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In this manuscript we track the evolution of a system consisting of two self-gravitating virialized
objects made of a scalar field in the Newtonian limit. The Schrödinger-Poisson system contains a potential
with self-interaction of the Gross-Pitaevskii type for Bose condensates. Our results indicate that solitonic
behavior is allowed in the scalar field dark matter model when the total energy of the system is positive,
that is, the two blobs pass through each other as should happen for solitons; on the other hand, there is a
true collision of the two blobs when the total energy is negative.
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I. INTRODUCTION

The most widely studied dark matter hypothesis consists
in assuming that it is made of pointlike cold particles that
are responsible for the formation of structure in the uni-
verse; among the most studied candidates nowadays are the
supersymmetric particles that would behave as a cold fluid
made of particles. However, two problems associated with
the pointlike nature of dark matter are that the resulting
gravitational collapse shows a central density profile that is
not flat and on the other hand it predicts a nonobserved
amount of small structures. An alternative to ameliorate
these two problems consists of assuming that the dark
matter is made of an ultralight spinless particle, the so-
called Scalar Field Dark Matter Model (SFDM). In the
cosmological frame, the analysis of such hypothesis indi-
cated that the power of structures could be controlled
through a parameter in the model, that is, the mass of the
scalar field representing the spinless particle [1–3]. Once
the massm of the boson is fixed the power spectrum suffers
a cutoff according to the mass of the smallest structure
desired. An interesting assumption in such analysis is that
the scalar field potential was a coshlike potential, that
behaved as an exponential at early times and as a free field
case (quadratic potential) at late times, whose behavior was
that of the usual cold dark matter model. Moreover, it was
found that the SFDM enjoys the same advantages at cos-
mic scale as the standard lambda cold dark matter model.

Because the SFDM requires the existence of a funda-
mental scalar field for its reliability, it is natural to consider
that this scenario fits very well within unification theory
scenarios and braneworld models [4]. This by itself is a
good enough reason to consider the SFDM as an alternative
powerful model, because it contains intrinsically the spin-
less boson as dark matter particle. However, once at cosmic
scales the model matches with observations, it is necessary
to study the predictions of the model at structure scales. In
this sense there have been several results indicating that the
model is good also at galactic scales and here we briefly
summarize such results.

At the early stages of the galactic dark matter model,
fully general relativistic stationary solutions were proposed
to explain the phenomena like the flatness of rotation
curves, assuming the scalar field was real [5,6], nontopo-
logical scalar field dark halos [7], complex scalar fields [8],
and global monopoles [9]. Later on, the assumptions re-
laxed to the Newtonian limit of such general relativistic
models. By this time, quintessential dark matter halos [10–
12] and the fluid dark matter made of scalar fields were
proposed as an alternative galactic dark matter model [13]
and the collapse of fuzzy dark matter made of a scalar field
was analyzed in one dimension [14]. On the other hand, the
assumption of time independence was also relaxed and
scalar field dark matter halos were proposed to be gigantic
oscillatons, that is, time-dependent fully relativistic scalar
field solutions to the Einstein-Klein-Gordon system of
equations [15,16].

Currently what appears to be the interesting case is that
of the time-dependent Newtonian limit of the model, that
is, the Schrödinger-Poisson (SP) system of equations
would describe the model at local scales. In this direction
relevant results have been found, for instance, it was shown
that when the evolution of a structure of galactic mass is
followed after the turnaround point, it quickly virializes
and tends to a stationary equilibrium solution of the SP
system of equations, whereas one of the size of a super-
cluster would still be relaxing at the present time [17]. The
condition is that the mass of the boson (m� 10�23 eV) is
the one that better cuts off the power spectrum at galactic
scales as shown in [1,2]. Thus, at the moment the pieces of
the model seem to match both, at cosmic and at local
scales. In fact, recently in [18] it was shown that the scalar
field gravitational collapse tolerates the introduction of a
self-interaction term in the potential, which makes the
model seem quite like a self-gravitating Bose condensate.
In [19] we showed that spherically symmetric equilibrium
solutions of the SP system are stable against nonspherical
perturbations, and moreover, such configurations played
the role of late-time attractors for initially quite general
axisymmetric initial density profiles.
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What we present here is a step forward in the direction of
studying the evolution of scalar field structures. We per-
form numerical studies of scalar binary configurations, as a
first step towards the making of a numerical code with no
symmetries and for N-scalar objects. These studies would
tell us about possible restrictions on self-interaction terms
for the scalar field, and the way single configurations
interact with each other. We restrict ourselves to the case
of head-on interaction, which can be handled with a 2D
code with axisymmetry. We choose to write down the SP in
cylindrical coordinates:
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where  �  �x; z; t� and U � U�x; z; t� are the wave func-
tion and the gravitational potential, respectively; x, z are
the radial and axial cylindrical coordinates, respectively.
The third order term in Eq. (1) is related to a self-
interacting term, in which � corresponds to the s-wave
scattering length in the Gross-Pitaevskii approximation for
Bose condensates [20]. This term was shown to play the
role of determining the compactness of the structure [18].
Eqs. (1) and (2) use the units and scaling @ � c � 1 with
x! mx, z! mz, t! mt and the wave function  !����������

4�G
p

 , where m is the mass of the ultralight boson. A
consequence of this change of units is that the mass of a
system will be in units of �M	 � M2

pl=m as found also for
fully relativistic boson star solutions [18,21]; this implies
that the value m sets the physical length and time scale of
the configurations evolved. This mass, together with the
scaling relations of the Schrödinger-Poisson system
[17,19,22] are the basics for transforming back to physical
units the system of interest (see an example below).

The paper is organized as follows. In the next section we
briefly describe the code used. In Section III we construct
initial data containing two spherically symmetric equilib-
rium configurations along the z axis. In Section IV we
show the results for the head-on interaction of the two
structures. Finally in Section V we draw some conclusions.

II. NUMERICAL METHODS

The evolution. The most common numerical technique
for time-integrating Eq. (1) is implicit with alternating
direction splitting of the evolution operator [23,24]. The
reason for this is that the evolution operator is unitary.
Nevertheless, we used such method in [22], where no
need for splitting the operator on the right-hand side of
Eq. (1) was needed; in [18,19] it was shown that explicit
methods preserve also the number of particles and no
significant difference in the results is found after using
one method or the other. For the present case an explicit

approximation of the full implicit method (in practice, a
modified iterative Crank-Nicholson method [16]), with
second order finite differencing to calculate the spatial
derivatives is used. The reason to avoid using the implicit
method is the difficulty in reducing the evolution operation
to a tridiagonal system of equations when considering a
nonzero �, which makes the Schrödinger equation a non-
linear one, a situation not discussed in [23,24].

Poisson equation. Eq. (2) is an elliptic equation for U
which we solve using the 2D five-point stencil for the
derivatives and a successive over-relaxation (SOR) itera-
tive algorithm with optimal acceleration parameter (see,
e.g., [25] for details about SOR). In order to impose
boundary conditions we made sure the boundaries were
far enough for the mass M �

R
j j2d3x to be the same

along the three faces of the domain and used the monopolar
term of the gravitational field; that is, we used the value

U � �M=r along the boundaries with r �
����������������
x2 � z2

p
. At

the axis we demanded the gravitational potential to be
symmetric with respect to the axis.

We used a sponge in the outermost region of the domain.
The sponge is a concept used with success in the past when
dealing with the Schrödinger equation (for detailed analy-
ses see [22,26]). This technique consists of adding up to the
potential in the Schrödinger equation an imaginary part.
The result is that in the region where this takes place there
is a sink of particles, and therefore the density of proba-
bility approaching this region will be damped out, with
which we get the effects of a physically open boundary.

Basic test beds of this code evolving single equilibrium
configurations can be found in [19], where the results are
also compared with previous studies with spherical sym-
metry and linear perturbation theory.

III. INITIAL DATA

Details about the construction of initial data for spheri-
cally symmetric equilibrium configurations can be found in
[18,19,22]. Here we briefly mention the procedure used in
our binary case. What we do is to superpose two spheri-
cally symmetric ground state equilibrium configurations
upon the same 2D axially symmetric grid, whose construc-
tion is described as follows. In spherical symmetry Eqs. (1)
and (2) read

 i@t � �
1

2r
@2
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 @2
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where r �
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p
. If a time dependence of the type  �

�ei!t, regularity at the origin, and an isolation condition
��r! 1� � 0 are assumed, the system becomes an ei-
genvalue problem for � with eigenvalue !:

 @2
r�r�� � 2r�U�!� � 2�j�j2�; (5)
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 @2
r�rU� � r�2: (6)

In order to solve these equations we discretize them and
use a shooting method that bisects the value of! so that the
boundary conditions hold with certain desired accuracy.
The solutions constructed in this way are called equilib-
rium configurations. For each value of � it is possible to
construct the whole branch of equilibrium configurations
as shown in [18]. However there is an extra ingredient in
these solutions: the number of nodes of the wave function.
When the wave function is nodeless, we say it belongs to
the ground state; when the wave function has a given
number of nodes, we can construct also the branches of
solutions that—by analogy with the particle in a box—are
called excited spherical states. However, as shown in
[18,22] such excited states are unstable and decay into
ground states; in fact ground states are stable and late-
time attractors for quite arbitrary initial wave function
profiles [18,19]. Because the excited states are unstable
and decay in a short time scale we collide in the present
task only ground state configurations.

Once we account for these ground state data: i) we
interpolate the wave function of such configuration cen-
tered at �0; z0�, ii) we place another of these equilibrium
configurations at the point �0;�z0�, iii) we choose z0 so
that the two configurations are far enough from one another
(see below) and iv) we resolve the Poisson Eq. (2). Then
we have initial data for two ground state equilibrium
configurations in our axially symmetric domain.

Summarizing, we choose to solve the initial value prob-
lem in spherical coordinates to make sure that we start the
evolution with very accurate values, and we evolve in a 2D
grid using cylindrical coordinates because we found them
necessary and practical for the binary case in which we are
interested.

Special warning is needed in Eq. (1), because it is non-
linear for the � � 0 case, which indicates that the super-
position of two wave functions is not allowed. Assume  1

and  2 represent the solutions of the initial spherically
symmetric configurations that are to be superposed onto
the 2D grid; the density of probability in (2) for the total
wave function  �  1 �  2 is j 1 �  2j

2 and unless these
states are orthogonal one cannot consider the naive super-
position above is allowed. Thus we choose the distance
between the configurations such that the interference
(given by the scalar product of the two wave functions)
h 1;  2i is of the order of the precision of our calculations,
say, in our case, the precision of the interpolation of the
data into the 2D grid. Thus we can think of the system as
one made of two adequately superposed equilibrium con-
figurations we want to collide. An example of the interfer-
ence term is shown in Fig. 1.

The superposition of configurations by itself would say
little about whether or not two configurations collide. We
add an extra ingredient to the system, that is, an initial
head-on momentum to the initial scalar field balls. We

simply generate different initial kinematical states by as-
signing new values to the wave functions of the equilib-
rium configurations:  1 !  1eipzz and  2 !  2e�ipzz.
The resulting physical situation involves a considerable
change in the value of the expectation value of kinetic
energy in the system.

Fortunately, in the present Newtonian low energy regime
it is possible to estimate expectation values of physical
quantities, a property difficult to pose in the fully general
relativistic case. For instance, we account for the observ-
ables that allow one to monitor the evolution of the physi-
cal situation. Because we deal with a quantum mechanical
system, we simply estimate the expectation values of the
following interesting operators:

 K � �
1

2

Z
 �r2 d3x (7)
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1

2

Z
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 I �
Z

�j j4d3x (9)

which are the expectation values of the kinetic, gravita-
tional, and self-interaction energies. These quantities are
quite important in determining the state of the system at
any time during the evolution of the system. That is, the
value of the total energy E � K �W � I indicates
whether we account for a bounded system or not, and the
very important virial theorem relation 2K �W � 3I � 0
[27], which is nearly satisfied when the system gets virial-
ized and relaxed through whatever channels are available,
for instance, the emission of scalar field bursts, the so
called gravitational cooling.

IV. HEAD-ON COLLISIONS AND SOLITONIC
BEHAVIOR

A. Equal mass case

The first scenario one might think of is the collision of
two equal mass ground state configurations. In Fig. 2 we
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FIG. 1. (Left) An example of two ground state configurations
superposed along the z-axis with two different separations.
(Right) The interference h 1;  2i is shown for two cases.
Different separations are used and the two configurations have
a central field value  �0� � 1:0. The initial head-on momentum
is pz � 3:0.
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show snapshots of the density profile along the z-axis for
an initial configuration with pz � 3:0 and z0 � 15 in the
free field case (� � 0). What is found is that the two blobs
move toward each other and eventually they lie upon each
other, an interference pattern gets formed, and after a while
one blob moves toward the left and the other toward the
right. The first interpretation is that the initial data behave
like solitons. Unfortunately we cannot be confident about
the solitonic behavior because the shape of the blobs gets
deformed after the ‘‘collision’’ and an increase of the
amplitude and shrink in the width are manifest. After the
distributions approach the boundary (located at z � 
30)
the density of probability is absorbed by the sponge and its
integral M drops to zero. At this point we are unable to

track the evolution further in time and we ignore whether
the blobs might return and collide again and repeat such
process as many times as desired until there is energy
released (e.g., through the emission of scalar field) and
the encounters get damped, allowing eventually a true
collision. In Fig. 3 we show a zoom of the interference
pattern at the time when superposition of the configurations
around t� 5 occurs.

Of course, not all the initial configurations constructed
present this behavior and we have found that a criterion to
decide whether this behavior is allowed or not is the value
of the total energy E � K �W � I. In Figs. 4 and 5 we
show the total energy of different types of initial configu-
rations. In Fig. 4 we present different situations for the free
field case � � 0 and two particular cases: pz � 1:0 and
pz � 0. In the first case the solitonic behavior is achieved
and the total energy is always positive and approaches zero
because the density of probability has left the numerical
domain; in the second case the total energy is always
negative and at the end of the day what is found is that
there is a single blob in the middle, indicating that the
system is oscillating around a bounded object. We show
snapshots of this behavior later when dealing with the more
interesting unequal mass case. About the other cases in this
plot pz � 0:75, 0.71, 0.7 we cannot decide whether they
show solitonic behavior or not in the time we used to run
our simulations and we can only observe that the density
profiles are severely distorted by the collision.

In Fig. 5 we show the same criterion for configurations
with the self-interaction term (� � 0:2). Again, when the
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FIG. 3. The pattern of interference formed during the collision
of two configurations with � � 0, z0 � 15, pz � 3:0 (the same
case as in the previous figure). After this stage, the two blobs
continue their way in the initial direction and behave as solitons
(see Fig. 2). They are not strict solitons because they slightly
deform during the process.
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FIG. 2. Snapshots of the density of probability for interaction
between two initial configurations with � � 0, pz � 3:0, and
z0 � 15. The configuration shows solitonic behavior due to the
fact that the total energy is always positive of the order of E� 32
until the blobs get absorbed by the sponge. The numerical
domain used is x 2 �0; 30	, z 2 ��30; 30	 with resolution �x �
�z � 0:125.
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total energy is extremely positive or extremely negative we
are able to decide whether the configurations collide or
trespass each other.

B. Unequal mass case

The unequal mass case helps in deciding whether the
configurations in the above examples truly trespass each
other or bounce. In fact, up to now it has been impossible to
say anything about this for a few reasons: i) the expectation
absolute value of the linear momentum along the head-on
direction is equal for both half planes z > 0 and z < 0,
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and the unequal mass case with pz � 3:0) shows solitonic
behavior and those with clearly negative total energy (pz �
0:5) show a merger. Once again, we stopped the run of the
borderline case with pz � 0:755, which physical properties
change at about t� 50, and the numerical domain used does
not suffice to determine its fate.
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total energy, and show solitonic behavior; the total energy tends
to zero once the density of probability (the particles) gets out of
the numerical domain, which happens by the time indicated with
the star for such run. The configuration with pz � 0 remains
with clearly negative total energy, so that the system is bound
and the system collides, in the sense that there is no solitonic
behavior and instead the two blobs get glued and remain like
that. We are unable to conclude anything about the borderline
cases. The stars at the end of borderline cases indicate the point
at which we stopped the runs. The reason is that the length scale
of such cases is pretty much that of our numerical domain, and
one expects the turning points of the blobs to be at a distance of
the order of the domain size. By the time indicated with a star,
there is a burst of particles, related more to the fact that the blobs
are returning back to the domain than to a burst of particles
caused by the relaxation of a single blob or that the blobs are
leaving the domain completely.
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ii) the mass in each half plane is also the same in both
semiplanes, iii) the expectation value of the linear momen-
tum in the head-on direction is zero all the time.

In the unequal mass case we have the advantage of being
able to distinguish the half plane masses and linear mo-
mentum. In Fig. 6 we show snapshots of the unequal mass
case for � � 0:2 and initial parameters pz � 3:0 and z0 �
15 that show solitonic behavior with E> 0 all the way. It
can be seen clearly that the initial blobs are actually
trespassing each other, although they suffer a profile de-
formation until the wave function reaches the sponge
region.

In Fig. 7 we show the mass transfer from the z > 0 to the
z < 0 half planes and vice versa; notice that the mass
transfers from one side to the other in a very effective
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tum between the two half planes, actually the expectation value
calculated in each semiplane. The configuration evolved consists
of two superposed ground state configurations with � � 0:2, and
respective central field values  �0; 0� � 1, 0.7 and masses M �
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density of probability reaches the edges of the numerical domain
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way. We also show the expectation value of the linear
momentum along z in both half planes; what is found is
that the momentum is also transferred from one side to the
other. The perfect solitonic behavior would consist of
having these two properties plus the unachieved one re-
lated to the preservation of the density profile.

C. An example of collision

As a final result we show what happens when an initial
configuration presents a negative total energy. In Fig. 8 we
show the density profile along z for a collision case corre-
sponding to � � 0, z0 � 10, and pz � 0, that is, only the
pure gravitational force drives the dynamics of the binary.
It can be observed that the blobs actually merge and remain
sitting on a fixed point around the center of mass, the
density tends to get stabilized, the virial relation starts
oscillating around zero with smaller amplitude, the total
energy starts stabilizing, so as the mass of the system.

In order to illustrate what our results mean in physical
units we use the run in Fig. 8 to estimate the time scale for
the collision of the binary equal mass head-on case. We
start with the fact that the mass of ground state configura-
tions is M� 1011M� and the mass of the boson is m �
10�23 eV. The separation is 20� 3:52 kpc and the time
the density peak is maximum is tcollision � 52:5� 8:3
106 yr. The maximum relative speed before the collision is
v� 830 km=s.

V. CONCLUSIONS

We have presented numerical solutions to the
Schrödinger-Poisson system of equations which includes
the nonlinear term related to the self-interaction in the
mean field Gross-Pitaevskii equation for Bose condensates.

In such case, the potential well is given by self-gravity of
the density of probability of the system. The particular case
we have studied corresponds to the interaction between
two ground state configurations (both of them spherical)
[18].

We found that the initial blobs show solitonic behavior
of the initial configuration, but that also the two configu-
rations may collide. The system ends up colliding when-
ever the total energy of the system E< 0, and the solitonic
behavior appears when E> 0. Unfortunately we can show
this only for clearly nonzero values of the energy in each
case and we cannot conclude anything about the borderline
case, that is, when E� 0, because our simulations are
unable to resolve the system for the long time needed
and the spatial domain used.

Within the scalar field dark matter paradigm, the two
initial blobs would represent two virialized structures made
of dark matter. What we have shown is that not all couples
of configurations are allowed to have a collision, and that
the total energy would indicate whether or not a collision
can occur. Our calculations also involve the presence of a
self-interaction term in the scalar field, and therefore are
within the Gross-Pitaevskii frame of Bose condensates,
which this time are gravitating.
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