNE). The first
term in (1) describes the attenuation (absorption) of neu-
trinos when penetrating through the Earth, and the second
one their regeneration consisting of the degrading shift in
their energy. For definiteness all formulae are given for an
incoming neutrino beam, but similar expressions hold of
course for antineutrinos.

Equation (1) can be efficiently solved by the ansatz [2]

 F���E;X� � F0
���E� exp

�
�

X
����E;X�

�
(3)

with an effective absorption (interaction) length

 ����E;X� �
���E�

1� Z���E;X�
(4)

and where F0
���E� � F���E;X � 0� denotes the initial

cosmic neutrino flux which reaches the Earth’s surface.

Depending on the assumed cosmic neutrino flux, the
Z�-factor can take any non-negative values. Its physics
interpretation and the consequences for the shadowing
factor S � exp��X=��� in (3) are immediate: Z� < 1
(the only case considered in [2] relevant for steeper, i.e.,
soft model fluxes) implies �� > �� > 0 thus S < 1, i.e. the
neutrino flux will be further attenuated since absorption
plays the dominant role; for Z� � 1, �� � 1, i.e. S � 1
which means that regeneration and absorption compensate
each other; finally Z� > 1 implies �� < 0 and S > 1, and
consequently the NC regeneration in (1) can even cause an
enhancement of the neutrino spectrum with respect to the
initial flux F0

���E� for certain energies and depths X.
Inserting (3) into (1) yields
 

Z���E;X� �
1

X

Z X

0
dX0

�
Z 1

0
dyKNC

� �E;y����E;y�e
�X0D�� �E;Ey;X

0� (5)

with ���E; y� � F0
���Ey�=�1� y�F

0
���E� and

D���E;Ey; X
0� � ��1

�� �Ey; X
0� ���1

�� �E;X
0�. Using an it-

eration algorithm to solve for Z���E;X�, one can formally
rewrite the solution of (5) after the nth iteration as
 

Z�n�1�
�� �E;X� �

1

X

Z X

0
dX0

Z 1

0
dyKNC

� �E; y����E; y�

� e�X
0D�n��� �E;Ey;X

0�; (6)

where

 D�n��� �E;Ey; X
0� �

1� Z�n��� �Ey; X
0�

���Ey�
�

1� Z�n��� �E;X
0�

���E�
: (7)

The reason why this iteration is expected to converge very
fast is as follows: the kernelKNC

� peaks very strongly [2,19]
at y � 0 and y � 1, with the contribution at y ’ 1 being,
however, exponentially suppressed in (6); thus the main
contribution to the integral over y in (6) comes from the
region around y ’ 0 where D���E;Ey; X

0� ! 0 as y! 0.
Therefore the iteration should be robust with respect to
choosing the n � 0 approximation [2]. The most simple
input choice is Z�0����E;X

0� � 0 in (7). For this case the
analytic X0-integration in (6) yields

 Z�1����E;X� �
Z 1

0
dyKNC

� �E;y����E;y�
1� e�XD��E;Ey�

XD��E;Ey�
(8)

with

 D��E;Ey� � D�0����E;Ey; X
0� �

1

���Ey�
�

1

���E�
: (9)

With the n � 1 solution in (8) at hand, it is now straight-
forward to obtain iterations in higher orders, for example,
for n � 2 by inserting (8) into (7) gives Z�2��� in (6).

Representative cosmic neutrino fluxes of some hypothe-
sized sources are displayed in Fig. 1 which we shall partly
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use for all our subsequent calculations. Recent diffuse
neutrino flux upper limits of AMANDA [20,21] are shown
by the bars with arrows—the latter indicate the still al-
lowed region. Although the huge flux from active galactic
nuclei of Stecker and Salamon (AGN-SS) [22] has been
already excluded, we shall use it merely as a theoretical
playground due to its unique spectrum at lower energies
where F0

���E� 
 const for E & 105 GeV. On the other
hand the AGN-M95 flux [23] is still compatible (although
slightly in conflict) with the AMANDA upper bound, as are

the gamma ray burst (GRB-WB) [24] and topological
defect (TD-SLBY) [25] fluxes. These latter three fluxes
will be used for our ‘‘realistic’’ model calculations. The
TD-SLSC [26] and Z-burst [27] fluxes are shown just for
illustration since they are too minute for being tested with
upward-going event rates [5]. Note that the initial cosmic
(anti)neutrino fluxes F0

�; ���E� in (3) which reach the Earth’s
surface are given by F0

�� � F0
��� � F0

�� � F0
��� �

1
4d�=dE

with � being the cosmic �� � ��� flux at the production
site in Fig. 1.

For a better comparison of our quantitative results with
the ones obtained in the literature, we also employ two
generic initial fluxes incident on the surface of the Earth at
a nadir angle � � 0	 of the form [4,7]

 F0
��� ����E� � N1E�1�1� E=E0�

�2; E0 � 108 GeV;

(10)

 F0
��� ����E� � N2E�2 (11)

with adjustable normalization factors Ni, for example,
N1 �

1
2� 10�13=�cm2 sr s� and N2 �

1
2�

10�7 GeV=�cm2 sr s�. Notice that the generic E�1 energy
dependence is representative for the TD and Z-burst fluxes
in Fig. 1 for E & 107 GeV; and also for the GRB-WB flux
for E & 105 GeV. Furthermore the latter GRB-WB flux
behaves like E�2 in (11) for 105 <E & 107 GeV, where
such a power spectrum with index �2 is typical for shock
acceleration (see, e.g., [21]).

Our results for Z�1��� and Z�2��� are shown in Figs. 2 and 3
for two typical values of the nadir angle, � � 0	 (X �
1:1� 1010 cm we) and � � 50	 (X � 3:6� 109 cm we).
The iteration converges very fast since in general the
maximum difference between Z�1��� and Z�2��� is less than

about 5%, jZ�2���=Z
�1�
�� � 1j< 0:05, and moreover
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FIG. 1. Representative differential fluxes of muon neutrinos
(�� � ���) at the production site from active galactic nuclei
(AGN-SS [22] and AGN-M95 [23]), gamma ray bursts (GRW-
WB [24]), topological defects (TD-SLBY [25] and TD-SLSC
[26]), and Z-bursts [27]. Because of naive channel counting in
pion production and decay at the production site (�e:��:�� �
1:2:0) and maximal mixing, �e:��:�� � 1:1:1, these fluxes are
divided equally between e-, �-, and �-neutrinos when they reach
the Earth’s surface (i.e. will be divided by a factor of 2). The
diffuse neutrino flux upper limit of AMANDA [20,21] are shown
by the bars with arrows.
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FIG. 2. The Z�-factors for �� neutrinos, as iteratively calculated according to (6), for the generic initial neutrino fluxes in (10) and
(11) divided by 2. The result for the first order iteration Z�1��� is given in (8). For nadir angles � > 50	, the second order iterative result
Z�2��� becomes almost indistinguishable from Z�1��� .
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jZ�3���=Z
�2�
�� � 1j< 0:005. Thus the first n � 1 iteration is

already sufficiently stable and suffices for all cosmic neu-
trino fluxes considered at the present [19]. Notice that for
larger � (smaller X) the difference between Z�2��� and Z�1���
decreases and therefore the stability increases. The results
for Z ��� are similar but Z ��� > Z�� for E & 106 GeV where
� �� > ��. The resulting �� and ��� fluxes follow from (3)
and can be found in [4,5,7].

III. THE TRANSPORT EQUATIONS OF TAU
NEUTRINOS AND TAUS

Apart from the absorption (attenuation) due to �tot
�N and

regeneration due to �NC
�N in (1), for upward-going cosmic

tau (anti)neutrinos �
���

�, it is important to take into account
the regeneration from the �� decays as well as the con-
tributions from the CC tau interactions. The tau neutrino
and tau fluxes then satisfy the following coupled transport
equations:

 

@F���E;X�

@X
��

F���E;X�

���E�
�

1

���E�

Z 1

0

dy
1�y

KNC
� �E;y�

�F���Ey;X��
Z 1

0

dy
1�y

K��E;y�F��Ey;X�;

(12)

 

@F��E;X�
@X

��
F��E;X�

�̂�E�
�
@�	�E�F��E;X��

@E

�
1

���E�

Z 1

0

dy
1� y

KCC
� �E;y�F���Ey;X�; (13)

where F�� � d���=dE and F� � d��=dE are the differ-
ential energy spectra (fluxes) of tau (anti)neutrinos and tau
leptons, and the initial fluxes at the surface of the Earth
(X � 0) being given by F0

���E� � F0
����E� �

1
4 d�=dE with

� being the �� � ��� flux at the cosmic production site in
Fig. 1. The cross section kernel KNC

� is defined in (2) and a
similar expression holds for KCC

� . Furthermore

 K��E; y� �
1

���E�
KCC
� �E; y� �

1

�dec
� �E�

Kdec
� �E; y�; (14)

where

 KCC
� �E; y� �

1

�tot
�N�E�

d�CC
�N �Ey; y�

dy
;

Kdec
� �E; y� �

1

�tot
� �E�

d��!��X0 �Ey; y�

dy
;

and ��1
� � NA�

tot
�N � NA��

CC
�N � �

NC
�N �, and �̂�1 �

��CC
� �
�1 � ��dec

� �
�1 with ��CC

� �
�1 � NA�

CC
�N in (13). The

decay length of the �� is �dec
� �E;X;��� �E=m��c����X;��

with m� � 1:777 GeV, c�� � 87:11 �m and � denoting
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FIG. 3. As in Fig. 2 but for some typical initial cosmic fluxes shown in Fig. 1. The (small) TD-SLSC and Z-burst fluxes in Fig. 1
result in a similar iterative convergence as the F0
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the Earth’s density (see, e.g., [15]). Furthermore, since
1=�tot

� �E� � �E=m����, the �-decay distribution in (14)
becomes Kdec

� �E; y� � �1� y�dn�z�=dy with z �
E��=E� � E=Ey � 1� y and [7,28]

 

dn�z�
dy

�
X
i

Bi�gi0�z� � Pg
i
1�z�� (15)

with the polarization P � �1 of the decaying ��. The �!
��X0 branching fractions Bi into the decay channel i and
the functions gi0;1�z� are given in Table I of [7]. The decay
channels i considered are �! �����, �! ��
, �!
���, �! ��a1, and �! ��X which have branching frac-
tions of 0.18, 0.11, 0.26, 0.13, and 0.13, respectively. The
lepton energy-loss is treated continuously [29–31] by the
term proportional to 	�E� in (13). Alternatively, the aver-
age energy-loss can be treated separately (stochastically)
[32,33], i.e., not including the term proportional to 	�E� in
(13) but using instead �dE=dX � 	�E� � �� �E. We
shall compare these two approaches for taus and muons
toward the end of this section. The most general solution of
Eqs. (12) and (13) has been presented in [10,13], and in the
context of atmospheric muons in [31]. For the time being,
however, we disregard the 	-term in (13) since observable
non-negligible upward-going event rates are obtained only
for energies E< 108 GeV [7,13] where the energy-loss of
the taus can be neglected [10,32–35].

In the relevant energy region below 108 GeV, the tau-
lepton interaction length is much larger than the decay
length of the � (see, e.g., [33] and below), ���E� �
�dec
� �E�, i.e., K� ’ Kdec

� =�dec
� in (14) and �̂�1

� ’ ��
dec
� �

�1

in (13). Solving (12) and (13) with a similar ansatz as for
muon neutrinos in (3), we write

 F���E;X� � F0
���E� exp

�
�

X
����E;X�

�
(16)

with an effective interaction (absorption) length

 ����E;X� �
���E�

1� Z�E;X�
; (17)

where Z � Z�� � Z�. Inserting (16) into (12) and (13)
yields [4,13]
 

Z���E;X� �
1

X

Z X

0
dX0

Z 1

0
dyKNC

� �E; y����E; y�

� e�X
0D�� �E;Ey;X

0� (18)

with �� as in (5) since F0
�� � F0

�� and D���E;Ey; X
0� �

��1
�� �Ey; X

0� ���1
�� �E;X

0�, and

 

Z��E;X� �
���E�
X

Z X

0
dX0

Z 1

0
dy

Kdec
� �E; y�

�dec
� �E;X0�

F��Ey; X
0�

�
���E; y�

F0
���Ey�

eX
0=��� �E;X

0�; (19)

where the obvious dependence of �dec
� on �0 � ��X0� has

been suppressed and

 

F��Ey;X0� �
F0
���Ey�

���Ey�

Z X0

0
dX00

Z 1

0
dy0KCC

� �Ey;y0����Ey;y0�

� e�X
00=��� �Eyy0 ;X

00�

� exp
�
�
Z X0

X00
dX000=�dec

� �Ey;X000�
�

(20)

with Eyy0 � Ey=�1� y
0� � E=�1� y��1� y0�. Notice that

the tau flux F� is generated by the CC interactions of the
initial F0

�� flux and attenuated in addition due to its decay.

In order to solve for Z�E;X� iteratively as for the �
���

�

fluxes in the previous section, one has to make a proper
choice for the initial input. Because of the D�� function in
the exponential in (18) with D�� ! 0 in the relevant y! 0
region, the iterative result for Z���E;X� is very robust with
respect to the initial input choice, as discussed after (7).
Therefore we use again Z�0��� �E;X

0� � 0 on the right-hand
side (rhs) of (18). In the case of Z��E;X� in (19) there is,
however, no equivalent exponential as in (18) and thus the
convergence of the iterative procedure becomes sensitive
to the input choice. It turns out that a convenient and
efficient input choice can be obtained by implementing
the peculiar E and X dependence as implied by the �-decay
contributions in (19) from the very beginning. This can be
achieved by choosing a vanishing Z-factor on the rhs of Z�
in (19), in which case the X0-integral can be performed
analytically [36] and the input for the total Z-factor be-
comes [13]

 

Z�0��E;X� �
���E�

�dec
� �E;��

Z 1

0
dy
Z 1

0
dy0Kdec

� �E; y�K
CC
� �Ey; y

0���1
� �Ey����E;y����Ey; y

0�
1

XD���Ey;Eyy0 �

�

�
1

D���E;Ey�
�1� e�XD���E;Ey�� �

1

D��E;Eyy0 �
�1� e�XD��E;Eyy0 ��

�

’ ���E�
Z 1

0

dy
1� y

Z 1

0
dy0Kdec

� �E;y�KCC
� �Ey; y0���1

� �Ey����E; y����Ey; y0�
1

XD��E;Eyy0 �
�1� e�XD��E;Eyy0 ��; (21)

where the last approximation is due to �dec
� � �� in the relevant energy region E< 108 GeV, i.e., Z�0� becomes practically
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independent of the decay length �dec
� . Furthermore

D��E;Ey� is given in (9), D���E;Ey� � 1=���Ey� �
1=�dec

� �E; �� and D���E;Ey� � �D���Ey; E�. We have
checked that this input guarantees, for all cosmic neutrino
fluxes considered at the present, a faster convergence of the
iterations than choosing [4] the solution for the �� flux as
an input, Z�0� � Z�1��� with Z�1��� given in (8). Moreover,
choosing [10] a vanishing initial input, Z�0� � 0, as was
perfectly sufficient for the �� fluxes, results in the worst,
i.e., slowest convergence of the iterative procedure. One
can now rewrite the solution for Z�E;X� in (18) and (19)
after the nth iteration as [36]
 

Z�n�1��E;X� �
1

X

Z X

0
dX0

Z 1

0
dyKNC

� �E; y����E; y�

� e�X
0D�n��� �E;Ey;X

0� �
���E�

�dec
� �E; ��

1

X

Z X

0
dX0

�
Z 1

0
dyKdec

� �E; y����E; y���1
� �Ey�

� e�X
0=�dec

� �Ey;��eX
0=��n��� �E;X

0�
Z X0

0
dX00

�
Z 1

0
dy0KCC

� �Ey; y0����Ey; y0�

� e�X
00=��n��� �Eyy0 ;X

00�eX
00=�dec

� �Ey;��; (22)

where ��n��� �E;X
0� � ���E�=�1� Z

�n��E;X0��, i.e.,

 D�n��� �E;Ey; X
0� �

1� Z�n��Ey; X0�

���Ey�
�

1� Z�n��E;X0�
���E�

:

(23)

Accordingly, the iterations have to be started with our
initial n � 0 input in (21). After having obtained the final
convergent result for Z�n�1�, the final �� flux F�n�1�

�� �E;X�
follows from (16),

 F�n�1�
�� �E;X� � F0

���E�e
�X=��n�1�

�� �E;X�; (24)

which in turn gives the �-flux
 

F�n�1�
� �E;X� �

1

���E�
e�X=�

dec
� �E;��

Z X

0
dX0

�
Z 1

0

dy
1� y

KCC
� �E; y�F

�n�1�
�� �Ey; X

0�

� eX
0=�dec

� �E;��: (25)

Similar expressions hold for antineutrinos as well.
The iterative results for the total Z-factor in (17) are

shown in Figs. 4 and 5 where the initial input Z�0�, as given
in (21), is displayed by the dotted curves. For the generic
initial E�1 and E�2 fluxes in (10) and (11) we also show in
Fig. 4 the results after the third iteration, Z�3�, in order to
illustrate the rate of convergence as well as its dependence
on the nadir angle � � 0	 (X � 1:1� 105 km we) and
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� � 50	 (X � 3:6� 104 km we). In general it turns out
that already the second (n � 2) iteration yields sufficiently
accurate results, Z�2�, provided one uses as input Z�0� in
(21) as implied by the �-decay. This holds also for the
rather hard initial E�1 flux in Fig. 4 and the AGN-SS flux in
Fig. 5 which imply large Z-factors, Z� 1. This is so
because the maximum difference between the results of
the next n � 3 iteration Z�3� and Z�2� is less than about 5%
for all relevant initial cosmic neutrino fluxes. An accuracy
of less than about 5% is certainly sufficient in view of the
uncertainties inherent to models of cosmic neutrino fluxes
(cf. Fig. 1). Obviously the iterative convergence improves
even more for larger values of �, i.e., smaller depths X, as
can be deduced from Fig. 4. It should be emphasized that,
in contrast to the case of muon neutrinos in Sec. II, the first
n � 1 iterative results for Z�1� are not sufficiently accurate
as can be seen from Figs. 4 and 5 by comparing the dashed
curves (Z�1�) with the solid ones (Z�2�): in some cases
(harder initial fluxes) Z�2� becomes larger than Z�1� by
about 20%. The results for ���, Z � Z ��� � Z�� , are again
similar but larger than for ��, Z � Z�� � Z�� , for E &

106 GeV where � �� > ��. Inserting the various iterative
solutions of Figs. 4 and 5 into (16) we obtain the �� fluxes
for a given nth iteration, F�n��� �E;X�. The ratios of these
fluxes for two consecutive iterations, F�n�1�

�� =F�n��� , are dis-
played in Figs. 6 and 7. Whereas the first iteration relative
to the zeroth input, F�1��� =F

�0�
�� , is way off the final result as

shown by the dashed curves, the second iteration suffices
already for obtaining a sufficiently accurate result as illus-
trated by F�2��� =F

�1�
�� by the solid curves. This is supported by

the fact that an additional third iteration results in
jF�3��� =F

�2�
�� � 1j< 0:05 for all relevant initial cosmic neu-

trino fluxes considered. (This stability does not hold [7] for
initial fluxes F0

��� ��� 
 E
�1 without an appropriate E�2

cutoff in (10) at very high energies, or for fluxes which are
partly even flatter than E�1 up to highest energies like the
Z-burst flux in Fig. 1. This instability is caused by the fact
that ���E; y� � 1 for F0

� 
 E�1 in Z� in (19); thus the huge
spike of d�CC

�N=dy at y! 1 in (19) and (20) does not get
damped by powers of �1� y�—as opposed to, e.g., F0

� 

E�2 where �� � 1� y. This, however, is of no concern for
Z�� and Z�� in (5) and (18), respectively, since there the
integrands are exponentially suppressed as y! 1 via
exp��X0D��E;Ey; X

0��. Notice that the Z-burst flux is far
too small for being tested with upward-going muon events
[5,13].) Therefore we consider F�2�

�
���

�

�E;X� as our final

result. It is furthermore obvious from Figs. 6 and 7 that
the convergence of the iterative procedure strongly im-
proves for increasing values of � (decreasing X) as illus-
trated for � � 50	.

The resulting total �� � ��� fluxes for the various initial
total cosmic fluxes F0

��� ����E� are shown in Figs. 8 and 9 for
three typical nadir angles � � 0	 (X � 1:1� 105 km we),
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� � 30	 (X � 6:8� 104 km we), and � � 60	 (X �
2:6� 104 km we). The typical enhancement (‘‘bump’’)

of the attenuated and regenerated �
���

� flux around
104–105 GeV at small values of �, which is prominent
for harder (flatter) initial fluxes like F0

�
���

�


 E�1 in Fig. 8,

and which is absent for �
���

� fluxes, agrees with the original
results of [4,7,9], as was also confirmed by a Monte Carlo
simulation [34]. Such an enhancement is less pronounced
for the GRB-WB and TD-SLBY fluxes in Fig. 9, and is
absent for steeper fluxes like for the E�2 one in Fig. 8 and
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for the even steeper AGN-M95 flux in Fig. 9. Regeneration
is responsible for an even more pronounced enhancement
below 104 GeV for the AGN-SS flux in Fig. 9 since this
flux is particularly hard below 105 GeV (cf. Fig. 1). This
latter result is shown mainly for theoretical curiosity. From
now on we shall disregard the cosmic AGN-SS flux since it
is in serious conflict with recent experimental upper
bounds [20,21] as can be seen in Fig. 1. The results for
the absolute total �� � ��� and �� � �� fluxes, arising
from the initial cosmic �� � ��� fluxes, are presented in
Figs. 10 and 11. The �� � ��� results correspond of course
to the relative ratios shown in Figs. 8 and 9. Besides the

generic initial fluxes in (10) and (11), we have in addition
used only those initial cosmic fluxes in Fig. 1 which give
rise to large enough upward-going �� ��� event rates
[5,13] measurable in present and future experiments. Note
that the �� � �� fluxes in Figs. 10 and 11 at the detector
site, despite being (superficially) suppressed with respect
to the �� � ��� fluxes, sizably contribute to the upward-
going�� ��� and shower event rates [13]. This is due to
the fact that the � fluxes do not require additional weak
interactions for producing �-events in contrast to the ��
fluxes. Because of the prompt �� decays, they furthermore
give rise to a sizeable secondary ��� � �� flux contribution
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to the original cosmic �� � ��� flux, which will be dis-
cussed in Sec. IV.

In [13] a semianalytic solution of the coupled transport
equations (12) and (13) has been presented and used, which
was obtained from the first n � 1 iteration starting with a
vanishing input Z0�E;X� � 0, instead of using (21). As we
have seen, this approach does not provide sufficiently
accurate results, despite opposite claims in the literature
[10] (the first n � 1 iteration is sufficient only for very
large values of � close to 90	, i.e., very small values of
X=� � O (100 km), relevant for neutrinos skimming the
Earth’s crust). This n � 1 iterative solution of [13] under-
estimates the correct results in some extreme cases (like for
the hard initial E�1 flux at � � 0	) by as much as 40%. On
the other hand, for increasing values of � this discrepancy
disappears very quickly. Consequently, some of the total
nadir-angle-integrated upward-going�� ��� event rates
calculated in [13] will be increased by less than about 2%.
This is due to the fact that 80% of the �� ��� rates are
initiated by the �� � ��� flux and only about 20% derives
from the �� � ��� and the associated �� � �� fluxes. For
completeness we present in Table I the correct expectations
for the total �� ��� event rates for the relevant domi-
nant initial cosmic fluxes in Fig. 1, using Eqs. (12) and (14)
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of [13] for calculating the rates initiated by the �� � ��� and
�� � �� fluxes, respectively.

Finally, it is also of interest to compare the tau-lepton
range as given by our semianalytic approach of treating the
energy loss continuously in (13), with the one obtained by
a stochastic treatment of the lepton energy loss (where the
	�E� term in (13) is absent, i.e., the energy loss is treated
separately, and the relevant survival probability P�E;X� is
calculated using Monte Carlo simulations, e.g.,
[32,35,37,38]). To do this, we can drop the inhomogeneous
neutrino term in (13) and the resulting homogeneous trans-
port equation for F��E;X� can be easily solved [13]:

 F��E;X� � F�� �E�X;E�; 0� exp
�
�
Z X

0
A� �E�X0; E��dX0

�

(26)

with A�E� � 1=�̂�E� � @	�E�=@E, �̂�1 � ��CC
� �
�1 �

��dec
� �

�1, and where d �E�X;E�=dX � 	� �E� with �E�0; E� �
E. The survival probability P�E0; X� for a tau lepton with
an initial energy E0 at X � 0 is then defined by the ratio of
the energy-integrated differential fluxes F� at X and X �
0: assuming, as usual, a monoenergetic initial flux in (26),
F�� �E�X;E�; 0� 
 
�E� E0�, one obtains [10]

 P�E0; X� �
	� ~E0�

	�E0�
exp

�
�
Z X

0
A� ~E0�X

0; E0��dX
0

�
; (27)

where we have used [13] d �E=dE � 	� �E�=	�E� and
d ~E0�X;E0�=dX � �	� ~E0� with ~E0�0; E0� � E0. The
(tau) lepton range for an incident lepton energy E and a
final energy ~E�X;E� required to be greater than Emin at the
detector, say, is then defined by

 R�E� �
Z Xmax

0
P�E;X�dX; (28)

where we have substituted E for E0 in (27) and the upper
limit of integration Xmax derives from ~E�X;E� � Emin.

(Notice that for energy-independent values of � and � in
	�E� � �� �E one simply gets Xmax �

1
� ln ���E

���Emin .) For
calculating the �-lepton range R��E� we use in 	� for the
ionization energy loss [39,40] �� ’ 2:0�
10�3 GeV �cm we��1 and for the radiative energy
loss (through bremsstrahlung, pair production and photo-
nuclear interactions) [10] �� � ���E� ’ �0:16�
0:6�E=109 GeV�0:2� � 10�6 �cm we��1 which parame-
trizes explicit model calculations [32,35] for standard
rock (� � 2:65 g=cm3) reasonably well for 103 & E &

109 GeV. Furthermore we impose [32] Emin � 50 GeV.
Our results for the �-lepton range are shown in Fig. 12
which agree of course with the ones in [10]. The �-decay
term dictates the �-range until E> 107 GeV where the tau-
lepton energy loss becomes relevant. The dashed-dotted
curve shows the range as obtained by omitting the contri-
bution due to the CC interaction length �CC

� in �̂ in (27).
This term will be relevant for E * 1010 GeV where �CC

�
becomes comparable to �dec

� as evident from Fig. 13. For
comparison, stochastic Monte Carlo evaluations [32,35,38]
of the �-range are shown in Fig. 12 by the dotted curves
which are of course strongly dependent on the assumed
model extrapolations of the radiative cross sections to
ultrahigh energies. Our results depend obviously also on
such extrapolations due to specific choices of ���E�.
Nevertheless, one concludes [10] from Fig. 12 that the
continuous tau-lepton energy loss approach, as used in
(13), yields very similar results as the stochastic
Monte Carlo calculations where the energy loss is treated
separately.

A similar conclusion holds for the muon-range R��E�
which we show for completeness in Fig. 14. Within the
continuous muon energy loss approach, R� follows
from (27) and (28) where the �dec

� term has to be omitted
and in 	��E�������E we take ��’��’2:0�
10�3 GeV�cmwe��1 and [32,35] ��’6:0�
10�6 �cmwe��1 which, moreover, reproduces best [5] the

TABLE I. Total nadir-angle-integrated upward-going �� ��� event rates per year from ��� � ����N and ��� � ����N interactions
in rock, with the latter being given in parentheses which are taken from Table 1 of [5], for various muon-energy thresholds Emin

� and the
appropriate dominant cosmic neutrino fluxes in Fig. 1. The �� � ��� and �� � �� initiated rates are calculated according to Eqs. (12)
and (14) of Ref. [13], which are added to the �� � ��� initiated rates in parentheses in order to obtain the final total rates. A bar signals
that the rates fall below 0.01. This table corrects Table I of Ref. [13].

Flux Detector Muon-energy threshold Emin
� =GeV

103 104 105 106 107

ANTARES 16.63 (13.7) 6.28 (5.00) 2.51 (1.98) 1.06 (0.90) 0.34 (0.32)
AGN-M95 AMANDA-II 34.90 (29.1) 10.76 (8.62) 3.78 (2.98) 1.58 (1.34) 0.49 (0.46)

IceCube 170.24 (143) 41.72 (33.7) 14.22 (11.2) 5.93 (5.04) 1.83 (1.74)

ANTARES 0.75 (0.60) 0.39 (0.32) 0.10 (0.08) 0.01 (0.01) �

GRB-WB AMANDA-II 1.39 (1.10) 0.68 (0.56) 0.15 (0.13) 0.02 (0.02) �

IceCube 5.55 (4.35) 2.59 (2.13) 0.57 (0.49) 0.07 (0.06) �

ANTARES 0.84 (0.62) 0.59 (0.45) 0.33 (0.26) 0.14 (0.12) 0.05 (0.05)
TD-SLBY AMANDA-II 1.33 (0.97) 0.91 (0.68) 0.49 (0.39) 0.21 (0.18) 0.07 (0.07)

IceCube 5.11 (3.70) 3.42 (2.57) 1.84 (1.47) 0.78 (0.68) 0.26 (0.25)
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Monte Carlo result of Lipari and Stanev [37] for the
average muon-range in standard rock for E> 103 GeV.
Furthermore we choose [32] the final muon energy to be
larger than Emin � 1 GeV. (It should be noted that here
P��E;X� ’ 1 in (27), i.e., R��E� ’ Xmax in (28).) The
muon-range R� calculated within the continuous muon
energy loss approach yields again, as in the case of taus,
very similar results as the stochastic Monte Carlo calcu-

lations [32,35,38] for Rsto
� as shown in Fig. 14. This is

contrary to the conclusions reached in [10] that the con-
tinuous approach to the muon energy loss overestimates
the muon-range as compared to stochastic Monte Carlo
simulations. Therefore the continuous approach to the
lepton energy loss is applicable to both taus and muons,
since in both cases it yields similar results for the lepton
ranges as the stochastic Monte Carlo simulations with the
energy loss being treated separately.

IV. THE TRANSPORT EQUATION OF MUON
NEUTRINOS INCLUDING SECONDARY MUON

NEUTRINOS FROM TAU NEUTRINO
INTERACTIONS

It has been pointed out [14] that the �� � � regeneration
chain �� ! �! �� ! . . . creates a secondary ��� � ��
flux due to the prompt, purely leptonic, tau decays �� !
���

� ��� and �� ! ����
���. This will enhance the regen-

erated �
���

� fluxes calculated according to (1) and thus also
the ‘‘naively’’ calculated [5,15,41] upward-going muon
event rates at the detector site. Secondary neutrinos origi-
nate from the associated �� flux F��E;X� and a prompt �
decay like �� ! ���X0. Adding those contributions, de-
noted by G

� �
���

! �
���

�

�E;X�, to the simple transport equa-

tion (1) used thus far one obtains

 

@F���E;X�

@X
� �

F���E;X�

���E�
�

1

���E�

�
Z 1

0

dy
1� y

KNC
� �E; y�F���Ey; X�

�G�E;X� (29)
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based on the ALLM97 parametrization of structure functions for
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parametrization (Bugaev-Schlepin) for extrapolating the latter
cross section to ultrahigh energies, results in a �-range which is
about 25% smaller than the upper dotted curve at E � 1012 GeV
[38].
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with G � G��!�� where

 G��!���E;X� �
1

�dec
� �E; ��

Z 1

0

dy
1� y

Kdec
�� �E; y�F���Ey; X�

(30)

and a similar transport equation holds for F ��� with an
appropriate expression for G��! ��� . The relevant � fluxes
F�� have been calculated in the previous section
(cf. Figs. 10 and 11). As in (14), the decay kernel in (30)
is Kdec

�� �E; y� � �1� y�dn��!���z�=dy with z � 1� y and
the relevant �� ! ��X

0 decay distribution is given by [28]
 

dn��!���z�

dz
� B���2� 6z2 � 4z3

� P��2� 12z� 18z2 � 8z3�� (31)

with P � �1 and the branching fraction B�� � 0:18. For a
decaying �� ! ���X0 one has P � �1 in (31). Notice that

the �
���

� spectrum in (31) is a little softer than the �
���

�

spectrum from the �� ! �
���

�X0 decay [7,28] in (15).
It should be noticed that the contribution of secondary

neutrinos may alternatively be calculated using directly the

�
���

� fluxes F
�
���

�

�E;X� which give rise to the reaction chains

��!
CC
�� ! ���X

0 and ���!
CC
�� ! ��X

0. Denoting these
contributions by G��! ����E;X� and G ���!���E;X�, respec-
tively, the inhomogeneous term in the transport equa-
tion (29) is given by G � G ���!�� with

 G ���!���E;X� � NA
Z 1

0

dy
1� y

Z 1

0

dz
z

dn��!���z�

dz

�
d�CC

��N�
Ey
z ; y�

dy
F ���

�Ey
z
; X
�
; (32)

where Ey=z � E=�1� y�z, the decay distribution is given
by (31) and the relevant flux F ��� has been calculated in the
previous section (cf. Figs. 10 and 11). Although (30) and
(32) yield the same quantitative results for F���E;X�, these
two expressions should not be added since it would corre-
spond to double counting the effect of secondary neutrino
production. This is due to the fact that the CC contribution
G��!� has been already included in (13) [third term on the
rhs] for calculating F�. (The situation here is very similar
to the calculation of the atmospheric muon flux [28,31]
where almost all muons come from meson decays with the
meson flux being generated by nucleon interactions with
air, i.e., by nucleon ! meson transitions. These latter tran-
sitions are taken into account only in the evolution equa-
tion of the meson flux, but not anymore for the muon flux
evolution.) For definiteness, we use the simpler expression
in (30) for our subsequent calculations.

As in our previous cases, the most general transport
equation (29) for muon neutrinos is easily solved by an

ansatz like (16) for tau neutrinos,

 F���E;X� � F0
���E� exp

�
�

X
���G�E;X�

�
(33)

with

 ���G�E;X� �
���E�

1� Z��G�E;X�
(34)

and Z��G � Z�� � ZG. Inserting (33) into (29) one obtains
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flux is taken from (10) divided by 2.
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Z���E;X� �
1

X

Z X

0
dX0

Z 1

0
dyKNC

� �E; y����E; y�

� e�X
0D�� �E;Ey;X

0� (35)

which is similar to (5) but with D���E;Ey; X
0� �

��1
��G
�Ey; X0� ���1

��G
�E;X0�, and

 ZG�E;X� �
���E�

F0
��E�

1

X

Z X

0
dX0G�E;X0�eX

0=���G�E;X
0�: (36)

Using again an iteration algorithm to solve for Z��G�E;X�,
the solution of (35) and (36) after the nth iteration becomes
 

Z�n�1�
��G
�E;X� �

1

X

Z X

0
dX0

Z 1

0
dyKNC

� �E; y����E; y�

� e�X
0D�n��� �E;Ey;X

0� �
���E�

F0
���E�

1

X

�
Z X

0
dX0G�E;X0�e

X0=��n���G�E;X
0�
; (37)

where D�n��� is as defined above with ���G ! ��n���G and

��n���G�E;X
0� � ���E�=�1� Z

�n�
��G
�E;X0��. Because of the

dominant and large �-decay contribution G�E;X� in (29),
it turns out that the optimal input choice for providing
sufficiently convergent iterative solutions is obtained by
implementing, as in the case of tau neutrinos in Sec. III, the

peculiar E and X dependence as implied by the � decays,
i.e., byG in (36) from the very beginning. Therefore we use
again (see discussion after Eq. (20)) Z�0����E;X� � 0 and a
vanishing Z-factor on the rhs of ZG in (36) which gives for
the total input Z-factor

 Z�0���G�E;X� �
���E�

F0
��E�

1

X

Z X

0
dX0G�E;X0�eX

0=���E�: (38)

Inserting this into the rhs of (37) results in the first iterative
solution Z�1���G�E;X�, and so on. In contrast to Z�1��� in (8),

Z�1���G does not provide us with a sufficiently accurate final

result, i.e., the maximum difference between Z�1���G and

Z�2���G is here not always less than about 5% for some initial

cosmic neutrino fluxes and energies. Therefore we have to
carry out one further iteration, as in the case of tau neu-
trinos in Sec. III, by inserting Z�1���G into the rhs of (37) in

order to obtain Z�2���G�E;X� which turns out to be suffi-

ciently close to the final result since jZ�3���G=Z
�2�
��G
� 1j &

0:02.
Our iterative results for Z�1;2���G

are shown in Figs. 15 and

16 together with the appropriate input Z�0���G in (38) shown

by the dotted curves. In order to illustrate the faster iter-
ative convergence for increasing � (smaller X), the results

 

0.0

0.5

1.0

1.5

103 104 105 106 107

E [GeV]

Z
ν µ

G
 (

E
,X

)

GRB-WB

0°
ZνµG

(0)

ZνµG
(1)

ZνµG
(2)

103 104 105 106 107 108

TD-SLBY

0°

0.0

0.2

0.4

0.6

0.8

1.0

F0
ν ∝ E -2

θ=0°

AGN-M95

0°

FIG. 16. As in Fig. 15 but only for � � 0	 and for the generic initial E�2 flux in (11), divided by 2, and the three dominant initial
cosmic fluxes in Fig. 1.

S. RAKSHIT AND E. REYA PHYSICAL REVIEW D 74, 103006 (2006)

103006-14



for � � 50	 are presented in Fig. 15 as well. The suffi-
ciently accurate results Z�2���G�E;X� and the similar expres-

sions for Z�2����G
, when inserted into (33), yield the final total

fluxes F��� ����E;X� shown in Figs. 17 and 18. The effect
and importance of secondary neutrinos is best seen by
comparing our results (solid and dashed curves) with the
usual ones [3,5,7,15] obtained just for primary muon neu-

trinos (G � 0 in (29)) shown by the dotted curves, which
correspond of course to the results obtained in Sec. II. Our
results in Fig. 17 agree with the ones obtained in [9], within
the approximations made there.

The corresponding �
���

� initiated upward-going �
���
�

event rate per unit solid angle and second is calculated
according to
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N
����
�� � NA

Z
Emin
�

dE�
Z 1�Emin

� =E�

0
dyA�E��R��E�; E

min
� �

�
d�CC

��N
�E�; y�

dy
F���E�; X� (39)

with E� � �1� y�E� and the energy dependent area
A�E�� of the considered underground detectors is taken
as summarized in [5]. The muon-range is given by
R��E�; E

min
� � �

1
��

ln
�����E�
�����Emin

�
. It describes the range of

an energetic muon being produced with energy E� and, as
it passes through the Earth loses energy, arrives at the
detector with energy above Emin

� . The energy-loss parame-
ters are taken as at the end of the previous section, i.e.,
�� � 2� 10�3 GeV �cm we��1 and �� � 6�
10�6 �cm we��1. The integral over the neutrino energy
E� was, for definiteness and better comparison [9], per-
formed up to a maximum neutrino energy of 108 GeV. The
differential �-dependent �� ��� rates for Emin

� �

104 GeV and Emin
� � 105 GeV are shown in Figs. 19 and

20. We also include the contributions initiated by the
primary �� � ��� flux, for brevity denoted by �� ! �,
and by the �� � ��� flux via �� ! �! � and the �� � ��

flux via �! � as discussed in the previous section. The
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secondary neutrino contributions to the muon event rates
have their largest relative contributions obviously at small
nadir angles, with an enhancement over the primary �� �
�� � � initiated rates of up to 40% for the hard E�1, AGN-
M95, and TD-SLBY initial fluxes.

At small nadir angles, however, the event rates are
smallest and statistics are low. For � * 60	 the event rates
are roughly a factor of (more than) 10 larger and the
enhancement of the overall �� � �� � � initiated muon
rates (dashed-dotted curves in Figs. 19 and 20) cannot be
larger than about 15%. These results are more explicitly
illustrated in Tables II and III where we present, besides the
total nadir-angle-integrated rates, also the ones integrated
over three typical �-intervals. (Remember that this
amounts to integrating (39) over

R
2

0 d’

R�max
�min

d� sin� �

2

R�max
�min

d� sin�, with �min � 0	 and �max � 90	 for the
total rates.) Since secondary muon neutrinos contribute
significantly to a muon excess only at small and medium

nadir angles, � < 60	, the primary event rates (shown in
brackets in Tables II and III) can be enhanced by more than
20%, in particular, for Emin

� � 105 GeV. The statistics,
however, are low since the fluxes are already strongly
attenuated for � < 60	 (large X), cf. Figs. 17 and 18.
On the other hand, since most of the events are generated
at large �, � > 60	, where the effect of secondary neutrinos
is sizably reduced (cf. Figs. 19 and 20), the total rates
in Tables II and III are increased by less than 10%.
Since the expected angular resolution of present and
proposed detectors [21,42] is typically about
1	=�E�=TeV�0:7, differential �-dependent measurements
should be feasible, in order to delineate experimentally
the effects of secondary neutrino fluxes. Keeping in mind
that the lifetime of the planned experiments is roughly ten
years, it appears to be not unreasonable that the tenfold
rates implied by Tables II and III may be observable in the
not too distant future.

TABLE II. Nadir-angle-integrated upward-going �� ��� event rates per year for muons with energy above Emin
� � 104 GeV. The

events produced by the primary �� � ���, �� � ���, and �� � �� fluxes are given in parentheses, which are obtained from
appropriately integrating the relevant dashed-dotted curves in Fig. 20. Notice that the total (0	 � � � 90	) event rates in brackets
in the last column agree of course with the final total rates in Table I. Adding to these conventional primary rates the ones induced by
the secondary �� � ��� fluxes, originating from �� ! �� and �� ! ���, one obtains the final results shown. These additional
secondary �� � ��� contributions are calculated according to (39) and correspond to integrating appropriately the relevant solid curves
in Fig. 20.

Flux Detector Number of events
0	 � � � 30	 30	 � � � 60	 60	 � � � 90	 Total

ANTARES 0.19 (0.18) 1.13 (1.05) 5.25 (5.04) 6.58 (6.28)
AGN-M95 AMANDA-II 0.40 (0.38) 2.15 (2.03) 8.66 (8.34) 11.22 (10.76)

IceCube 1.62 (1.54) 8.54 (8.06) 33.35 (32.13) 43.50 (41.72)

ANTARES 0.02 (0.01) 0.10 (0.09) 0.28 (0.28) 0.39 (0.39)
GRB-WB AMANDA-II 0.03 (0.03) 0.18 (0.17) 0.48 (0.48) 0.69 (0.68)

IceCube 0.12 (0.11) 0.69 (0.67) 1.84 (1.82) 2.65 (2.59)

ANTARES 0.01 (0.01) 0.07 (0.06) 0.54 (0.52) 0.62 (0.59)
TD-SLBY AMANDA-II 0.01 (0.01) 0.12 (0.10) 0.83 (0.79) 0.96 (0.91)

IceCube 0.05 (0.04) 0.44 (0.38) 3.14 (3.00) 3.63 (3.42)

TABLE III. As in Table II but for Emin
� � 105 GeV. A bar signals that the rates fall below 0.01.

Flux Detector Number of events
0	 � � � 30	 30	 � � � 60	 60	 � � � 90	 Total

ANTARES 0.01 (0.01) 0.20 (0.17) 2.46 (2.33) 2.67 (2.51)
AGN-M95 AMANDA-II 0.02 (0.02) 0.31 (0.26) 3.68 (3.50) 4.01 (3.78)

IceCube 0.08 (0.06) 1.16 (0.98) 13.89 (13.20) 15.11 (14.22)

ANTARES � 0.02 (0.02) 0.08 (0.08) 0.10 (0.10)
GRB-WB AMANDA-II � 0.03 (0.03) 0.12 (0.12) 0.15 (0.15)

IceCube 0.01 (0.01) 0.11 (0.10) 0.47 (0.46) 0.58 (0.57)

ANTARES � 0.03 (0.02) 0.32 (0.30) 0.34 (0.33)
TD-SLBY AMANDA-II � 0.04 (0.03) 0.48 (0.45) 0.52 (0.49)

IceCube 0.01 (0.01) 0.14 (0.12) 1.79 (1.71) 1.94 (1.84)
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V. SUMMARY AND CONCLUSIONS

For the sake of completeness we have first studied the

solutions of the single transport equation for cosmic �
���

�

neutrinos propagating through the Earth. Although fre-
quently used, the excellent convergence of its iterative
solutions has not been explicitly demonstrated thus far
for more realistic and hard cosmic neutrino fluxes. Using
the symbolic ansatz for the solution F��E;X� � F0

��E��
exp��1� Z�X=���, with �� being the neutrino interaction
length, the most simple input choice Z�0����E;X� � 0 suffi-

ces to produce a sufficiently accurate iterative result Z�1���
already after the first iteration, for all presently used initial
cosmic model fluxes F0

�.
Turning to the iterative solutions of the far more com-

plicated coupled transport equations for �
���

� and their
associated �� fluxes, a new semianalytic input algorithm
is presented which allows for a fast convergence of the
iterative solutions: already a second n � 2 iteration suffi-
ces for obtaining a sufficiently accurate result Z�2� and thus
for the final F

�
���

�

and its associated F�� fluxes. In order to

achieve this one has to implement the peculiar E and X
dependence as implied by the �� decay contributions al-
ready into the initial zeroth order input Z�0��E;X�.
Choosing a vanishing input Z�0� � 0 as in the case for

�
���

� fluxes or even the final solution for the �
���

� flux as

an input, Z�0� � Z�1��� , as frequently done, results in a far
slower convergence of the iterative procedure. For com-
pleteness we briefly outline also the implications for the
upward-going �� ��� event rates for underground neu-
trino detectors using some relevant cosmic neutrino fluxes.
These events are generated by the so-called ‘‘primary’’

�
���

�, �
���

� and �� fluxes via the weak transitions and decays

��!
CC
�, ��!

CC
�! � and �! �. Furthermore, for calcu-

lating the range R��E� of tau leptons, their energy loss can
either be treated ‘‘continuously’’ by including it directly in
the transport equation, or ‘‘stochastically’’ by treating it
separately. Both approaches give very similar results for R�
up to highest energies of 1012 GeV relevant at the present.
A similar agreement is obtained for the muon-range R��E�.
Therefore the continuous approach is applicable to both
taus and muons. This is contrary to claims in the literature
that the continuous approach overestimates R� as com-
pared to stochastic Monte Carlo simulations.

Finally, we generalized the single transport equation for

�
���

�, by taking into account the contributions of secondary
�� and ��� fluxes. These so-called ‘‘secondary’’ muon
neutrino fluxes originate from prompt �� decays where
the � leptons are generated by the regeneration chain �� !
�! �� ! . . . when a cosmic �� passes through the Earth.
Thus the secondary �� � ��� flux arises from the associ-
ated �� flux, as obtained from the coupled transport equa-
tions for �� and �, which initiates the �! �� transitions
(�� ! ���� ��� and �� ! �������). In order to achieve a
sufficiently fast convergence of the iterative solutions of
the single generalized transport equation of muon neutri-
nos, one again has to implement the peculiar E and X
dependence as implied by the weak �-decays already into
the initial zeroth order input Z�0��E;X�. In this case one
needs only n � 2 iterations for obtaining a sufficiently
accurate result Z�2��E;X� for calculating the final second-
ary �� and ��� fluxes. The �� ��� event rates initiated
by the secondary neutrinos are largest obviously at small
nadir angles (� < 60	), with a relative enhancement of at
most 40% over the primary �� � �� � � initiated rates for
the hard initial cosmic fluxes like AGN-M95 and TD-
SLBY. At larger nadir angles, � * 60	, the muon rates
are dominantly initiated by the primary �� � �� � � flux
and the secondary �� � ��� flux becomes naturally less
relevant. Thus the secondary neutrino flux will enhance the
total nadir-angle-integrated muon event rates only by less
than 10%. Nevertheless, it should be possible to observe
the effects of secondary neutrinos with differential
�-dependent measurements, keeping in mind that the an-
gular resolutions of the proposed underground neutrino
telescopes will reach sub-arc-minute precisions.
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